Generalize MemCpyOpt's handling of call slot forwarding to function properly when the call slot

forwarding is implemented with a load/store pair rather than a memcpy.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116637 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Owen Anderson 2010-10-15 22:52:12 +00:00
parent 00ed59a968
commit 6549121c66
2 changed files with 73 additions and 18 deletions

View File

@ -321,7 +321,8 @@ namespace {
bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
bool processMemCpy(MemCpyInst *M);
bool processMemMove(MemMoveInst *M);
bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
uint64_t cpyLen, CallInst *C);
bool iterateOnFunction(Function &F);
};
@ -339,7 +340,6 @@ INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
false, false)
/// processStore - When GVN is scanning forward over instructions, we look for
/// some other patterns to fold away. In particular, this looks for stores to
/// neighboring locations of memory. If it sees enough consequtive ones
@ -347,6 +347,37 @@ INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (SI->isVolatile()) return false;
TargetData *TD = getAnalysisIfAvailable<TargetData>();
if (!TD) return false;
// Detect cases where we're performing call slot forwarding, but
// happen to be using a load-store pair to implement it, rather than
// a memcpy.
if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
if (!LI->isVolatile() && LI->hasOneUse()) {
MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
MemDepResult dep = MD.getDependency(LI);
CallInst *C = 0;
if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
C = dyn_cast<CallInst>(dep.getInst());
if (C) {
bool changed = performCallSlotOptzn(LI,
SI->getPointerOperand()->stripPointerCasts(),
LI->getPointerOperand()->stripPointerCasts(),
TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
if (changed) {
MD.removeInstruction(SI);
SI->eraseFromParent();
LI->eraseFromParent();
++NumMemCpyInstr;
return true;
}
}
}
}
LLVMContext &Context = SI->getContext();
// There are two cases that are interesting for this code to handle: memcpy
@ -359,8 +390,6 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!ByteVal)
return false;
TargetData *TD = getAnalysisIfAvailable<TargetData>();
if (!TD) return false;
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Module *M = SI->getParent()->getParent()->getParent();
@ -494,7 +523,9 @@ bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy.
bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
Value *cpyDest, Value *cpySrc,
uint64_t cpyLen, CallInst *C) {
// The general transformation to keep in mind is
//
// call @func(..., src, ...)
@ -511,16 +542,8 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// Deliberately get the source and destination with bitcasts stripped away,
// because we'll need to do type comparisons based on the underlying type.
Value *cpyDest = cpy->getDest();
Value *cpySrc = cpy->getSource();
CallSite CS(C);
// We need to be able to reason about the size of the memcpy, so we require
// that it be a constant.
ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
if (!cpyLength)
return false;
// Require that src be an alloca. This simplifies the reasoning considerably.
AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
if (!srcAlloca)
@ -537,7 +560,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
srcArraySize->getZExtValue();
if (cpyLength->getZExtValue() < srcSize)
if (cpyLen < srcSize)
return false;
// Check that accessing the first srcSize bytes of dest will not cause a
@ -606,7 +629,7 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// the use analysis, we also need to know that it does not sneakily
// access dest. We rely on AA to figure this out for us.
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
if (AA.getModRefInfo(C, cpyDest, srcSize) !=
AliasAnalysis::NoModRef)
return false;
@ -635,7 +658,6 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
// Remove the memcpy
MD.removeInstruction(cpy);
cpy->eraseFromParent();
++NumMemCpyInstr;
return true;
@ -649,6 +671,10 @@ bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
// We can only optimize statically-sized memcpy's.
ConstantInt *cpyLen = dyn_cast<ConstantInt>(M->getLength());
if (!cpyLen) return false;
// The are two possible optimizations we can do for memcpy:
// a) memcpy-memcpy xform which exposes redundance for DSE.
// b) call-memcpy xform for return slot optimization.
@ -656,8 +682,12 @@ bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
if (!dep.isClobber())
return false;
if (!isa<MemCpyInst>(dep.getInst())) {
if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
return performCallSlotOptzn(M, C);
if (CallInst *C = dyn_cast<CallInst>(dep.getInst())) {
bool changed = performCallSlotOptzn(M, M->getDest(), M->getSource(),
cpyLen->getZExtValue(), C);
if (changed) M->eraseFromParent();
return changed;
}
return false;
}

View File

@ -0,0 +1,25 @@
; RUN: opt -S < %s -memcpyopt | FileCheck %s
; <rdar://problem/8536696>
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
target triple = "x86_64-apple-darwin10.0.0"
%"class.std::auto_ptr" = type { i32* }
; CHECK: @_Z3foov
define void @_Z3foov(%"class.std::auto_ptr"* noalias nocapture sret %agg.result) ssp {
_ZNSt8auto_ptrIiED1Ev.exit:
%temp.lvalue = alloca %"class.std::auto_ptr", align 8
; CHECK: call void @_Z3barv(%"class.std::auto_ptr"* sret %agg.result)
call void @_Z3barv(%"class.std::auto_ptr"* sret %temp.lvalue)
%tmp.i.i = getelementptr inbounds %"class.std::auto_ptr"* %temp.lvalue, i64 0, i32 0
; CHECK-NOT: load
%tmp2.i.i = load i32** %tmp.i.i, align 8
%tmp.i.i4 = getelementptr inbounds %"class.std::auto_ptr"* %agg.result, i64 0, i32 0
; CHECK-NOT: store
store i32* %tmp2.i.i, i32** %tmp.i.i4, align 8
; CHECK: ret void
ret void
}
declare void @_Z3barv(%"class.std::auto_ptr"* sret)