mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-04 01:42:09 +00:00
[x86] Revert the X86FoldTablesEmitter due to more miscompiles.
In testing, we've found yet another miscompile caused by the new tables. And this one is even less clear how to fix (we could teach it to fold a 16-bit load instead of the 32-bit load it wants, or block folding entirely). Also, the approach to excluding instructions seems increasingly to not scale well. I have left a more detailed analysis on the review log for the original patch (https://reviews.llvm.org/D32684) along with suggested path forward. I will land an additional test case that I wrote which covers the code that was miscompiling (folding into the output of `pextrw`) in a subsequent commit to keep this a pure revert. For each commit reverted here, I've restricted the revert to the non-test code touching the x86 fold table emission until the last commit where I did revert the test updates. This means the *new* test cases added for `insertps` and `xchg` remain untouched (and continue to pass). Reverted commits: r304540: [X86] Don't fold into memory operands into insertps in the ... r304347: [TableGen] Adapt more places to getValueAsString now ... r304163: [X86] Don't fold away the memory operand of an xchg. r304123: Don't capture a temporary std::string in a StringRef. r304122: Resubmit "[X86] Adding new LLVM TableGen backend that ..." Original commit was in r304088, and after a string of fixes was reverted previously in r304121 to fix build bots, and then re-landed in r304122. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304762 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c9977b6aa4
commit
565cfe059c
@ -11,7 +11,6 @@ tablegen(LLVM X86GenFastISel.inc -gen-fast-isel)
|
||||
tablegen(LLVM X86GenCallingConv.inc -gen-callingconv)
|
||||
tablegen(LLVM X86GenSubtargetInfo.inc -gen-subtarget)
|
||||
tablegen(LLVM X86GenEVEX2VEXTables.inc -gen-x86-EVEX2VEX-tables)
|
||||
tablegen(LLVM X86GenFoldTables.inc -gen-x86-fold-tables)
|
||||
if(LLVM_BUILD_GLOBAL_ISEL)
|
||||
tablegen(LLVM X86GenRegisterBank.inc -gen-register-bank)
|
||||
tablegen(LLVM X86GenGlobalISel.inc -gen-global-isel)
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -354,8 +354,9 @@ declare i32 @llvm.x86.sse42.pcmpistriz128(<16 x i8>, <16 x i8>, i8) nounwind rea
|
||||
define i32 @test_mm_crc32_u8(i32 %a0, i8 %a1) {
|
||||
; X32-LABEL: test_mm_crc32_u8:
|
||||
; X32: # BB#0:
|
||||
; X32-NEXT: movb {{[0-9]+}}(%esp), %cl
|
||||
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
|
||||
; X32-NEXT: crc32b {{[0-9]+}}(%esp), %eax
|
||||
; X32-NEXT: crc32b %cl, %eax
|
||||
; X32-NEXT: retl
|
||||
;
|
||||
; X64-LABEL: test_mm_crc32_u8:
|
||||
@ -371,8 +372,9 @@ declare i32 @llvm.x86.sse42.crc32.32.8(i32, i8) nounwind readnone
|
||||
define i32 @test_mm_crc32_u16(i32 %a0, i16 %a1) {
|
||||
; X32-LABEL: test_mm_crc32_u16:
|
||||
; X32: # BB#0:
|
||||
; X32-NEXT: movzwl {{[0-9]+}}(%esp), %ecx
|
||||
; X32-NEXT: movl {{[0-9]+}}(%esp), %eax
|
||||
; X32-NEXT: crc32w {{[0-9]+}}(%esp), %eax
|
||||
; X32-NEXT: crc32w %cx, %eax
|
||||
; X32-NEXT: retl
|
||||
;
|
||||
; X64-LABEL: test_mm_crc32_u16:
|
||||
|
@ -1651,9 +1651,26 @@ define <8 x float> @stack_fold_sqrtps_ymm(<8 x float> %a0) {
|
||||
}
|
||||
declare <8 x float> @llvm.x86.avx.sqrt.ps.256(<8 x float>) nounwind readnone
|
||||
|
||||
; TODO stack_fold_sqrtsd
|
||||
define double @stack_fold_sqrtsd(double %a0) {
|
||||
;CHECK-LABEL: stack_fold_sqrtsd
|
||||
;CHECK: vsqrtsd {{-?[0-9]*}}(%rsp), {{%xmm[0-9][0-9]*}}, {{%xmm[0-9][0-9]*}} {{.*#+}} 8-byte Folded Reload
|
||||
%1 = tail call <2 x i64> asm sideeffect "nop", "=x,~{xmm1},~{xmm2},~{xmm3},~{xmm4},~{xmm5},~{xmm6},~{xmm7},~{xmm8},~{xmm9},~{xmm10},~{xmm11},~{xmm12},~{xmm13},~{xmm14},~{xmm15},~{flags}"()
|
||||
%2 = call double @llvm.sqrt.f64(double %a0)
|
||||
ret double %2
|
||||
}
|
||||
declare double @llvm.sqrt.f64(double) nounwind readnone
