diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp index 4b92eaf97e7..211bf90d8cf 100644 --- a/lib/Support/APInt.cpp +++ b/lib/Support/APInt.cpp @@ -19,229 +19,6 @@ #include using namespace llvm; -/// mul_1 - This function performs the multiplication operation on a -/// large integer (represented as an integer array) and a uint64_t integer. -/// @returns the carry of the multiplication. -static uint64_t mul_1(uint64_t dest[], uint64_t x[], - unsigned len, uint64_t y) { - // Split y into high 32-bit part and low 32-bit part. - uint64_t ly = y & 0xffffffffULL, hy = y >> 32; - uint64_t carry = 0, lx, hx; - for (unsigned i = 0; i < len; ++i) { - lx = x[i] & 0xffffffffULL; - hx = x[i] >> 32; - // hasCarry - A flag to indicate if has carry. - // hasCarry == 0, no carry - // hasCarry == 1, has carry - // hasCarry == 2, no carry and the calculation result == 0. - uint8_t hasCarry = 0; - dest[i] = carry + lx * ly; - // Determine if the add above introduces carry. - hasCarry = (dest[i] < carry) ? 1 : 0; - carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); - // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + - // (2^32 - 1) + 2^32 = 2^64. - hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); - - carry += (lx * hy) & 0xffffffffULL; - dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); - carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + - (carry >> 32) + ((lx * hy) >> 32) + hx * hy; - } - - return carry; -} - -/// mul - This function multiplies integer array x[] by integer array y[] and -/// stores the result into integer array dest[]. -/// Note the array dest[]'s size should no less than xlen + ylen. -static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, - uint64_t y[], unsigned ylen) { - dest[xlen] = mul_1(dest, x, xlen, y[0]); - - for (unsigned i = 1; i < ylen; ++i) { - uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; - uint64_t carry = 0, lx, hx; - for (unsigned j = 0; j < xlen; ++j) { - lx = x[j] & 0xffffffffULL; - hx = x[j] >> 32; - // hasCarry - A flag to indicate if has carry. - // hasCarry == 0, no carry - // hasCarry == 1, has carry - // hasCarry == 2, no carry and the calculation result == 0. - uint8_t hasCarry = 0; - uint64_t resul = carry + lx * ly; - hasCarry = (resul < carry) ? 1 : 0; - carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); - hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); - - carry += (lx * hy) & 0xffffffffULL; - resul = (carry << 32) | (resul & 0xffffffffULL); - dest[i+j] += resul; - carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ - (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + - ((lx * hy) >> 32) + hx * hy; - } - dest[i+xlen] = carry; - } -} - -/// add_1 - This function adds the integer array x[] by integer y and -/// returns the carry. -/// @returns the carry of the addition. -static uint64_t add_1(uint64_t dest[], uint64_t x[], - unsigned len, uint64_t y) { - uint64_t carry = y; - - for (unsigned i = 0; i < len; ++i) { - dest[i] = carry + x[i]; - carry = (dest[i] < carry) ? 1 : 0; - } - return carry; -} - -/// add - This function adds the integer array x[] by integer array -/// y[] and returns the carry. -static uint64_t add(uint64_t dest[], uint64_t x[], - uint64_t y[], unsigned len) { - unsigned carry = 0; - - for (unsigned i = 0; i< len; ++i) { - carry += x[i]; - dest[i] = carry + y[i]; - carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); - } - return carry; -} - -/// sub_1 - This function subtracts the integer array x[] by -/// integer y and returns the borrow-out carry. -static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) { - uint64_t cy = y; - - for (unsigned i = 0; i < len; ++i) { - uint64_t X = x[i]; - x[i] -= cy; - if (cy > X) - cy = 1; - else { - cy = 0; - break; - } - } - - return cy; -} - -/// sub - This function subtracts the integer array x[] by -/// integer array y[], and returns the borrow-out carry. -static uint64_t sub(uint64_t dest[], uint64_t x[], - uint64_t y[], unsigned len) { - // Carry indicator. - uint64_t cy = 0; - - for (unsigned i = 0; i < len; ++i) { - uint64_t Y = y[i], X = x[i]; - Y += cy; - - cy = Y < cy ? 