More refactoring. Move alloca instructions and handle invoke instructions

before we delete the original call site, allowing slight simplifications of
code, but nothing exciting.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11109 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2004-02-04 02:51:48 +00:00
parent 5052c911ec
commit 5e923dee60

View File

@ -50,153 +50,68 @@ bool llvm::InlineFunction(CallSite CS) {
BasicBlock *OrigBB = TheCall->getParent();
Function *Caller = OrigBB->getParent();
// Calculate the vector of arguments to pass into the function cloner...
std::map<const Value*, Value*> ValueMap;
assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
std::distance(CS.arg_begin(), CS.arg_end()) &&
"No varargs calls can be inlined!");
CallSite::arg_iterator AI = CS.arg_begin();
for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
I != E; ++I, ++AI)
ValueMap[I] = *AI;
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
//
Function::iterator LastBlock = &Caller->back();
// Clone the entire body of the callee into the caller. Make sure to capture
// all of the return instructions from the cloned function.
std::vector<ReturnInst*> Returns;
CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
// We want to clone the entire callee function into the hole between the
// "starter" and "ender" blocks. How we accomplish this depends on whether
// this is an invoke instruction or a call instruction.
BasicBlock *InvokeDest = 0; // Exception handling destination
std::vector<Value*> InvokeDestPHIValues; // Values for PHI nodes in InvokeDest
BasicBlock *AfterCallBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
InvokeDest = II->getExceptionalDest();
// If there are PHI nodes in the exceptional destination block, we need to
// keep track of which values came into them from this invoke, then remove
// the entry for this block.
for (BasicBlock::iterator I = InvokeDest->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
// Save the value to use for this edge...
InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
}
// Add an unconditional branch to make this look like the CallInst case...
BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
// Split the basic block. This guarantees that no PHI nodes will have to be
// updated due to new incoming edges, and make the invoke case more
// symmetric to the call case.
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
CalledFunc->getName()+".entry");
// Remove (unlink) the InvokeInst from the function...
OrigBB->getInstList().remove(TheCall);
} else { // It's a call
// If this is a call instruction, we need to split the basic block that the
// call lives in.
//
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
CalledFunc->getName()+".entry");
// Remove (unlink) the CallInst from the function...
AfterCallBB->getInstList().remove(TheCall);
}
// If we have a return value generated by this call, convert it into a PHI
// node that gets values from each of the old RET instructions in the original
// Make sure to capture all of the return instructions from the cloned
// function.
//
if (!TheCall->use_empty()) {
// We only need to make the PHI if there is more than one return instruction
if (Returns.size() > 1) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
//
PHINode *PHI = new PHINode(CalledFunc->getReturnType(),
TheCall->getName(), AfterCallBB->begin());
std::vector<ReturnInst*> Returns;
{ // Scope to destroy ValueMap after cloning.
// Calculate the vector of arguments to pass into the function cloner...
std::map<const Value*, Value*> ValueMap;
assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
std::distance(CS.arg_begin(), CS.arg_end()) &&
"No varargs calls can be inlined!");
// Anything that used the result of the function call should now use the
// PHI node as their operand.
//
TheCall->replaceAllUsesWith(PHI);
CallSite::arg_iterator AI = CS.arg_begin();
for (Function::const_aiterator I = CalledFunc->abegin(),
E = CalledFunc->aend(); I != E; ++I, ++AI)
ValueMap[I] = *AI;
// Add all of the return instructions as entries in the PHI node.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
assert(RI->getReturnValue() && "Ret should have value!");
assert(RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
}
} else if (!Returns.empty()) {
// Otherwise, if there is exactly one return value, just replace anything
// using the return value of the call with the computed value.
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
}
// Clone the entire body of the callee into the caller.
CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
}
// Since we are now done with the Call/Invoke, we can delete it.
delete TheCall;
// Loop over all of the return instructions, turning them into unconditional
// branches to the merge point now...
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
// Add a branch to the merge point where the PHI node lives if it exists.
new BranchInst(AfterCallBB, RI);
// Delete the return instruction now
RI->getParent()->getInstList().erase(RI);
}
// Change the branch that used to go to AfterCallBB to branch to the first
// basic block of the inlined function.
//
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
Br->setOperand(0, ++LastBlock);