|
||||
|
||||
; TODO stack_fold_sqrtsd_int
|
||||
; TODO stack_fold_sqrtss
|
||||
|
||||
define float @stack_fold_sqrtss(float %a0) {
|
||||
;CHECK-LABEL: stack_fold_sqrtss
|
||||
;CHECK: vsqrtss {{-?[0-9]*}}(%rsp), {{%xmm[0-9][0-9]*}}, {{%xmm[0-9][0-9]*}} {{.*#+}} 4-byte Folded Reload
|
||||
%1 = tail call <2 x i64> asm sideeffect "nop", "=x,~{xmm1},~{xmm2},~{xmm3},~{xmm4},~{xmm5},~{xmm6},~{xmm7},~{xmm8},~{xmm9},~{xmm10},~{xmm11},~{xmm12},~{xmm13},~{xmm14},~{xmm15},~{flags}"()
|
||||
%2 = call float @llvm.sqrt.f32(float %a0)
|
||||
ret float %2
|
||||
}
|
||||
declare float @llvm.sqrt.f32(float) nounwind readnone
|
||||
|
||||
; TODO stack_fold_sqrtss_int
|
||||
|
||||
define <2 x double> @stack_fold_subpd(<2 x double> %a0, <2 x double> %a1) {
|
||||
|
@ -5,10 +5,8 @@
|
||||
define <2 x double> @sqrtd2(double* nocapture readonly %v) local_unnamed_addr #0 {
|
||||
; CHECK-LABEL: sqrtd2:
|
||||
; CHECK: # BB#0: # %entry
|
||||
; CHECK-NEXT: vmovsd {{.*#+}} xmm0 = mem[0],zero
|
||||
; CHECK-NEXT: vmovsd {{.*#+}} xmm1 = mem[0],zero
|
||||
; CHECK-NEXT: vsqrtsd %xmm0, %xmm0, %xmm0
|
||||
; CHECK-NEXT: vsqrtsd %xmm1, %xmm1, %xmm1
|
||||
; CHECK-NEXT: vsqrtsd (%rdi), %xmm0, %xmm0
|
||||
; CHECK-NEXT: vsqrtsd 8(%rdi), %xmm1, %xmm1
|
||||
; CHECK-NEXT: vunpcklpd {{.*#+}} xmm0 = xmm0[0],xmm1[0]
|
||||
; CHECK-NEXT: retq
|
||||
entry:
|
||||
@ -29,14 +27,10 @@ declare double @sqrt(double) local_unnamed_addr #1
|
||||
define <4 x float> @sqrtf4(float* nocapture readonly %v) local_unnamed_addr #0 {
|
||||
; CHECK-LABEL: sqrtf4:
|
||||
; CHECK: # BB#0: # %entry
|
||||
; CHECK-NEXT: vmovss {{.*#+}} xmm0 = mem[0],zero,zero,zero
|
||||
; CHECK-NEXT: vmovss {{.*#+}} xmm1 = mem[0],zero,zero,zero
|
||||
; CHECK-NEXT: vsqrtss %xmm0, %xmm0, %xmm0
|
||||
; CHECK-NEXT: vsqrtss %xmm1, %xmm1, %xmm1
|
||||
; CHECK-NEXT: vmovss {{.*#+}} xmm2 = mem[0],zero,zero,zero
|
||||
; CHECK-NEXT: vsqrtss %xmm2, %xmm2, %xmm2
|
||||
; CHECK-NEXT: vmovss {{.*#+}} xmm3 = mem[0],zero,zero,zero
|
||||
; CHECK-NEXT: vsqrtss %xmm3, %xmm3, %xmm3
|
||||
; CHECK-NEXT: vsqrtss (%rdi), %xmm0, %xmm0
|
||||
; CHECK-NEXT: vsqrtss 4(%rdi), %xmm1, %xmm1
|
||||
; CHECK-NEXT: vsqrtss 8(%rdi), %xmm2, %xmm2
|
||||
; CHECK-NEXT: vsqrtss 12(%rdi), %xmm3, %xmm3
|
||||
; CHECK-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[2,3]
|
||||
; CHECK-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0,1],xmm2[0],xmm0[3]
|
||||
; CHECK-NEXT: vinsertps {{.*#+}} xmm0 = xmm0[0,1,2],xmm3[0]
|
||||
|
@ -35,7 +35,6 @@ add_tablegen(llvm-tblgen LLVM
|
||||
TableGen.cpp
|
||||
Types.cpp
|
||||
X86DisassemblerTables.cpp
|
||||
X86FoldTablesEmitter.cpp
|
||||
X86EVEX2VEXTablesEmitter.cpp
|
||||
X86ModRMFilters.cpp
|
||||
X86RecognizableInstr.cpp
|
||||
|
@ -46,7 +46,6 @@ enum ActionType {
|
||||
GenAttributes,
|
||||
GenSearchableTables,
|
||||
GenGlobalISel,
|
||||
GenX86FoldTables,
|
||||
GenX86EVEX2VEXTables,
|
||||
GenRegisterBank,
|
||||
};
|
||||
@ -98,8 +97,6 @@ namespace {
|
||||
"Generate generic binary-searchable table"),
|
||||
clEnumValN(GenGlobalISel, "gen-global-isel",
|
||||
"Generate GlobalISel selector"),
|
||||
clEnumValN(GenX86FoldTables, "gen-x86-fold-tables",
|
||||
"Generate X86 fold tables"),
|
||||
clEnumValN(GenX86EVEX2VEXTables, "gen-x86-EVEX2VEX-tables",
|
||||
"Generate X86 EVEX to VEX compress tables"),
|
||||
clEnumValN(GenRegisterBank, "gen-register-bank",
|
||||
@ -193,9 +190,6 @@ bool LLVMTableGenMain(raw_ostream &OS, RecordKeeper &Records) {
|
||||
case GenGlobalISel:
|
||||
EmitGlobalISel(Records, OS);
|
||||
break;
|
||||
case GenX86FoldTables:
|
||||
EmitX86FoldTables(Records, OS);
|
||||
break;
|
||||
case GenRegisterBank:
|
||||
EmitRegisterBank(Records, OS);
|
||||
break;
|
||||
|
@ -81,7 +81,6 @@ void EmitCTags(RecordKeeper &RK, raw_ostream &OS);
|
||||
void EmitAttributes(RecordKeeper &RK, raw_ostream &OS);
|
||||
