mirror of
https://github.com/RPCS3/llvm.git
synced 2024-11-30 15:10:30 +00:00
For PR1205:
Convert ConstantRange class to use APInt internally as its value type for the constant range, instead of ConstantInt. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34745 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
94900774ad
commit
663e711dc2
@ -30,6 +30,7 @@
|
||||
#ifndef LLVM_SUPPORT_CONSTANT_RANGE_H
|
||||
#define LLVM_SUPPORT_CONSTANT_RANGE_H
|
||||
|
||||
#include "llvm/ADT/APInt.h"
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
#include "llvm/Support/Streams.h"
|
||||
#include <iosfwd>
|
||||
@ -40,7 +41,9 @@ class ConstantInt;
|
||||
class Type;
|
||||
|
||||
class ConstantRange {
|
||||
ConstantInt *Lower, *Upper;
|
||||
APInt Lower, Upper;
|
||||
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
|
||||
const ConstantRange &RHS, bool sign);
|
||||
public:
|
||||
/// Initialize a full (the default) or empty set for the specified type.
|
||||
///
|
||||
@ -56,6 +59,9 @@ class ConstantRange {
|
||||
///
|
||||
ConstantRange(Constant *Lower, Constant *Upper);
|
||||
|
||||
/// @brief Initialize a range of values explicitly.
|
||||
ConstantRange(const APInt& Lower, const APInt& Upper);
|
||||
|
||||
/// Initialize a set of values that all satisfy the predicate with C. The
|
||||
/// predicate should be either an ICmpInst::Predicate or FCmpInst::Predicate
|
||||
/// value.
|
||||
@ -64,11 +70,11 @@ class ConstantRange {
|
||||
|
||||
/// getLower - Return the lower value for this range...
|
||||
///
|
||||
ConstantInt *getLower() const { return Lower; }
|
||||
ConstantInt *getLower() const;
|
||||
|
||||
/// getUpper - Return the upper value for this range...
|
||||
///
|
||||
ConstantInt *getUpper() const { return Upper; }
|
||||
ConstantInt *getUpper() const;
|
||||
|
||||
/// getType - Return the LLVM data type of this range.
|
||||
///
|
||||
@ -105,7 +111,7 @@ class ConstantRange {
|
||||
|
||||
/// getSetSize - Return the number of elements in this set.
|
||||
///
|
||||
uint64_t getSetSize() const;
|
||||
APInt getSetSize() const;
|
||||
|
||||
/// operator== - Return true if this range is equal to another range.
|
||||
///
|
||||
|
@ -31,228 +31,212 @@
|
||||
#include <ostream>
|
||||
using namespace llvm;
|
||||
|
||||
static ConstantInt *getMaxValue(const Type *Ty, bool isSigned = false) {
|
||||
if (Ty->isInteger()) {
|
||||
if (isSigned) {
|
||||
// Calculate 011111111111111...
|
||||
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
|
||||
int64_t Val = INT64_MAX; // All ones
|
||||
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
|
||||
return ConstantInt::get(Ty, Val);
|
||||
}
|
||||
return ConstantInt::getAllOnesValue(Ty);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Static constructor to create the minimum constant for an integral type...
|
||||
static ConstantInt *getMinValue(const Type *Ty, bool isSigned = false) {
|
||||
if (Ty->isInteger()) {
|
||||
if (isSigned) {
|
||||
// Calculate 1111111111000000000000
|
||||
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
|
||||
int64_t Val = -1; // All ones
|
||||
Val <<= TypeBits-1; // Shift over to the right spot
|
||||
return ConstantInt::get(Ty, Val);
|
||||
}
|
||||
return ConstantInt::get(Ty, 0);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
static ConstantInt *Next(ConstantInt *CI) {
|
||||
Constant *Result = ConstantExpr::getAdd(CI,
|
||||
ConstantInt::get(CI->getType(), 1));
|
||||
return cast<ConstantInt>(Result);
|
||||
}
|
||||
|
||||
static bool LT(ConstantInt *A, ConstantInt *B, bool isSigned) {
|
||||
Constant *C = ConstantExpr::getICmp(
|
||||
(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
|
||||
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
|
||||
return cast<ConstantInt>(C)->getZExtValue();
|
||||
}
|
||||
|
||||
static bool LTE(ConstantInt *A, ConstantInt *B, bool isSigned) {
|
||||
Constant *C = ConstantExpr::getICmp(
|
||||
(isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
|
||||
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
|
||||
return cast<ConstantInt>(C)->getZExtValue();
|
||||
}
|
||||
|
||||
static bool GT(ConstantInt *A, ConstantInt *B, bool isSigned) {
|
||||
return LT(B, A, isSigned); }
|
||||
|
||||
static ConstantInt *Min(ConstantInt *A, ConstantInt *B,
|
||||
bool isSigned) {
|
||||
return LT(A, B, isSigned) ? A : B;
|
||||
}
|
||||
static ConstantInt *Max(ConstantInt *A, ConstantInt *B,
|
||||
bool isSigned) {
|
||||
return GT(A, B, isSigned) ? A : B;
|
||||
}
|
||||
|
||||
/// Initialize a full (the default) or empty set for the specified type.