1 : 0; - Y = X - Y; - cy += Y > X ? 1 : 0; - dest[i] = Y; - } - return cy; -} - -/// UnitDiv - This function divides N by D, -/// and returns (remainder << 32) | quotient. -/// Assumes (N >> 32) < D. -static uint64_t unitDiv(uint64_t N, unsigned D) { - uint64_t q, r; // q: quotient, r: remainder. - uint64_t a1 = N >> 32; // a1: high 32-bit part of N. - uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N - if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { - q = N / D; - r = N % D; - } - else { - // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d - uint64_t c = N - ((uint64_t) D << 31); - // Divide (c1*2^32 + c0) by d - q = c / D; - r = c % D; - // Add 2^31 to quotient - q += 1 << 31; - } - - return (r << 32) | (q & 0xFFFFFFFFl); -} - -/// subMul - This function substracts x[len-1:0] * y from -/// dest[offset+len-1:offset], and returns the most significant -/// word of the product, minus the borrow-out from the subtraction. -static unsigned subMul(unsigned dest[], unsigned offset, - unsigned x[], unsigned len, unsigned y) { - uint64_t yl = (uint64_t) y & 0xffffffffL; - unsigned carry = 0; - unsigned j = 0; - do { - uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl; - unsigned prod_low = (unsigned) prod; - unsigned prod_high = (unsigned) (prod >> 32); - prod_low += carry; - carry = (prod_low < carry ? 1 : 0) + prod_high; - unsigned x_j = dest[offset+j]; - prod_low = x_j - prod_low; - if (prod_low > x_j) ++carry; - dest[offset+j] = prod_low; - } while (++j < len); - return carry; -} - -/// div - This is basically Knuth's formulation of the classical algorithm. -/// Correspondance with Knuth's notation: -/// Knuth's u[0:m+n] == zds[nx:0]. -/// Knuth's v[1:n] == y[ny-1:0] -/// Knuth's n == ny. -/// Knuth's m == nx-ny. -/// Our nx == Knuth's m+n. -/// Could be re-implemented using gmp's mpn_divrem: -/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). -static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) { - unsigned j = nx; - do { // loop over digits of quotient - // Knuth's j == our nx-j. - // Knuth's u[j:j+n] == our zds[j:j-ny]. - unsigned qhat; // treated as unsigned - if (zds[j] == y[ny-1]) - qhat = -1U; // 0xffffffff - else { - uint64_t w = (((uint64_t)(zds[j])) << 32) + - ((uint64_t)zds[j-1] & 0xffffffffL); - qhat = (unsigned) unitDiv(w, y[ny-1]); - } - if (qhat) { - unsigned borrow = subMul(zds, j - ny, y, ny, qhat); - unsigned save = zds[j]; - uint64_t num = ((uint64_t)save&0xffffffffL) - - ((uint64_t)borrow&0xffffffffL); - while (num) { - qhat--; - uint64_t carry = 0; - for (unsigned i = 0; i < ny; i++) { - carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) - + ((uint64_t) y[i] & 0xffffffffL); - zds[j-ny+i] = (unsigned) carry; - carry >>= 32; - } - zds[j] += carry; - num = carry - 1; - } - } - zds[j] = qhat; - } while (--j >= ny); -} - #if 0 /// lshift - This function shift x[0:len-1] left by shiftAmt bits, and /// store the len least significant words of the result in @@ -313,78 +90,6 @@ APInt::APInt(unsigned numbits, const std::string& Val, uint8_t radix) { fromString(numbits, Val.c_str(), Val.size(), radix); } -/// @brief Converts a char array into an integer. -void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen, - uint8_t radix) { - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && - "Radix should be 2, 8, 10, or 16!"); - assert(StrStart && "String is null?"); - unsigned size = 0; - // If the radix is a power of 2, read the input - // from most significant to least significant. - if ((radix & (radix - 1)) == 0) { - unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2; - uint64_t resDigit = 0; - BitWidth = slen * bits_per_digit; - if (getNumWords() > 1) - assert((pVal = new uint64_t[getNumWords()]) && - "APInt memory allocation fails!"); - for (int i = slen - 1; i >= 0; --i) { - uint64_t digit = StrStart[i] - 48; // '0' == 