void EmitSearchableTables(RecordKeeper &RK, raw_ostream &OS);
|
||||
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS);
|
||||
void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS);
|
||||
void EmitX86EVEX2VEXTables(RecordKeeper &RK, raw_ostream &OS);
|
||||
void EmitRegisterBank(RecordKeeper &RK, raw_ostream &OS);
|
||||
|
||||
|
@ -1,732 +0,0 @@
|
||||
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This tablegen backend is responsible for emitting the memory fold tables of
|
||||
// the X86 backend instructions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "CodeGenDAGPatterns.h"
|
||||
#include "CodeGenTarget.h"
|
||||
#include "X86RecognizableInstr.h"
|
||||
#include "llvm/TableGen/Error.h"
|
||||
#include "llvm/TableGen/TableGenBackend.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
|
||||
// 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
|
||||
// manual added entries.
|
||||
enum UnfoldStrategy {
|
||||
UNFOLD, // Allow unfolding
|
||||
NO_UNFOLD, // Prevent unfolding
|
||||
NO_STRATEGY // Make decision according to operands' sizes
|
||||
};
|
||||
|
||||
// Represents an entry in the manual mapped instructions set.
|
||||
struct ManualMapEntry {
|
||||
const char *RegInstStr;
|
||||
const char *MemInstStr;
|
||||
UnfoldStrategy Strategy;
|
||||
|
||||
ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
|
||||
UnfoldStrategy Strategy = NO_STRATEGY)
|
||||
: RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
|
||||
};
|
||||
|
||||
class IsMatch;
|
||||
|
||||
// List of instructions requiring explicitly aligned memory.
|
||||
const char *const ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
|
||||
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
|
||||
|
||||
// List of instructions NOT requiring explicit memory alignment.
|
||||
const char *const ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD"};
|
||||
|
||||
// For manually mapping instructions that do not match by their encoding.
|
||||
const ManualMapEntry ManualMapSet[] = {
|
||||
{ "ADD16ri_DB", "ADD16mi", NO_UNFOLD },
|
||||
{ "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD },
|
||||
{ "ADD16rr_DB", "ADD16mr", NO_UNFOLD },
|
||||
{ "ADD32ri_DB", "ADD32mi", NO_UNFOLD },
|
||||
{ "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD },
|
||||
{ "ADD32rr_DB", "ADD32mr", NO_UNFOLD },
|
||||
{ "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD },
|
||||
{ "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD },
|
||||
{ "ADD64rr_DB", "ADD64mr", NO_UNFOLD },
|
||||
{ "ADD16rr_DB", "ADD16rm", NO_UNFOLD },
|
||||
{ "ADD32rr_DB", "ADD32rm", NO_UNFOLD },
|
||||
{ "ADD64rr_DB", "ADD64rm", NO_UNFOLD },
|
||||
{ "PUSH16r", "PUSH16rmm", NO_UNFOLD },
|
||||
{ "PUSH32r", "PUSH32rmm", NO_UNFOLD },
|
||||
{ "PUSH64r", "PUSH64rmm", NO_UNFOLD },
|
||||
{ "TAILJMPr", "TAILJMPm", UNFOLD },
|
||||
{ "TAILJMPr64", "TAILJMPm64", UNFOLD },
|
||||
{ "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD },
|
||||
};
|
||||
|
||||
// Do not add these instructions to any of the folding tables.
|
||||
const char *const NoFoldSet[] = {
|
||||
"TCRETURNri64",
|
||||
"TCRETURNmi64", // Special dealing (in X86InstrCompiler.td under
|
||||
"TCRETURNri", // "tailcall stuff" section).
|
||||
"TCRETURNmi",
|
||||
|
||||
// Never fold XCHG, the register and memory forms have different locking
|
||||
// semantics.
|
||||
"XCHG8rr", "XCHG8rm",
|
||||
"XCHG16rr", "XCHG16rm",
|
||||
"XCHG32rr", "XCHG32rm",
|
||||
"XCHG64rr", "XCHG64rm",
|
||||
|
||||
// Different calculations of the folded operand between
|
||||
// memory and register forms (folding is illegal).
|
||||
// - In their register form, the second register operand's relevant
|
||||
// bits are only the first 4/5/6 (depending on mode and reg size).
|
||||
// - In their memory form, the second register operand's relevant
|
||||
// bits are only the first 16/32/64 (depending on mode and reg size).