|
||||
///
|
||||
ConstantRange::ConstantRange(const Type *Ty, bool Full) {
|
||||
assert(Ty->isInteger() &&
|
||||
"Cannot make constant range of non-integral type!");
|
||||
ConstantRange::ConstantRange(const Type *Ty, bool Full) :
|
||||
Lower(cast<IntegerType>(Ty)->getBitWidth(), 0),
|
||||
Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) {
|
||||
uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
||||
if (Full)
|
||||
Lower = Upper = getMaxValue(Ty);
|
||||
Lower = Upper = APInt::getMaxValue(BitWidth);
|
||||
else
|
||||
Lower = Upper = getMinValue(Ty);
|
||||
Lower = Upper = APInt::getMinValue(BitWidth);
|
||||
}
|
||||
|
||||
/// Initialize a range to hold the single specified value.
|
||||
///
|
||||
ConstantRange::ConstantRange(Constant *V)
|
||||
: Lower(cast<ConstantInt>(V)), Upper(Next(cast<ConstantInt>(V))) { }
|
||||
: Lower(cast<ConstantInt>(V)->getValue()),
|
||||
Upper(cast<ConstantInt>(V)->getValue() + 1) { }
|
||||
|
||||
/// Initialize a range of values explicitly... this will assert out if
|
||||
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
|
||||
/// have different types)
|
||||
///
|
||||
ConstantRange::ConstantRange(Constant *L, Constant *U)
|
||||
: Lower(cast<ConstantInt>(L)), Upper(cast<ConstantInt>(U)) {
|
||||
assert(Lower->getType() == Upper->getType() &&
|
||||
"Incompatible types for ConstantRange!");
|
||||
: Lower(cast<ConstantInt>(L)->getValue()),
|
||||
Upper(cast<ConstantInt>(U)->getValue()) {
|
||||
assert(L->getType() == U->getType() && "Invalid ConstantRange types!");
|
||||
assert(L->getType()->isInteger() && "Invalid ConstantRange types!");
|
||||
|
||||
// Make sure that if L & U are equal that they are either Min or Max...
|
||||
assert((L != U || (L == getMaxValue(L->getType()) ||
|
||||
L == getMinValue(L->getType())))
|
||||
|
||||
uint32_t BitWidth = cast<IntegerType>(L->getType())->getBitWidth();
|
||||
const IntegerType *Ty = cast<IntegerType>(L->getType());
|
||||
assert((L != U || (L == ConstantInt::get(Ty, APInt::getMaxValue(BitWidth))
|
||||
|| L == ConstantInt::get(Ty, APInt::getMinValue(BitWidth))))
|
||||
&& "Lower == Upper, but they aren't min or max for type!");
|
||||
}
|
||||
|
||||
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
|
||||
Lower(L), Upper(U) {
|
||||
assert(L.getBitWidth() == U.getBitWidth() &&
|
||||
"ConstantRange with unequal bit widths");
|
||||
uint32_t BitWidth = L.getBitWidth();
|
||||
assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
|
||||
L == APInt::getMinValue(BitWidth))) &&
|
||||
"Lower == Upper, but they aren't min or max value!");
|
||||
}
|
||||
|
||||
/// Initialize a set of values that all satisfy the condition with C.
|
||||
///
|
||||
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C) {
|
||||
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C)
|
||||
: Lower(cast<IntegerType>(C->getType())->getBitWidth(), 0),
|
||||
Upper(cast<IntegerType>(C->getType())->getBitWidth(), 0) {
|
||||
const APInt& Val = C->getValue();
|
||||
uint32_t BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
|
||||
switch (ICmpOpcode) {
|
||||
default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
|
||||
case ICmpInst::ICMP_EQ: Lower = C; Upper = Next(C); return;
|
||||
case ICmpInst::ICMP_NE: Upper = C; Lower = Next(C); return;
|
||||
case ICmpInst::ICMP_EQ: Lower = Val; Upper = Val + 1; return;
|
||||
case ICmpInst::ICMP_NE: Upper = Val; Lower = Val + 1; return;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
Lower = getMinValue(C->getType());
|
||||
Upper = C;
|
||||
Lower = APInt::getMinValue(BitWidth);
|
||||
Upper = Val;
|
||||
return;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
Lower = getMinValue(C->getType(), true);
|
||||
Upper = C;
|
||||
Lower = APInt::getSignedMinValue(BitWidth);
|
||||
Upper = Val;
|
||||
return;
|
||||
case ICmpInst::ICMP_UGT:
|
||||
Lower = Next(C);
|
||||
Upper = getMinValue(C->getType()); // Min = Next(Max)
|
||||
Lower = Val + 1;
|
||||
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
Lower = Next(C);
|
||||
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
|
||||
Lower = Val + 1;
|
||||
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
case ICmpInst::ICMP_ULE:
|
||||
Lower = getMinValue(C->getType());
|
||||
Upper = Next(C);
|
||||
Lower = APInt::getMinValue(BitWidth);
|
||||
Upper = Val + 1;
|
||||
return;
|
||||
case ICmpInst::ICMP_SLE:
|
||||
Lower = getMinValue(C->getType(), true);
|
||||
Upper = Next(C);
|
||||
Lower = APInt::getSignedMinValue(BitWidth);
|
||||
Upper = Val + 1;
|
||||
return;
|
||||
case ICmpInst::ICMP_UGE:
|
||||
Lower = C;
|
||||
Upper = getMinValue(C->getType()); // Min = Next(Max)
|
||||
Lower = Val;
|
||||
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
case ICmpInst::ICMP_SGE:
|
||||
Lower = C;
|
||||
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
|
||||
Lower = Val;
|
||||
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/// getType - Return the LLVM data type of this range.