48. - resDigit |= digit << nextBitPos; - nextBitPos += bits_per_digit; - if (nextBitPos >= 64) { - if (isSingleWord()) { - VAL = resDigit; - break; - } - pVal[size++] = resDigit; - nextBitPos -= 64; - resDigit = digit >> (bits_per_digit - nextBitPos); - } - } - if (!isSingleWord() && size <= getNumWords()) - pVal[size] = resDigit; - } else { // General case. The radix is not a power of 2. - // For 10-radix, the max value of 64-bit integer is 18446744073709551615, - // and its digits number is 20. - const unsigned chars_per_word = 20; - if (slen < chars_per_word || - (slen == chars_per_word && // In case the value <= 2^64 - 1 - strcmp(StrStart, "18446744073709551615") <= 0)) { - BitWidth = 64; - VAL = strtoull(StrStart, 0, 10); - } else { // In case the value > 2^64 - 1 - BitWidth = (slen / chars_per_word + 1) * 64; - assert((pVal = new uint64_t[getNumWords()]) && - "APInt memory allocation fails!"); - memset(pVal, 0, getNumWords() * 8); - unsigned str_pos = 0; - while (str_pos < slen) { - unsigned chunk = slen - str_pos; - if (chunk > chars_per_word - 1) - chunk = chars_per_word - 1; - uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'. - uint64_t big_base = radix; - while (--chunk > 0) { - resDigit = resDigit * radix + StrStart[str_pos++] - 48; - big_base *= radix; - } - - uint64_t carry; - if (!size) - carry = resDigit; - else { - carry = mul_1(pVal, pVal, size, big_base); - carry += add_1(pVal, pVal, size, resDigit); - } - - if (carry) pVal[size++] = carry; - } - } - } -} - APInt::APInt(const APInt& APIVal) : BitWidth(APIVal.BitWidth) { if (isSingleWord()) VAL = APIVal.VAL; @@ -428,6 +133,19 @@ APInt& APInt::operator=(uint64_t RHS) { return *this; } +/// add_1 - This function adds the integer array x[] by integer y and +/// returns the carry. +/// @returns the carry of the addition. +static uint64_t add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { + uint64_t carry = y; + + for (unsigned i = 0; i < len; ++i) { + dest[i] = carry + x[i]; + carry = (dest[i] < carry) ? 1 : 0; + } + return carry; +} + /// @brief Prefix increment operator. Increments the APInt by one. APInt& APInt::operator++() { if (isSingleWord()) @@ -438,6 +156,25 @@ APInt& APInt::operator++() { return *this; } +/// sub_1 - This function subtracts the integer array x[] by +/// integer y and returns the borrow-out carry. +static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) { + uint64_t cy = y; + + for (unsigned i = 0; i < len; ++i) { + uint64_t X = x[i]; + x[i] -= cy; + if (cy > X) + cy = 1; + else { + cy = 0; + break; + } + } + + return cy; +} + /// @brief Prefix decrement operator. Decrements the APInt by one. APInt& APInt::operator--() { if (isSingleWord()) --VAL; @@ -447,6 +184,20 @@ APInt& APInt::operator--() { return *this; } +/// add - This function adds the integer array x[] by integer array +/// y[] and returns the carry. +static uint64_t add(uint64_t dest[], uint64_t x[], + uint64_t y[], unsigned len) { + unsigned carry = 0; + + for (unsigned i = 0; i< len; ++i) { + carry += x[i]; + dest[i] = carry + y[i]; + carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0); + } + return carry; +} + /// @brief Addition assignment operator. Adds this APInt by the given APInt& /// RHS and assigns the result to this APInt. APInt& APInt::operator+=(const APInt& RHS) { @@ -468,6 +219,25 @@ APInt& APInt::operator+=(const APInt& RHS) { return *this; } +/// sub - This function subtracts the integer array x[] by +/// integer array y[], and returns the borrow-out carry. +static uint64_t sub(uint64_t dest[], uint64_t x[], + uint64_t y[], unsigned len) { + // Carry indicator. + uint64_t cy = 0; + + for (unsigned i = 0; i < len; ++i) { + uint64_t Y = y[i], X = x[i]; + Y += cy; + + cy = Y < cy ? 1 : 0; + Y = X - Y; + cy += Y > X ? 