|
||||
"BT16rr", "BT32rr", "BT64rr",
|
||||
"BT16mr", "BT32mr", "BT64mr",
|
||||
"BTC16rr", "BTC32rr", "BTC64rr",
|
||||
"BTC16mr", "BTC32mr", "BTC64mr",
|
||||
"BTR16rr", "BTR32rr", "BTR64rr",
|
||||
"BTR16mr", "BTR32mr", "BTR64mr",
|
||||
"BTS16rr", "BTS32rr", "BTS64rr",
|
||||
"BTS16mr", "BTS32mr", "BTS64mr",
|
||||
|
||||
// insertps cannot be folded without adjusting the immediate. There's custom
|
||||
// code to handle it in X86InstrInfo.cpp, ignore it here.
|
||||
"INSERTPSrr", "INSERTPSrm",
|
||||
"VINSERTPSrr", "VINSERTPSrm", "VINSERTPSZrr", "VINSERTPSZrm",
|
||||
|
||||
// Memory folding is enabled only when optimizing for size by DAG
|
||||
// patterns only. (issue detailed in D28744 review)
|
||||
"VCVTSS2SDrm", "VCVTSS2SDrr",
|
||||
"VCVTSS2SDZrm", "VCVTSS2SDZrr",
|
||||
"VCVTSS2SDZrmk", "VCVTSS2SDZrrk",
|
||||
"VCVTSS2SDZrmkz", "VCVTSS2SDZrrkz",
|
||||
"VCVTSS2SDZrm_Int", "VCVTSS2SDZrr_Int",
|
||||
"VCVTSS2SDZrm_Intk", "VCVTSS2SDZrr_Intk",
|
||||
"VCVTSS2SDZrm_Intkz", "VCVTSS2SDZrr_Intkz",
|
||||
"VCVTSD2SSrm", "VCVTSD2SSrr",
|
||||
"VCVTSD2SSZrm", "VCVTSD2SSZrr",
|
||||
"VCVTSD2SSZrmk", "VCVTSD2SSZrrk",
|
||||
"VCVTSD2SSZrmkz", "VCVTSD2SSZrrkz",
|
||||
"VCVTSD2SSZrm_Int", "VCVTSD2SSZrr_Int",
|
||||
"VCVTSD2SSZrm_Intk", "VCVTSD2SSZrr_Intk",
|
||||
"VCVTSD2SSZrm_Intkz", "VCVTSD2SSZrr_Intkz",
|
||||
"VRCP14SSrm", "VRCP14SSrr",
|
||||
"VRCP14SDrm", "VRCP14SDrr",
|
||||
"VRSQRT14SSrm", "VRSQRT14SSrr",
|
||||
"VRSQRT14SDrm", "VRSQRT14SDrr",
|
||||
"VSQRTSSm", "VSQRTSSr",
|
||||
"VSQRTSSm_Int", "VSQRTSSr_Int",
|
||||
"VSQRTSSZm", "VSQRTSSZr",
|
||||
"VSQRTSSZm_Int", "VSQRTSSZr_Int",
|
||||
"VSQRTSSZm_Intk", "VSQRTSSZr_Intk",
|
||||
"VSQRTSSZm_Intkz", "VSQRTSSZr_Intkz",
|
||||
"VSQRTSDm", "VSQRTSDr",
|
||||
"VSQRTSDm_Int", "VSQRTSDr_Int",
|
||||
"VSQRTSDZm", "VSQRTSDZr",
|
||||
"VSQRTSDZm_Int", "VSQRTSDZr_Int",
|
||||
"VSQRTSDZm_Intk", "VSQRTSDZr_Intk",
|
||||
"VSQRTSDZm_Intkz", "VSQRTSDZr_Intkz",
|
||||
};
|
||||
|
||||
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
|
||||
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
|
||||
return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
|
||||
});
|
||||
}
|
||||
|
||||
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
|
||||
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
|
||||
return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
|
||||
});
|
||||
}
|
||||
|
||||
class X86FoldTablesEmitter {
|
||||
RecordKeeper &Records;
|
||||
CodeGenTarget Target;
|
||||
|
||||
// Represents an entry in the folding table
|
||||
class X86FoldTableEntry {
|
||||
const CodeGenInstruction *RegInst;
|
||||
const CodeGenInstruction *MemInst;
|
||||
|
||||
public:
|
||||
bool CannotUnfold = false;
|
||||
bool IsLoad = false;
|
||||
bool IsStore = false;
|
||||
bool IsAligned = false;
|
||||
unsigned int Alignment = 0;
|
||||
|
||||
X86FoldTableEntry(const CodeGenInstruction *RegInst,
|
||||
const CodeGenInstruction *MemInst)
|
||||
: RegInst(RegInst), MemInst(MemInst) {}
|
||||
|
||||
friend raw_ostream &operator<<(raw_ostream &OS,
|
||||
const X86FoldTableEntry &E) {
|
||||
OS << "{ X86::" << E.RegInst->TheDef->getName()
|
||||
<< ", X86::" << E.MemInst->TheDef->getName() << ", ";
|
||||
|
||||
if (E.IsLoad)
|
||||
OS << "TB_FOLDED_LOAD | ";
|
||||
if (E.IsStore)
|
||||
OS << "TB_FOLDED_STORE | ";
|
||||
if (E.CannotUnfold)
|
||||
OS << "TB_NO_REVERSE | ";
|
||||
if (E.IsAligned)
|
||||
OS << "TB_ALIGN_" << E.Alignment << " | ";
|
||||
|
||||
OS << "0 },\n";
|
||||
|
||||
return OS;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::vector<X86FoldTableEntry> FoldTable;
|
||||
// std::vector for each folding table.