|
||||
///
|
||||
const Type *ConstantRange::getType() const { return Lower->getType(); }
|
||||
const Type *ConstantRange::getType() const {
|
||||
return IntegerType::get(Lower.getBitWidth());
|
||||
}
|
||||
|
||||
ConstantInt *ConstantRange::getLower() const {
|
||||
return ConstantInt::get(getType(), Lower);
|
||||
}
|
||||
|
||||
ConstantInt *ConstantRange::getUpper() const {
|
||||
return ConstantInt::get(getType(), Upper);
|
||||
}
|
||||
|
||||
/// isFullSet - Return true if this set contains all of the elements possible
|
||||
/// for this data-type
|
||||
bool ConstantRange::isFullSet() const {
|
||||
return Lower == Upper && Lower == getMaxValue(getType());
|
||||
return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth());
|
||||
}
|
||||
|
||||
/// isEmptySet - Return true if this set contains no members.
|
||||
///
|
||||
bool ConstantRange::isEmptySet() const {
|
||||
return Lower == Upper && Lower == getMinValue(getType());
|
||||
return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth());
|
||||
}
|
||||
|
||||
/// isWrappedSet - Return true if this set wraps around the top of the range,
|
||||
/// for example: [100, 8)
|
||||
///
|
||||
bool ConstantRange::isWrappedSet(bool isSigned) const {
|
||||
return GT(Lower, Upper, isSigned);
|
||||
if (isSigned)
|
||||
return Lower.sgt(Upper);
|
||||
return Lower.ugt(Upper);
|
||||
}
|
||||
|
||||
/// getSingleElement - If this set contains a single element, return it,
|
||||
/// otherwise return null.
|
||||
ConstantInt *ConstantRange::getSingleElement() const {
|
||||
if (Upper == Next(Lower)) // Is it a single element range?
|
||||
return Lower;
|
||||
if (Upper == Lower + 1) // Is it a single element range?
|
||||
return ConstantInt::get(getType(), Lower);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// getSetSize - Return the number of elements in this set.
|
||||
///
|
||||
uint64_t ConstantRange::getSetSize() const {
|
||||
if (isEmptySet()) return 0;
|
||||
APInt ConstantRange::getSetSize() const {
|
||||
if (isEmptySet())
|
||||
return APInt(Lower.getBitWidth(), 0);
|
||||
if (getType() == Type::Int1Ty) {
|
||||
if (Lower != Upper) // One of T or F in the set...
|
||||
return 1;
|
||||
return 2; // Must be full set...
|
||||
return APInt(Lower.getBitWidth(), 1);
|
||||
return APInt(Lower.getBitWidth(), 2); // Must be full set...
|
||||
}
|
||||
|
||||
// Simply subtract the bounds...
|
||||
Constant *Result = ConstantExpr::getSub(Upper, Lower);
|
||||
return cast<ConstantInt>(Result)->getZExtValue();
|
||||
return Upper - Lower;
|
||||
}
|
||||
|
||||
/// contains - Return true if the specified value is in the set.
|
||||
///
|
||||
bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
|
||||
if (Lower == Upper) {
|
||||
if (isFullSet()) return true;
|
||||
if (isFullSet())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
const APInt &V = Val->getValue();
|
||||
if (!isWrappedSet(isSigned))
|
||||
return LTE(Lower, Val, isSigned) && LT(Val, Upper, isSigned);
|
||||
return LTE(Lower, Val, isSigned) || LT(Val, Upper, isSigned);
|
||||
if (isSigned)
|
||||
return Lower.sle(V) && V.slt(Upper);
|
||||
else
|
||||
return Lower.ule(V) && V.ult(Upper);
|
||||
if (isSigned)
|
||||
return Lower.sle(V) || V.slt(Upper);
|
||||
else
|
||||
return Lower.ule(V) || V.ult(Upper);
|
||||
}
|
||||
|
||||
/// subtract - Subtract the specified constant from the endpoints of this
|
||||
/// constant range.
|
||||
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
|
||||
assert(CI->getType() == getType() && getType()->isInteger() &&
|
||||
assert(CI->getType() == getType() &&
|
||||
"Cannot subtract from different type range or non-integer!");
|
||||
// If the set is empty or full, don't modify the endpoints.