// Remember the first block that is newly cloned over.
Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
//
if (isa<AllocaInst>(LastBlock->begin())) {
if (isa<AllocaInst>(FirstNewBlock->begin())) {
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
I != E; )
for (BasicBlock::iterator I = FirstNewBlock->begin(),
E = FirstNewBlock->end(); I != E; )
if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
if (isa<Constant>(AI->getArraySize())) {
LastBlock->getInstList().remove(AI);
FirstNewBlock->getInstList().remove(AI);
Caller->front().getInstList().insert(InsertPoint, AI);
}
}
// If we just inlined a call due to an invoke instruction, scan the inlined
// function checking for function calls that should now be made into invoke
// instructions, and for unwind's which should be turned into branches.
if (InvokeDest) {
for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB) {
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any inlined 'unwind' instructions into branches to the invoke exception
// destination, and call instructions into invoke instructions.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
BasicBlock *InvokeDest = II->getExceptionalDest();
std::vector<Value*> InvokeDestPHIValues;
// If there are PHI nodes in the exceptional destination block, we need to
// keep track of which values came into them from this invoke, then remove
// the entry for this block.
for (BasicBlock::iterator I = InvokeDest->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
// Save the value to use for this edge...
InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// We only need to check for function calls: inlined invoke instructions
// require no special handling...
@ -257,16 +172,104 @@ bool llvm::InlineFunction(CallSite CS) {
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
for (BasicBlock::iterator I = InvokeDest->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PN->removeIncomingValue(AfterCallBB);
InvokeDest->removePredecessor(II->getParent());
}
// We want to clone the entire callee function into the hole between the
// "starter" and "ender" blocks. How we accomplish this depends on whether
// this is an invoke instruction or a call instruction.
BasicBlock *AfterCallBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
// Add an unconditional branch to make this look like the CallInst case...
BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
// Split the basic block. This guarantees that no PHI nodes will have to be
// updated due to new incoming edges, and make the invoke case more
// symmetric to the call case.
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
CalledFunc->getName()+".entry");
// Remove (unlink) the InvokeInst from the function...
OrigBB->getInstList().remove(TheCall);
} else { // It's a call
// If this is a call instruction, we need to split the basic block that the
// call lives in.
//
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
CalledFunc->getName()+".entry");
// Remove (unlink) the CallInst from the function...
AfterCallBB->getInstList().remove(TheCall);
}
// Handle all of the return instructions that we just cloned in, and eliminate
// any users of the original call/invoke instruction.
if (Returns.size() > 1) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
//
PHINode *PHI = 0;
if (!TheCall->use_empty()) {
PHI = new PHINode(CalledFunc->getReturnType(),
TheCall->getName(), AfterCallBB->begin());
// Anything that used the result of the function call should now use the
// PHI node as their operand.
//
TheCall->replaceAllUsesWith(PHI);
}
// Loop over all of the return instructions, turning them into unconditional
// branches to the merge point now, and adding entries to the PHI node as
// appropriate.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
if (PHI) {
assert(RI->getReturnValue() && "Ret should have value!");
assert(RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
}
// Add a branch to the merge point where the PHI node lives if it exists.
new BranchInst(AfterCallBB, RI);
// Delete the return instruction now
RI->getParent()->getInstList().erase(RI);
}
} else if (!Returns.empty()) {
// Otherwise, if there is exactly one return value, just replace anything
// using the return value of the call with the computed value.
if (!TheCall->use_empty())
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
// Add a branch to the merge point where the PHI node lives if it exists.
new BranchInst(AfterCallBB, Returns[0]);
// Delete the return instruction now
Returns[0]->getParent()->getInstList().erase(Returns[0]);
}
// Since we are now done with the Call/Invoke, we can delete it.
delete TheCall;
// Change the branch that used to go to AfterCallBB to branch to the first
// basic block of the inlined function.
//
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
Br->setOperand(0, FirstNewBlock);
// Now that the function is correct, make it a little bit nicer. In
// particular, move the basic blocks inserted from the end of the function
// into the space made by splitting the source basic block.
//
Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
LastBlock, Caller->end());
FirstNewBlock, Caller->end());
// We should always be able to fold the entry block of the function into the
// single predecessor of the block...