|
||||
// Table2Addr - Holds instructions which their memory form performs load+store
|
||||
// Table#i - Holds instructions which the their memory form perform a load OR
|
||||
// a store, and their #i'th operand is folded.
|
||||
FoldTable Table2Addr;
|
||||
FoldTable Table0;
|
||||
FoldTable Table1;
|
||||
FoldTable Table2;
|
||||
FoldTable Table3;
|
||||
FoldTable Table4;
|
||||
|
||||
public:
|
||||
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
|
||||
|
||||
// run - Generate the 6 X86 memory fold tables.
|
||||
void run(raw_ostream &OS);
|
||||
|
||||
private:
|
||||
// Decides to which table to add the entry with the given instructions.
|
||||
// S sets the strategy of adding the TB_NO_REVERSE flag.
|
||||
void updateTables(const CodeGenInstruction *RegInstr,
|
||||
const CodeGenInstruction *MemInstr,
|
||||
const UnfoldStrategy S = NO_STRATEGY);
|
||||
|
||||
// Generates X86FoldTableEntry with the given instructions and fill it with
|
||||
// the appropriate flags - then adds it to Table.
|
||||
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
|
||||
const CodeGenInstruction *MemInstr,
|
||||
const UnfoldStrategy S, const unsigned int FoldedInd);
|
||||
|
||||
// Print the given table as a static const C++ array of type
|
||||
// X86MemoryFoldTableEntry.
|
||||
void printTable(const FoldTable &Table, std::string TableName,
|
||||
raw_ostream &OS) {
|
||||
OS << "\nstatic const X86MemoryFoldTableEntry MemoryFold" << TableName
|
||||
<< "[] = {\n";
|
||||
|
||||
for (const X86FoldTableEntry &E : Table)
|
||||
OS.indent(2) << E;
|
||||
|
||||
OS << "};\n";
|
||||
}
|
||||
};
|
||||
|
||||
// Return true if one of the instruction's operands is a RST register class
|
||||
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
|
||||
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
|
||||
return OpIn.Rec->getName() == "RST";
|
||||
});
|
||||
}
|
||||
|
||||
// Return true if one of the instruction's operands is a ptr_rc_tailcall
|
||||
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
|
||||
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
|
||||
return OpIn.Rec->getName() == "ptr_rc_tailcall";
|
||||
});
|
||||
}
|
||||
|
||||
// Calculates the integer value representing the BitsInit object
|
||||
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
|
||||
assert(B->getNumBits() <= sizeof(uint64_t) * CHAR_BIT &&
|
||||
"BitInits' too long!");
|
||||
|
||||
uint64_t Value = 0;
|
||||
for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
|
||||
BitInit *Bit = cast<BitInit>(B->getBit(i));
|
||||
Value |= uint64_t(Bit->getValue()) << i;
|
||||
}
|
||||
return Value;
|
||||
}
|
||||
|
||||
// Returns true if the two given BitsInits represent the same integer value
|
||||
static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
|
||||
if (B1->getNumBits() != B2->getNumBits())
|
||||
PrintFatalError("Comparing two BitsInits with different sizes!");
|
||||
|
||||
for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
|
||||
BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
|
||||
BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
|
||||
if (Bit1->getValue() != Bit2->getValue())
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Return the size of the register operand
|
||||
static inline unsigned int getRegOperandSize(const Record *RegRec) {
|
||||
if (RegRec->isSubClassOf("RegisterOperand"))
|
||||
RegRec = RegRec->getValueAsDef("RegClass");
|
||||
if (RegRec->isSubClassOf("RegisterClass"))
|
||||
return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");
|
||||
|
||||
llvm_unreachable("Register operand's size not known!");
|
||||
}
|
||||
|
||||
// Return the size of the memory operand
|
||||
static inline unsigned int
|
||||
getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) {
|
||||
if (MemRec->isSubClassOf("Operand")) {
|
||||
// Intrinsic memory instructions use ssmem/sdmem.
|
||||
if (IntrinsicSensitive &&
|
||||
(MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem"))
|
||||
return 128;
|
||||
|
||||
StringRef Name =
|
||||
MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
|
||||
if (Name == "Mem8")
|
||||
return 8;
|
||||
if (Name == "Mem16")
|
||||
return 16;
|
||||
if (Name == "Mem32")
|
||||
return 32;
|
||||
if (Name == "Mem64")
|
||||
return 64;
|
||||
if (Name == "Mem80")
|
||||
return 80;
|
||||
if (Name == "Mem128")
|
||||
return 128;
|
||||
if (Name == "Mem256")
|
||||
return 256;
|
||||
if (Name == "Mem512")
|
||||
return 512;
|
||||
}
|
||||
|
||||
llvm_unreachable("Memory operand's size not known!");
|
||||
}
|
||||
|
||||
// Returns true if the record's list of defs includes the given def.