|
||||
if (Lower == Upper) return *this;
|
||||
return ConstantRange(ConstantExpr::getSub(Lower, CI),
|
||||
ConstantExpr::getSub(Upper, CI));
|
||||
if (Lower == Upper)
|
||||
return *this;
|
||||
|
||||
const APInt &Val = CI->getValue();
|
||||
return ConstantRange(Lower - Val, Upper - Val);
|
||||
}
|
||||
|
||||
|
||||
// intersect1Wrapped - This helper function is used to intersect two ranges when
|
||||
// it is known that LHS is wrapped and RHS isn't.
|
||||
//
|
||||
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
|
||||
const ConstantRange &RHS,
|
||||
bool isSigned) {
|
||||
ConstantRange
|
||||
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
|
||||
const ConstantRange &RHS, bool isSigned) {
|
||||
assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
|
||||
|
||||
// Check to see if we overlap on the Left side of RHS...
|
||||
//
|
||||
if (LT(RHS.getLower(), LHS.getUpper(), isSigned)) {
|
||||
bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
|
||||
bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
|
||||
if (LT) {
|
||||
// We do overlap on the left side of RHS, see if we overlap on the right of
|
||||
// RHS...
|
||||
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
|
||||
if (GT) {
|
||||
// Ok, the result overlaps on both the left and right sides. See if the
|
||||
// resultant interval will be smaller if we wrap or not...
|
||||
//
|
||||
if (LHS.getSetSize() < RHS.getSetSize())
|
||||
if (LHS.getSetSize().ult(RHS.getSetSize()))
|
||||
return LHS;
|
||||
else
|
||||
return RHS;
|
||||
@ -264,7 +248,7 @@ static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
|
||||
} else {
|
||||
// We don't overlap on the left side of RHS, see if we overlap on the right
|
||||
// of RHS...
|
||||
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
|
||||
if (GT) {
|
||||
// Simple overlap...
|
||||
return ConstantRange(LHS.getLower(), RHS.getUpper());
|
||||
} else {
|
||||
@ -281,15 +265,18 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
|
||||
bool isSigned) const {
|
||||
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
|
||||
// Handle common special cases
|
||||
if (isEmptySet() || CR.isFullSet()) return *this;
|
||||
if (isFullSet() || CR.isEmptySet()) return CR;
|
||||
if (isEmptySet() || CR.isFullSet())
|
||||
return *this;
|
||||
if (isFullSet() || CR.isEmptySet())
|
||||
return CR;
|
||||
|
||||
if (!isWrappedSet(isSigned)) {
|
||||
if (!CR.isWrappedSet(isSigned)) {
|
||||
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
|
||||
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
|
||||
using namespace APIntOps;
|
||||
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
|
||||
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
|
||||
|
||||
if (LT(L, U, isSigned)) // If range isn't empty...
|
||||
if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
|
||||
return ConstantRange(L, U);
|
||||
else
|
||||
return ConstantRange(getType(), false); // Otherwise, return empty set
|
||||
@ -300,8 +287,9 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
|
||||
return intersect1Wrapped(*this, CR, isSigned);
|
||||
else {
|
||||
// Both ranges are wrapped...
|
||||
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
|
||||
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
|
||||
using namespace APIntOps;
|
||||
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
|
||||
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
|
||||
return ConstantRange(L, U);
|
||||
}
|
||||
}
|
||||
@ -328,19 +316,18 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
|
||||
/// correspond to the possible range of values as if the source range had been
|
||||
/// zero extended.
|
||||
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
|
||||
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize < Ty->getPrimitiveSizeInBits() && "Not a value extension");
|
||||
unsigned SrcTySize = Lower.getBitWidth();
|
||||
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize < DstTySize && "Not a value extension");
|
||||
if (isFullSet()) {
|
||||
// Change a source full set into [0, 1 << 8*numbytes)
|
||||
return ConstantRange(Constant::getNullValue(Ty),
|
||||
ConstantInt::get(Ty, 1ULL << SrcTySize));
|
||||
}
|
||||
|
||||
Constant *Lower = getLower();
|
||||
Constant *Upper = getUpper();
|
||||
|
||||
return ConstantRange(ConstantExpr::getZExt(Lower, Ty),
|
||||
ConstantExpr::getZExt(Upper, Ty));
|
||||
APInt L = Lower; L.zext(DstTySize);
|
||||
APInt U = Upper; U.zext(DstTySize);
|
||||
return ConstantRange(L, U);
|
||||
}
|
||||
|
||||
/// truncate - Return a new range in the specified integer type, which must be
|
||||
@ -348,21 +335,23 @@ ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
|
||||
/// correspond to the possible range of values as if the source range had been
|
||||
/// truncated to the specified type.