1 : 0; + dest[i] = Y; + } + return cy; +} + /// @brief Subtraction assignment operator. Subtracts this APInt by the given /// APInt &RHS and assigns the result to this APInt. APInt& APInt::operator-=(const APInt& RHS) { @@ -490,6 +260,73 @@ APInt& APInt::operator-=(const APInt& RHS) { return *this; } +/// mul_1 - This function performs the multiplication operation on a +/// large integer (represented as an integer array) and a uint64_t integer. +/// @returns the carry of the multiplication. +static uint64_t mul_1(uint64_t dest[], uint64_t x[], + unsigned len, uint64_t y) { + // Split y into high 32-bit part and low 32-bit part. + uint64_t ly = y & 0xffffffffULL, hy = y >> 32; + uint64_t carry = 0, lx, hx; + for (unsigned i = 0; i < len; ++i) { + lx = x[i] & 0xffffffffULL; + hx = x[i] >> 32; + // hasCarry - A flag to indicate if has carry. + // hasCarry == 0, no carry + // hasCarry == 1, has carry + // hasCarry == 2, no carry and the calculation result == 0. + uint8_t hasCarry = 0; + dest[i] = carry + lx * ly; + // Determine if the add above introduces carry. + hasCarry = (dest[i] < carry) ? 1 : 0; + carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); + // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + + // (2^32 - 1) + 2^32 = 2^64. + hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); + + carry += (lx * hy) & 0xffffffffULL; + dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + + (carry >> 32) + ((lx * hy) >> 32) + hx * hy; + } + + return carry; +} + +/// mul - This function multiplies integer array x[] by integer array y[] and +/// stores the result into integer array dest[]. +/// Note the array dest[]'s size should no less than xlen + ylen. +static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, + uint64_t y[], unsigned ylen) { + dest[xlen] = mul_1(dest, x, xlen, y[0]); + + for (unsigned i = 1; i < ylen; ++i) { + uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; + uint64_t carry = 0, lx, hx; + for (unsigned j = 0; j < xlen; ++j) { + lx = x[j] & 0xffffffffULL; + hx = x[j] >> 32; + // hasCarry - A flag to indicate if has carry. + // hasCarry == 0, no carry + // hasCarry == 1, has carry + // hasCarry == 2, no carry and the calculation result == 0. + uint8_t hasCarry = 0; + uint64_t resul = carry + lx * ly; + hasCarry = (resul < carry) ? 1 : 0; + carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); + hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); + + carry += (lx * hy) & 0xffffffffULL; + resul = (carry << 32) | (resul & 0xffffffffULL); + dest[i+j] += resul; + carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ + (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + + ((lx * hy) >> 32) + hx * hy; + } + dest[i+xlen] = carry; + } +} + /// @brief Multiplication assignment operator. Multiplies this APInt by the /// given APInt& RHS and assigns the result to this APInt. APInt& APInt::operator*=(const APInt& RHS) { @@ -1134,6 +971,96 @@ APInt APInt::shl(unsigned shiftAmt) const { return API; } +/// subMul - This function substracts x[len-1:0] * y from +/// dest[offset+len-1:offset], and returns the most significant +/// word of the product, minus the borrow-out from the subtraction. +static unsigned subMul(unsigned dest[], unsigned offset, + unsigned x[], unsigned len, unsigned y) { + uint64_t yl = (uint64_t) y & 0xffffffffL; + unsigned carry = 0; + unsigned j = 0; + do { + uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl; + unsigned prod_low = (unsigned) prod; + unsigned prod_high = (unsigned) (prod >> 32); + prod_low += carry; + carry = (prod_low < carry ? 1 : 0) + prod_high; + unsigned x_j = dest[offset+j]; + prod_low = x_j - prod_low; + if (prod_low > x_j) ++carry; + dest[offset+j] = prod_low; + } while (++j < len); + return carry; +} + +/// unitDiv - This function divides N by D, +/// and returns (remainder << 32) | quotient. +/// Assumes (N >> 32) < D. +static uint64_t unitDiv(uint64_t N, unsigned D) { + uint64_t q, r; // q: quotient, r: remainder. + uint64_t a1 = N >> 32; // a1: high 32-bit part of N. + uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N + if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) { + q = N / D; + r = N % D; + } + else { + // Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d + uint64_t c = N - ((uint64_t) D << 31); + // Divide (c1*2^32 + c0) by d + q = c / D; + r = c % D; + // Add 2^31 to quotient + q += 1 << 31; + } + + return (r << 32) | (q & 0xFFFFFFFFl); +} + +/// div - This is basically Knuth's formulation of the classical algorithm. +/// Correspondance with Knuth's notation: +/// Knuth's u[0:m+n] == zds[nx:0]. +/// Knuth's v[1:n] == y[ny-1:0] +/// Knuth's n == ny. +/// Knuth's m == nx-ny. +/// Our nx == Knuth's m+n. +/// Could be re-implemented using gmp's mpn_divrem: +/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). +static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) { + unsigned j = nx; + do { // loop over digits of quotient + // Knuth's j == our nx-j. + // Knuth's u[j:j+n] == our zds[j:j-ny]. + unsigned qhat; // treated as unsigned + if (zds[j] == y[ny-1]) + qhat = -1U; // 0xffffffff + else { + uint64_t w = (((uint64_t)(zds[j])) << 32) + + ((uint64_t)zds[j-1] & 0xffffffffL); + qhat = (unsigned) unitDiv(w, y[ny-1]); + } + if (qhat) { + unsigned borrow = subMul(zds, j - ny, y, ny, qhat); + unsigned save = zds[j]; + uint64_t num = ((uint64_t)save&0xffffffffL) - + ((uint64_t)borrow&0xffffffffL); + while (num) { + qhat--; + uint64_t carry = 0; + for (unsigned i = 0; i < ny; i++) { + carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) + + ((uint64_t) y[i] & 0xffffffffL); + zds[j-ny+i] = (unsigned) carry; + carry >>= 32; + } + zds[j] += carry; + num = carry - 1; + } + } + zds[j] = qhat; + } while (--j >= ny); +} + /// Unsigned divide this APInt by APInt RHS. /// @brief Unsigned division function for APInt. APInt APInt::udiv(const APInt& RHS) const { @@ -1235,3 +1162,76 @@ APInt APInt::urem(const APInt& RHS) const { } return Result; } + +/// @brief Converts a char array into an integer. +void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen, + uint8_t radix) { + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && + "Radix should be 2, 8, 10, or 16!"); + assert(StrStart && "String is null?"); + unsigned size = 0; + // If the radix is a power of 2, read the input + // from most significant to least significant. + if ((radix & (radix - 1)) == 0) { + unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2; + uint64_t resDigit = 0; + BitWidth = slen * bits_per_digit; + if (getNumWords() > 1) + assert((pVal = new uint64_t[getNumWords()]) && + "APInt memory allocation fails!"); + for (int i = slen - 1; i >= 0; --i) { + uint64_t digit = StrStart[i] - 48; // '0' == 48. + resDigit |= digit << nextBitPos; + nextBitPos += bits_per_digit; + if (nextBitPos >= 64) { + if (isSingleWord()) { + VAL = resDigit; + break; + } + pVal[size++] = resDigit; + nextBitPos -= 64; + resDigit = digit >> (bits_per_digit - nextBitPos); + } + } + if (!isSingleWord() && size <= getNumWords()) + pVal[size] = resDigit; + } else { // General case. The radix is not a power of 2. + // For 10-radix, the max value of 64-bit integer is 18446744073709551615, + // and its digits number is 20. + const unsigned chars_per_word = 20; + if (slen < chars_per_word || + (slen == chars_per_word && // In case the value <= 2^64 - 1 + strcmp(StrStart, "18446744073709551615") <= 0)) { + BitWidth = 64; + VAL = strtoull(StrStart, 0, 10); + } else { // In case the value > 2^64 - 1 + BitWidth = (slen / chars_per_word + 1) * 64; + assert((pVal = new uint64_t[getNumWords()]) && + "APInt memory allocation fails!"); + memset(pVal, 0, getNumWords() * 8); + unsigned str_pos = 0; + while (str_pos < slen) { + unsigned chunk = slen - str_pos; + if (chunk > chars_per_word - 1) + chunk = chars_per_word - 1; + uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'. + uint64_t big_base = radix; + while (--chunk > 0) { + resDigit = resDigit * radix + StrStart[str_pos++] - 48; + big_base *= radix; + } + + uint64_t carry; + if (!size) + carry = resDigit; + else { + carry = mul_1(pVal, pVal, size, big_base); + carry += add_1(pVal, pVal, size, resDigit); + } + + if (carry) pVal[size++] = carry; + } + } + } +} +