|
||||
static inline bool hasDefInList(const Record *Rec, const StringRef List,
|
||||
const StringRef Def) {
|
||||
if (!Rec->isValueUnset(List)) {
|
||||
return any_of(*(Rec->getValueAsListInit(List)),
|
||||
[Def](const Init *I) { return I->getAsString() == Def; });
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Return true if the instruction defined as a register flavor.
|
||||
static inline bool hasRegisterFormat(const Record *Inst) {
|
||||
const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
|
||||
uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
|
||||
|
||||
// Values from X86Local namespace defined in X86RecognizableInstr.cpp
|
||||
return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
|
||||
}
|
||||
|
||||
// Return true if the instruction defined as a memory flavor.
|
||||
static inline bool hasMemoryFormat(const Record *Inst) {
|
||||
const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
|
||||
uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
|
||||
|
||||
// Values from X86Local namespace defined in X86RecognizableInstr.cpp
|
||||
return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
|
||||
}
|
||||
|
||||
static inline bool isNOREXRegClass(const Record *Op) {
|
||||
return Op->getName().find("_NOREX") != StringRef::npos;
|
||||
}
|
||||
|
||||
static inline bool isRegisterOperand(const Record *Rec) {
|
||||
return Rec->isSubClassOf("RegisterClass") ||
|
||||
Rec->isSubClassOf("RegisterOperand") ||
|
||||
Rec->isSubClassOf("PointerLikeRegClass");
|
||||
}
|
||||
|
||||
static inline bool isMemoryOperand(const Record *Rec) {
|
||||
return Rec->isSubClassOf("Operand") &&
|
||||
Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
|
||||
}
|
||||
|
||||
static inline bool isImmediateOperand(const Record *Rec) {
|
||||
return Rec->isSubClassOf("Operand") &&
|
||||
Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
|
||||
}
|
||||
|
||||
// Get the alternative instruction pointed by "FoldGenRegForm" field.
|
||||
static inline const CodeGenInstruction *
|
||||
getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
|
||||
const CodeGenTarget &Target) {
|
||||
|
||||
StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
|
||||
Record *AltRegInstRec = Records.getDef(AltRegInstStr);
|
||||
assert(AltRegInstRec &&
|
||||
"Alternative register form instruction def not found");
|
||||
CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
|
||||
return &AltRegInst;
|
||||
}
|
||||
|
||||
// Function object - Operator() returns true if the given VEX instruction
|
||||
// matches the EVEX instruction of this object.
|
||||
class IsMatch {
|
||||
const CodeGenInstruction *MemInst;
|
||||
const RecordKeeper &Records;
|
||||
|
||||
public:
|
||||
IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
|
||||
: MemInst(Inst), Records(Records) {}
|
||||
|
||||
bool operator()(const CodeGenInstruction *RegInst) {
|
||||
Record *MemRec = MemInst->TheDef;
|
||||
Record *RegRec = RegInst->TheDef;
|
||||
|
||||
// Return false if one (at least) of the encoding fields of both
|
||||
// instructions do not match.
|
||||
if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
|
||||
!equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
|
||||
MemRec->getValueAsBitsInit("Opcode")) ||
|
||||
// VEX/EVEX fields
|
||||
RegRec->getValueAsDef("OpPrefix") !=
|
||||
MemRec->getValueAsDef("OpPrefix") ||
|
||||
RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
|
||||
RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
|
||||
RegRec->getValueAsBit("hasVEX_4V") !=
|
||||
MemRec->getValueAsBit("hasVEX_4V") ||
|
||||
RegRec->getValueAsBit("hasEVEX_K") !=
|
||||
MemRec->getValueAsBit("hasEVEX_K") ||
|
||||
RegRec->getValueAsBit("hasEVEX_Z") !=
|
||||
MemRec->getValueAsBit("hasEVEX_Z") ||
|
||||
RegRec->getValueAsBit("hasEVEX_B") !=
|
||||
MemRec->getValueAsBit("hasEVEX_B") ||
|
||||
RegRec->getValueAsBit("hasEVEX_RC") !=
|
||||
MemRec->getValueAsBit("hasEVEX_RC") ||
|
||||
RegRec->getValueAsBit("hasREX_WPrefix") !=
|
||||
MemRec->getValueAsBit("hasREX_WPrefix") ||
|
||||
RegRec->getValueAsBit("hasLockPrefix") !=
|
||||
MemRec->getValueAsBit("hasLockPrefix") ||
|
||||
!equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"),
|
||||
MemRec->getValueAsBitsInit("EVEX_LL")) ||
|
||||
!equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"),
|
||||
MemRec->getValueAsBitsInit("VEX_WPrefix")) ||
|
||||
// Instruction's format - The register form's "Form" field should be
|
||||
// the opposite of the memory form's "Form" field.
|
||||
!areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
|
||||
MemRec->getValueAsBitsInit("FormBits")) ||
|
||||
RegRec->getValueAsBit("isAsmParserOnly") !=
|
||||
MemRec->getValueAsBit("isAsmParserOnly"))
|
||||
return false;
|
||||
|
||||
// Make sure the sizes of the operands of both instructions suit each other.
|
||||
// This is needed for instructions with intrinsic version (_Int).