|
||||
ConstantRange ConstantRange::truncate(const Type *Ty) const {
|
||||
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize > Ty->getPrimitiveSizeInBits() && "Not a value truncation");
|
||||
uint64_t Size = 1ULL << Ty->getPrimitiveSizeInBits();
|
||||
if (isFullSet() || getSetSize() >= Size)
|
||||
unsigned SrcTySize = Lower.getBitWidth();
|
||||
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize > DstTySize && "Not a value truncation");
|
||||
APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
|
||||
if (isFullSet() || getSetSize().ugt(Size))
|
||||
return ConstantRange(getType());
|
||||
|
||||
return ConstantRange(
|
||||
ConstantExpr::getTrunc(getLower(), Ty),
|
||||
ConstantExpr::getTrunc(getUpper(), Ty));
|
||||
APInt L = Lower; L.trunc(DstTySize);
|
||||
APInt U = Upper; U.trunc(DstTySize);
|
||||
return ConstantRange(L, U);
|
||||
}
|
||||
|
||||
/// print - Print out the bounds to a stream...
|
||||
///
|
||||
void ConstantRange::print(std::ostream &OS) const {
|
||||
OS << "[" << *Lower << "," << *Upper << " )";
|
||||
OS << "[" << Lower.toStringSigned(10) << ","
|
||||
<< Upper.toStringSigned(10) << " )";
|
||||
}
|
||||
|
||||
/// dump - Allow printing from a debugger easily...
|
||||
|
@ -31,228 +31,212 @@
|
||||
#include <ostream>
|
||||
using namespace llvm;
|
||||
|
||||
static ConstantInt *getMaxValue(const Type *Ty, bool isSigned = false) {
|
||||
if (Ty->isInteger()) {
|
||||
if (isSigned) {
|
||||
// Calculate 011111111111111...
|
||||
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
|
||||
int64_t Val = INT64_MAX; // All ones
|
||||
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
|
||||
return ConstantInt::get(Ty, Val);
|
||||
}
|
||||
return ConstantInt::getAllOnesValue(Ty);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Static constructor to create the minimum constant for an integral type...
|
||||
static ConstantInt *getMinValue(const Type *Ty, bool isSigned = false) {
|
||||
if (Ty->isInteger()) {
|
||||
if (isSigned) {
|
||||
// Calculate 1111111111000000000000
|
||||
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
|
||||
int64_t Val = -1; // All ones
|
||||
Val <<= TypeBits-1; // Shift over to the right spot
|
||||
return ConstantInt::get(Ty, Val);
|
||||
}
|
||||
return ConstantInt::get(Ty, 0);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
static ConstantInt *Next(ConstantInt *CI) {
|
||||
Constant *Result = ConstantExpr::getAdd(CI,
|
||||
ConstantInt::get(CI->getType(), 1));
|
||||
return cast<ConstantInt>(Result);
|
||||
}
|
||||
|
||||
static bool LT(ConstantInt *A, ConstantInt *B, bool isSigned) {
|
||||
Constant *C = ConstantExpr::getICmp(
|
||||
(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
|
||||
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
|
||||
return cast<ConstantInt>(C)->getZExtValue();
|
||||
}
|
||||
|
||||
static bool LTE(ConstantInt *A, ConstantInt *B, bool isSigned) {
|
||||
Constant *C = ConstantExpr::getICmp(
|
||||
(isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
|
||||
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
|
||||
return cast<ConstantInt>(C)->getZExtValue();
|
||||
}
|
||||
|
||||
static bool GT(ConstantInt *A, ConstantInt *B, bool isSigned) {
|
||||
return LT(B, A, isSigned); }
|
||||
|
||||
static ConstantInt *Min(ConstantInt *A, ConstantInt *B,
|
||||
bool isSigned) {
|
||||
return LT(A, B, isSigned) ? A : B;
|
||||
}
|
||||
static ConstantInt *Max(ConstantInt *A, ConstantInt *B,
|
||||
bool isSigned) {
|
||||
return GT(A, B, isSigned) ? A : B;
|
||||
}
|
||||
|
||||
/// Initialize a full (the default) or empty set for the specified type.
|
||||
///
|
||||
ConstantRange::ConstantRange(const Type *Ty, bool Full) {
|
||||
assert(Ty->isInteger() &&
|
||||
"Cannot make constant range of non-integral type!");
|
||||
ConstantRange::ConstantRange(const Type *Ty, bool Full) :
|
||||
Lower(cast<IntegerType>(Ty)->getBitWidth(), 0),
|
||||
Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) {
|
||||
uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
||||
if (Full)
|
||||
Lower = Upper = getMaxValue(Ty);
|
||||
Lower = Upper = APInt::getMaxValue(BitWidth);
|
||||
else
|
||||
Lower = Upper = getMinValue(Ty);
|
||||
Lower = Upper = APInt::getMinValue(BitWidth);
|
||||
}
|
||||
|
||||
/// Initialize a range to hold the single specified value.
