Distribute sext/zext to the operands of and/or/xor

This is an enhancement to SeparateConstOffsetFromGEP. With this patch, we can
extract a constant offset from "s/zext and/or/xor A, B".

Added a new test @ext_or to verify this enhancement.

Refactoring the code, I also extracted some common logic to function
Distributable. 


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209670 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jingyue Wu 2014-05-27 18:00:00 +00:00
parent 991c9c1c89
commit 585644611e
2 changed files with 48 additions and 13 deletions

View File

@ -165,6 +165,10 @@ class ConstantOffsetExtractor {
void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
/// Finds the first use of Used in U. Returns -1 if not found.
static unsigned FindFirstUse(User *U, Value *Used);
/// Returns whether OPC (sext or zext) can be distributed to the operands of
/// BO. e.g., sext can be distributed to the operands of an "add nsw" because
/// sext (add nsw a, b) == add nsw (sext a), (sext b).
static bool Distributable(unsigned OPC, BinaryOperator *BO);
/// The path from the constant offset to the old GEP index. e.g., if the GEP
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
@ -223,6 +227,25 @@ FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
return new SeparateConstOffsetFromGEP();
}
bool ConstantOffsetExtractor::Distributable(unsigned OPC, BinaryOperator *BO) {
assert(OPC == Instruction::SExt || OPC == Instruction::ZExt);
// sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
// zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
if (BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Sub) {
return (OPC == Instruction::SExt && BO->hasNoSignedWrap()) ||
(OPC == Instruction::ZExt && BO->hasNoUnsignedWrap());
}
// sext/zext (and/or/xor A, B) == and/or/xor (sext/zext A), (sext/zext B)
// -instcombine also leverages this invariant to do the reverse
// transformation to reduce integer casts.
return BO->getOpcode() == Instruction::And ||
BO->getOpcode() == Instruction::Or ||
BO->getOpcode() == Instruction::Xor;
}
int64_t ConstantOffsetExtractor::findInEitherOperand(User *U, bool IsSub) {
assert(U->getNumOperands() == 2);
int64_t ConstantOffset = find(U->getOperand(0));
@ -273,21 +296,14 @@ int64_t ConstantOffsetExtractor::find(Value *V) {
ConstantOffset = findInEitherOperand(U, false);
break;
}
case Instruction::SExt: {
// For safety, we trace into sext only when its operand is marked
// "nsw" because xxx.nsw guarantees no signed wrap. e.g., we can safely
// transform "sext (add nsw a, 5)" into "add nsw (sext a), 5".
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
if (BO->hasNoSignedWrap())
ConstantOffset = find(U->getOperand(0));
}
break;
}
case Instruction::SExt:
case Instruction::ZExt: {
// Similarly, we trace into zext only when its operand is marked with
// "nuw" because zext (add nuw a, b) == add nuw (zext a), (zext b).
// We trace into sext/zext if the operator can be distributed to its
// operand. e.g., we can transform into "sext (add nsw a, 5)" and
// extract constant 5, because
// sext (add nsw a, 5) == add nsw (sext a), 5
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) {
if (BO->hasNoUnsignedWrap())
if (Distributable(O->getOpcode(), BO))
ConstantOffset = find(U->getOperand(0));
}
break;

View File

@ -57,6 +57,25 @@ define float* @ext_add_no_overflow(i64 %a, i32 %b, i64 %c, i32 %d) {
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}}
; CHECK: getelementptr float* [[BASE_PTR]], i64 33
; Similar to @ext_add_no_overflow, we should be able to trace into sext/zext if
; its operand is an "or" instruction.
define float* @ext_or(i64 %a, i32 %b) {
entry:
%b1 = shl i32 %b, 2
%b2 = or i32 %b1, 1
%b3 = or i32 %b1, 2
%b2.ext = sext i32 %b2 to i64
%b3.ext = sext i32 %b3 to i64
%i = add i64 %a, %b2.ext
%j = add i64 %a, %b3.ext
%p = getelementptr inbounds [32 x [32 x float]]* @float_2d_array, i64 0, i64 %i, i64 %j
ret float* %p
}
; CHECK-LABEL: @ext_or
; CHECK: [[BASE_PTR:%[0-9]+]] = getelementptr [32 x [32 x float]]* @float_2d_array, i64 0, i64 %{{[0-9]+}}, i64 %{{[0-9]+}}
; CHECK: [[BASE_INT:%[0-9]+]] = ptrtoint float* [[BASE_PTR]] to i64
; CHECK: add i64 [[BASE_INT]], 136
; We should treat "or" with no common bits (%k) as "add", and leave "or" with
; potentially common bits (%l) as is.
define float* @or(i64 %i) {