|
||||
// Where the only difference is the size of the operands.
|
||||
// For example: VUCOMISDZrm and Int_VUCOMISDrm
|
||||
// Also for instructions that their EVEX version was upgraded to work with
|
||||
// k-registers. For example VPCMPEQBrm (xmm output register) and
|
||||
// VPCMPEQBZ128rm (k register output register).
|
||||
bool ArgFolded = false;
|
||||
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||||
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||||
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
||||
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
||||
|
||||
// Instructions with one output in their memory form use the memory folded
|
||||
// operand as source and destination (Read-Modify-Write).
|
||||
unsigned RegStartIdx =
|
||||
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
|
||||
|
||||
for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
|
||||
Record *MemOpRec = MemInst->Operands[i].Rec;
|
||||
Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
|
||||
|
||||
if (MemOpRec == RegOpRec)
|
||||
continue;
|
||||
|
||||
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
|
||||
if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
|
||||
isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
|
||||
return false;
|
||||
} else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
|
||||
if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
|
||||
return false;
|
||||
} else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
|
||||
if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
|
||||
return false;
|
||||
} else {
|
||||
// Only one operand can be folded.
|
||||
if (ArgFolded)
|
||||
return false;
|
||||
|
||||
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
|
||||
ArgFolded = true;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
// Return true of the 2 given forms are the opposite of each other.
|
||||
bool areOppositeForms(const BitsInit *RegFormBits,
|
||||
const BitsInit *MemFormBits) {
|
||||
uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
|
||||
uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);
|
||||
|
||||
if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
|
||||
(MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
|
||||
(MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
|
||||
(MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
|
||||
(MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
|
||||
(MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
|
||||
(MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
|
||||
(MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
|
||||
(MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
|
||||
(MemFormNum == X86Local::MRMDestMem &&
|
||||
RegFormNum == X86Local::MRMDestReg) ||
|
||||
(MemFormNum == X86Local::MRMSrcMem &&
|
||||
RegFormNum == X86Local::MRMSrcReg) ||
|
||||
(MemFormNum == X86Local::MRMSrcMem4VOp3 &&
|
||||
RegFormNum == X86Local::MRMSrcReg4VOp3) ||
|
||||
(MemFormNum == X86Local::MRMSrcMemOp4 &&
|
||||
RegFormNum == X86Local::MRMSrcRegOp4))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
|
||||
const CodeGenInstruction *RegInstr,
|
||||
const CodeGenInstruction *MemInstr,
|
||||
const UnfoldStrategy S,
|
||||
const unsigned int FoldedInd) {
|
||||
|
||||
X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
|
||||
Record *RegRec = RegInstr->TheDef;
|
||||
Record *MemRec = MemInstr->TheDef;
|
||||
|
||||
// Only table0 entries should explicitly specify a load or store flag.
|
||||
if (&Table == &Table0) {
|
||||
unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
||||
unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
||||
// If the instruction writes to the folded operand, it will appear as an
|
||||
// output in the register form instruction and as an input in the memory
|
||||
// form instruction.
|
||||
// If the instruction reads from the folded operand, it well appear as in
|
||||
// input in both forms.
|
||||
if (MemInOpsNum == RegInOpsNum)
|
||||
Result.IsLoad = true;
|
||||
else
|
||||
Result.IsStore = true;
|
||||
}
|
||||
|
||||
Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
|
||||
Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
|
||||
|
||||
// Unfolding code generates a load/store instruction according to the size of
|
||||
// the register in the register form instruction.
|
||||
// If the register's size is greater than the memory's operand size, do not
|
||||
// allow unfolding.
|
||||
if (S == UNFOLD)
|
||||
Result.CannotUnfold = false;
|
||||
else if (S == NO_UNFOLD)
|
||||
Result.CannotUnfold = true;
|
||||
else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
|
||||
Result.CannotUnfold = true; // S == NO_STRATEGY
|
||||
|
||||
uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
|
||||
if (isExplicitAlign(RegInstr)) {
|
||||
// The instruction require explicitly aligned memory.
|
||||
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
|
||||
uint64_t Value = getValueFromBitsInit(VectSize);
|
||||
Result.IsAligned = true;
|
||||
Result.Alignment = Value;
|
||||
} else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
|
||||
Enc != X86Local::EVEX) {
|
||||
// Instructions with VEX encoding do not require alignment.
|
||||
if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
|
||||
// SSE packed vector instructions require a 16 byte alignment.
|
||||
Result.IsAligned = true;
|
||||
Result.Alignment = 16;
|
||||
}
|
||||
}
|
||||
|
||||
Table.push_back(Result);
|
||||
}
|
||||
|
||||
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
|
||||
const CodeGenInstruction *MemInstr,
|
||||
const UnfoldStrategy S) {
|
||||
|
||||
Record *RegRec = RegInstr->TheDef;
|
||||
Record *MemRec = MemInstr->TheDef;
|
||||
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||||
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
|
||||
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
|
||||
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
|
||||
|
||||
// Instructions which have the WriteRMW value (Read-Modify-Write) should be
|
||||
// added to Table2Addr.
|
||||
if (hasDefInList(MemRec, "SchedRW", "WriteRMW") && MemOutSize != RegOutSize &&
|
||||
MemInSize == RegInSize) {
|
||||
addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
|
||||
// Load-Folding cases.