|
||||
///
|
||||
ConstantRange::ConstantRange(Constant *V)
|
||||
: Lower(cast<ConstantInt>(V)), Upper(Next(cast<ConstantInt>(V))) { }
|
||||
: Lower(cast<ConstantInt>(V)->getValue()),
|
||||
Upper(cast<ConstantInt>(V)->getValue() + 1) { }
|
||||
|
||||
/// Initialize a range of values explicitly... this will assert out if
|
||||
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
|
||||
/// have different types)
|
||||
///
|
||||
ConstantRange::ConstantRange(Constant *L, Constant *U)
|
||||
: Lower(cast<ConstantInt>(L)), Upper(cast<ConstantInt>(U)) {
|
||||
assert(Lower->getType() == Upper->getType() &&
|
||||
"Incompatible types for ConstantRange!");
|
||||
: Lower(cast<ConstantInt>(L)->getValue()),
|
||||
Upper(cast<ConstantInt>(U)->getValue()) {
|
||||
assert(L->getType() == U->getType() && "Invalid ConstantRange types!");
|
||||
assert(L->getType()->isInteger() && "Invalid ConstantRange types!");
|
||||
|
||||
// Make sure that if L & U are equal that they are either Min or Max...
|
||||
assert((L != U || (L == getMaxValue(L->getType()) ||
|
||||
L == getMinValue(L->getType())))
|
||||
|
||||
uint32_t BitWidth = cast<IntegerType>(L->getType())->getBitWidth();
|
||||
const IntegerType *Ty = cast<IntegerType>(L->getType());
|
||||
assert((L != U || (L == ConstantInt::get(Ty, APInt::getMaxValue(BitWidth))
|
||||
|| L == ConstantInt::get(Ty, APInt::getMinValue(BitWidth))))
|
||||
&& "Lower == Upper, but they aren't min or max for type!");
|
||||
}
|
||||
|
||||
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
|
||||
Lower(L), Upper(U) {
|
||||
assert(L.getBitWidth() == U.getBitWidth() &&
|
||||
"ConstantRange with unequal bit widths");
|
||||
uint32_t BitWidth = L.getBitWidth();
|
||||
assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
|
||||
L == APInt::getMinValue(BitWidth))) &&
|
||||
"Lower == Upper, but they aren't min or max value!");
|
||||
}
|
||||
|
||||
/// Initialize a set of values that all satisfy the condition with C.
|
||||
///
|
||||
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C) {
|
||||
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C)
|
||||
: Lower(cast<IntegerType>(C->getType())->getBitWidth(), 0),
|
||||
Upper(cast<IntegerType>(C->getType())->getBitWidth(), 0) {
|
||||
const APInt& Val = C->getValue();
|
||||
uint32_t BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
|
||||
switch (ICmpOpcode) {
|
||||
default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
|
||||
case ICmpInst::ICMP_EQ: Lower = C; Upper = Next(C); return;
|
||||
case ICmpInst::ICMP_NE: Upper = C; Lower = Next(C); return;
|
||||
case ICmpInst::ICMP_EQ: Lower = Val; Upper = Val + 1; return;
|
||||
case ICmpInst::ICMP_NE: Upper = Val; Lower = Val + 1; return;
|
||||
case ICmpInst::ICMP_ULT:
|
||||
Lower = getMinValue(C->getType());
|
||||
Upper = C;
|
||||
Lower = APInt::getMinValue(BitWidth);
|
||||
Upper = Val;
|
||||
return;
|
||||
case ICmpInst::ICMP_SLT:
|
||||
Lower = getMinValue(C->getType(), true);
|
||||
Upper = C;
|
||||
Lower = APInt::getSignedMinValue(BitWidth);
|
||||
Upper = Val;
|
||||
return;
|
||||
case ICmpInst::ICMP_UGT:
|
||||
Lower = Next(C);
|
||||
Upper = getMinValue(C->getType()); // Min = Next(Max)
|
||||
Lower = Val + 1;
|
||||
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
case ICmpInst::ICMP_SGT:
|
||||
Lower = Next(C);
|
||||
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
|
||||
Lower = Val + 1;
|
||||
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
case ICmpInst::ICMP_ULE:
|
||||
Lower = getMinValue(C->getType());
|
||||
Upper = Next(C);
|
||||
Lower = APInt::getMinValue(BitWidth);
|
||||
Upper = Val + 1;
|
||||
return;
|
||||
case ICmpInst::ICMP_SLE:
|
||||
Lower = getMinValue(C->getType(), true);
|
||||
Upper = Next(C);
|
||||
Lower = APInt::getSignedMinValue(BitWidth);
|
||||
Upper = Val + 1;
|
||||
return;
|
||||
case ICmpInst::ICMP_UGE:
|
||||
Lower = C;
|
||||
Upper = getMinValue(C->getType()); // Min = Next(Max)
|
||||
Lower = Val;
|
||||
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
case ICmpInst::ICMP_SGE:
|
||||
Lower = C;
|
||||
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
|
||||
Lower = Val;
|
||||
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/// getType - Return the LLVM data type of this range.
|
||||
///
|
||||
const Type *ConstantRange::getType() const { return Lower->getType(); }
|
||||
const Type *ConstantRange::getType() const {
|
||||
return IntegerType::get(Lower.getBitWidth());
|
||||
}
|
||||
|
||||
ConstantInt *ConstantRange::getLower() const {
|
||||
return ConstantInt::get(getType(), Lower);
|
||||
}
|
||||
|
||||
ConstantInt *ConstantRange::getUpper() const {
|
||||
return ConstantInt::get(getType(), Upper);
|
||||
}
|
||||
|
||||
/// isFullSet - Return true if this set contains all of the elements possible
|
||||
/// for this data-type
|
||||
bool ConstantRange::isFullSet() const {
|
||||
return Lower == Upper && Lower == getMaxValue(getType());
|
||||
return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth());
|
||||
}
|
||||
|
||||
/// isEmptySet - Return true if this set contains no members.
|
||||
///
|
||||
bool ConstantRange::isEmptySet() const {
|
||||
return Lower == Upper && Lower == getMinValue(getType());
|
||||
return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth());
|
||||
}
|
||||
|
||||
/// isWrappedSet - Return true if this set wraps around the top of the range,
|
||||
/// for example: [100, 8)
|
||||
///
|
||||
bool ConstantRange::isWrappedSet(bool isSigned) const {
|
||||
return GT(Lower, Upper, isSigned);
|
||||
if (isSigned)
|
||||
return Lower.sgt(Upper);
|
||||
return Lower.ugt(Upper);
|
||||
}
|
||||
|
||||
/// getSingleElement - If this set contains a single element, return it,
|
||||
/// otherwise return null.
|
||||
ConstantInt *ConstantRange::getSingleElement() const {
|
||||
if (Upper == Next(Lower)) // Is it a single element range?
|
||||
return Lower;
|
||||
if (Upper == Lower + 1) // Is it a single element range?
|
||||
return ConstantInt::get(getType(), Lower);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// getSetSize - Return the number of elements in this set.
|
||||
///
|
||||
uint64_t ConstantRange::getSetSize() const {
|
||||
if (isEmptySet()) return 0;
|
||||
APInt ConstantRange::getSetSize() const {
|
||||
if (isEmptySet())
|
||||
return APInt(Lower.getBitWidth(), 0);
|
||||
if (getType() == Type::Int1Ty) {
|
||||
if (Lower != Upper) // One of T or F in the set...
|
||||
return 1;
|
||||
return 2; // Must be full set...
|
||||
return APInt(Lower.getBitWidth(), 1);
|
||||
return APInt(Lower.getBitWidth(), 2); // Must be full set...
|
||||
}
|
||||
|
||||
// Simply subtract the bounds...
|
||||
Constant *Result = ConstantExpr::getSub(Upper, Lower);
|
||||
return cast<ConstantInt>(Result)->getZExtValue();
|
||||
return Upper - Lower;
|
||||
}
|
||||
|
||||
/// contains - Return true if the specified value is in the set.
|
||||
///
|
||||
bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
|
||||
if (Lower == Upper) {
|
||||
if (isFullSet()) return true;
|
||||
if (isFullSet())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
const APInt &V = Val->getValue();
|
||||
if (!isWrappedSet(isSigned))
|
||||
return LTE(Lower, Val, isSigned) && LT(Val, Upper, isSigned);
|
||||
return LTE(Lower, Val, isSigned) || LT(Val, Upper, isSigned);
|
||||
if (isSigned)
|
||||
return Lower.sle(V) && V.slt(Upper);
|
||||
else
|
||||
return Lower.ule(V) && V.ult(Upper);
|
||||
if (isSigned)
|
||||
return Lower.sle(V) || V.slt(Upper);
|
||||
else
|
||||
return Lower.ule(V) || V.ult(Upper);
|
||||
}
|
||||
|
||||
/// subtract - Subtract the specified constant from the endpoints of this
|
||||
/// constant range.
|
||||
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
|
||||
assert(CI->getType() == getType() && getType()->isInteger() &&
|
||||
assert(CI->getType() == getType() &&
|
||||
"Cannot subtract from different type range or non-integer!");
|
||||
// If the set is empty or full, don't modify the endpoints.
|
||||
if (Lower == Upper) return *this;
|
||||
return ConstantRange(ConstantExpr::getSub(Lower, CI),
|
||||
ConstantExpr::getSub(Upper, CI));
|
||||
if (Lower == Upper)
|
||||
return *this;
|
||||
|
||||
const APInt &Val = CI->getValue();
|
||||
return ConstantRange(Lower - Val, Upper - Val);
|
||||
}
|
||||
|
||||
|
||||
// intersect1Wrapped - This helper function is used to intersect two ranges when
|
||||
// it is known that LHS is wrapped and RHS isn't.
|
||||
//
|
||||
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
|
||||
const ConstantRange &RHS,
|
||||
bool isSigned) {
|
||||
ConstantRange
|
||||
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
|
||||
const ConstantRange &RHS, bool isSigned) {
|
||||
assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
|
||||
|
||||
// Check to see if we overlap on the Left side of RHS...
|
||||
//
|
||||
if (LT(RHS.getLower(), LHS.getUpper(), isSigned)) {
|
||||
bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
|
||||
bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
|
||||
if (LT) {
|
||||
// We do overlap on the left side of RHS, see if we overlap on the right of
|
||||
// RHS...