|
||||
// If the i'th register form operand is a register and the i'th memory form
|
||||
// operand is a memory operand, add instructions to Table#i.
|
||||
for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
|
||||
Record *RegOpRec = RegInstr->Operands[i].Rec;
|
||||
Record *MemOpRec = MemInstr->Operands[i].Rec;
|
||||
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
|
||||
switch (i) {
|
||||
default: llvm_unreachable("Unexpected operand count!");
|
||||
case 0:
|
||||
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
|
||||
return;
|
||||
case 1:
|
||||
addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
|
||||
return;
|
||||
case 2:
|
||||
addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
|
||||
return;
|
||||
case 3:
|
||||
addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
|
||||
return;
|
||||
case 4:
|
||||
addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
|
||||
// Store-Folding cases.
|
||||
// If the memory form instruction performs performs a store, the *output*
|
||||
// register of the register form instructions disappear and instead a
|
||||
// memory *input* operand appears in the memory form instruction.
|
||||
// For example:
|
||||
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
|
||||
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
|
||||
Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
|
||||
Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
|
||||
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec))
|
||||
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void X86FoldTablesEmitter::run(raw_ostream &OS) {
|
||||
emitSourceFileHeader("X86 fold tables", OS);
|
||||
|
||||
// Holds all memory instructions
|
||||
std::vector<const CodeGenInstruction *> MemInsts;
|
||||
// Holds all register instructions - divided according to opcode.
|
||||
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
|
||||
|
||||
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
|
||||
Target.getInstructionsByEnumValue();
|
||||
|
||||
for (const CodeGenInstruction *Inst : NumberedInstructions) {
|
||||
if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
|
||||
continue;
|
||||
|
||||
const Record *Rec = Inst->TheDef;
|
||||
|
||||
// - Do not proceed matching if the instruction in NoFoldSet.
|
||||
// - Instructions including RST register class operands are not relevant
|
||||
// for memory folding (for further details check the explanation in
|
||||
// lib/Target/X86/X86InstrFPStack.td file).
|
||||
// - Some instructions (listed in the manual map above) use the register
|
||||
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
|
||||
// safe mapping of these instruction we manually map them and exclude
|
||||
// them from the automation.
|
||||
if (find(NoFoldSet, Rec->getName()) != std::end(NoFoldSet) ||
|
||||
hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
|
||||
continue;
|
||||
|
||||
// Add all the memory form instructions to MemInsts, and all the register
|
||||
// form instructions to RegInsts[Opc], where Opc in the opcode of each
|
||||
// instructions. this helps reducing the runtime of the backend.
|
||||
if (hasMemoryFormat(Rec))
|
||||
MemInsts.push_back(Inst);
|
||||
else if (hasRegisterFormat(Rec)) {
|
||||
uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
|
||||
RegInsts[Opc].push_back(Inst);
|
||||
}
|
||||
}
|
||||
|
||||
// For each memory form instruction, try to find its register form
|
||||
// instruction.
|
||||
for (const CodeGenInstruction *MemInst : MemInsts) {
|
||||
uint8_t Opc =
|
||||
getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
|
||||
|
||||
if (RegInsts.count(Opc) == 0)
|
||||
continue;
|
||||
|
||||
// Two forms (memory & register) of the same instruction must have the same
|
||||
// opcode. try matching only with register form instructions with the same
|
||||
// opcode.
|
||||
std::vector<const CodeGenInstruction *> &OpcRegInsts =
|
||||
RegInsts.find(Opc)->second;
|
||||
|
||||
auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
|
||||
if (Match != OpcRegInsts.end()) {
|
||||
const CodeGenInstruction *RegInst = *Match;
|
||||
// If the matched instruction has it's "FoldGenRegForm" set, map the
|
||||
// memory form instruction to the register form instruction pointed by
|
||||
// this field
|
||||
if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
|
||||
updateTables(RegInst, MemInst);
|
||||
} else {
|
||||
const CodeGenInstruction *AltRegInst =
|
||||
getAltRegInst(RegInst, Records, Target);
|
||||
updateTables(AltRegInst, MemInst);
|
||||
}
|
||||
OpcRegInsts.erase(Match);
|
||||
}
|
||||
}
|
||||
|
||||
// Add the manually mapped instructions listed above.
|
||||
for (const ManualMapEntry &Entry : ManualMapSet) {
|
||||
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
|
||||
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
|
||||
|
||||
updateTables(&(Target.getInstruction(RegInstIter)),
|
||||
&(Target.getInstruction(MemInstIter)), Entry.Strategy);
|
||||
}
|
||||
|
||||
// Print all tables to raw_ostream OS.
|
||||
printTable(Table2Addr, "Table2Addr", OS);
|
||||
printTable(Table0, "Table0", OS);
|
||||
printTable(Table1, "Table1", OS);
|
||||
printTable(Table2, "Table2", OS);
|
||||
printTable(Table3, "Table3", OS);
|
||||
printTable(Table4, "Table4", OS);
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
|
||||
void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) {
|
||||
X86FoldTablesEmitter(RK).run(OS);
|
||||
}
|
||||
} // namespace llvm
|
Loading…
Reference in New Issue
Block a user