|
||||
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
|
||||
if (GT) {
|
||||
// Ok, the result overlaps on both the left and right sides. See if the
|
||||
// resultant interval will be smaller if we wrap or not...
|
||||
//
|
||||
if (LHS.getSetSize() < RHS.getSetSize())
|
||||
if (LHS.getSetSize().ult(RHS.getSetSize()))
|
||||
return LHS;
|
||||
else
|
||||
return RHS;
|
||||
@ -264,7 +248,7 @@ static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
|
||||
} else {
|
||||
// We don't overlap on the left side of RHS, see if we overlap on the right
|
||||
// of RHS...
|
||||
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
|
||||
if (GT) {
|
||||
// Simple overlap...
|
||||
return ConstantRange(LHS.getLower(), RHS.getUpper());
|
||||
} else {
|
||||
@ -281,15 +265,18 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
|
||||
bool isSigned) const {
|
||||
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
|
||||
// Handle common special cases
|
||||
if (isEmptySet() || CR.isFullSet()) return *this;
|
||||
if (isFullSet() || CR.isEmptySet()) return CR;
|
||||
if (isEmptySet() || CR.isFullSet())
|
||||
return *this;
|
||||
if (isFullSet() || CR.isEmptySet())
|
||||
return CR;
|
||||
|
||||
if (!isWrappedSet(isSigned)) {
|
||||
if (!CR.isWrappedSet(isSigned)) {
|
||||
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
|
||||
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
|
||||
using namespace APIntOps;
|
||||
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
|
||||
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
|
||||
|
||||
if (LT(L, U, isSigned)) // If range isn't empty...
|
||||
if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
|
||||
return ConstantRange(L, U);
|
||||
else
|
||||
return ConstantRange(getType(), false); // Otherwise, return empty set
|
||||
@ -300,8 +287,9 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
|
||||
return intersect1Wrapped(*this, CR, isSigned);
|
||||
else {
|
||||
// Both ranges are wrapped...
|
||||
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
|
||||
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
|
||||
using namespace APIntOps;
|
||||
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
|
||||
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
|
||||
return ConstantRange(L, U);
|
||||
}
|
||||
}
|
||||
@ -328,19 +316,18 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
|
||||
/// correspond to the possible range of values as if the source range had been
|
||||
/// zero extended.
|
||||
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
|
||||
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize < Ty->getPrimitiveSizeInBits() && "Not a value extension");
|
||||
unsigned SrcTySize = Lower.getBitWidth();
|
||||
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize < DstTySize && "Not a value extension");
|
||||
if (isFullSet()) {
|
||||
// Change a source full set into [0, 1 << 8*numbytes)
|
||||
return ConstantRange(Constant::getNullValue(Ty),
|
||||
ConstantInt::get(Ty, 1ULL << SrcTySize));
|
||||
}
|
||||
|
||||
Constant *Lower = getLower();
|
||||
Constant *Upper = getUpper();
|
||||
|
||||
return ConstantRange(ConstantExpr::getZExt(Lower, Ty),
|
||||
ConstantExpr::getZExt(Upper, Ty));
|
||||
APInt L = Lower; L.zext(DstTySize);
|
||||
APInt U = Upper; U.zext(DstTySize);
|
||||
return ConstantRange(L, U);
|
||||
}
|
||||
|
||||
/// truncate - Return a new range in the specified integer type, which must be
|
||||
@ -348,21 +335,23 @@ ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
|
||||
/// correspond to the possible range of values as if the source range had been
|
||||
/// truncated to the specified type.
|
||||
ConstantRange ConstantRange::truncate(const Type *Ty) const {
|
||||
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize > Ty->getPrimitiveSizeInBits() && "Not a value truncation");
|
||||
uint64_t Size = 1ULL << Ty->getPrimitiveSizeInBits();
|
||||
if (isFullSet() || getSetSize() >= Size)
|
||||
unsigned SrcTySize = Lower.getBitWidth();
|
||||
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
|
||||
assert(SrcTySize > DstTySize && "Not a value truncation");
|
||||
APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
|
||||
if (isFullSet() || getSetSize().ugt(Size))
|
||||
return ConstantRange(getType());
|
||||
|
||||
return ConstantRange(
|
||||
ConstantExpr::getTrunc(getLower(), Ty),
|
||||
ConstantExpr::getTrunc(getUpper(), Ty));
|
||||
APInt L = Lower; L.trunc(DstTySize);
|
||||
APInt U = Upper; U.trunc(DstTySize);
|
||||
return ConstantRange(L, U);
|
||||
}
|
||||
|
||||
/// print - Print out the bounds to a stream...
|
||||
///
|
||||
void ConstantRange::print(std::ostream &OS) const {
|
||||
OS << "[" << *Lower << "," << *Upper << " )";
|
||||
OS << "[" << Lower.toStringSigned(10) << ","
|
||||
<< Upper.toStringSigned(10) << " )";
|
||||
}
|
||||
|
||||
/// dump - Allow printing from a debugger easily...
|
||||
|
Loading…
Reference in New Issue
Block a user