For PR1205:

Convert ConstantRange class to use APInt internally as its value type for
the constant range, instead of ConstantInt.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34745 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2007-02-28 17:36:23 +00:00
parent 94900774ad
commit 663e711dc2
3 changed files with 264 additions and 280 deletions

View File

@ -30,6 +30,7 @@
#ifndef LLVM_SUPPORT_CONSTANT_RANGE_H
#define LLVM_SUPPORT_CONSTANT_RANGE_H
#include "llvm/ADT/APInt.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Streams.h"
#include <iosfwd>
@ -40,7 +41,9 @@ class ConstantInt;
class Type;
class ConstantRange {
ConstantInt *Lower, *Upper;
APInt Lower, Upper;
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS, bool sign);
public:
/// Initialize a full (the default) or empty set for the specified type.
///
@ -56,6 +59,9 @@ class ConstantRange {
///
ConstantRange(Constant *Lower, Constant *Upper);
/// @brief Initialize a range of values explicitly.
ConstantRange(const APInt& Lower, const APInt& Upper);
/// Initialize a set of values that all satisfy the predicate with C. The
/// predicate should be either an ICmpInst::Predicate or FCmpInst::Predicate
/// value.
@ -64,11 +70,11 @@ class ConstantRange {
/// getLower - Return the lower value for this range...
///
ConstantInt *getLower() const { return Lower; }
ConstantInt *getLower() const;
/// getUpper - Return the upper value for this range...
///
ConstantInt *getUpper() const { return Upper; }
ConstantInt *getUpper() const;
/// getType - Return the LLVM data type of this range.
///
@ -105,7 +111,7 @@ class ConstantRange {
/// getSetSize - Return the number of elements in this set.
///
uint64_t getSetSize() const;
APInt getSetSize() const;
/// operator== - Return true if this range is equal to another range.
///

View File

@ -31,228 +31,212 @@
#include <ostream>
using namespace llvm;
static ConstantInt *getMaxValue(const Type *Ty, bool isSigned = false) {
if (Ty->isInteger()) {
if (isSigned) {
// Calculate 011111111111111...
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
int64_t Val = INT64_MAX; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return ConstantInt::get(Ty, Val);
}
return ConstantInt::getAllOnesValue(Ty);
}
return 0;
}
// Static constructor to create the minimum constant for an integral type...
static ConstantInt *getMinValue(const Type *Ty, bool isSigned = false) {
if (Ty->isInteger()) {
if (isSigned) {
// Calculate 1111111111000000000000
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
int64_t Val = -1; // All ones
Val <<= TypeBits-1; // Shift over to the right spot
return ConstantInt::get(Ty, Val);
}
return ConstantInt::get(Ty, 0);
}
return 0;
}
static ConstantInt *Next(ConstantInt *CI) {
Constant *Result = ConstantExpr::getAdd(CI,
ConstantInt::get(CI->getType(), 1));
return cast<ConstantInt>(Result);
}
static bool LT(ConstantInt *A, ConstantInt *B, bool isSigned) {
Constant *C = ConstantExpr::getICmp(
(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
return cast<ConstantInt>(C)->getZExtValue();
}
static bool LTE(ConstantInt *A, ConstantInt *B, bool isSigned) {
Constant *C = ConstantExpr::getICmp(
(isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
return cast<ConstantInt>(C)->getZExtValue();
}
static bool GT(ConstantInt *A, ConstantInt *B, bool isSigned) {
return LT(B, A, isSigned); }
static ConstantInt *Min(ConstantInt *A, ConstantInt *B,
bool isSigned) {
return LT(A, B, isSigned) ? A : B;
}
static ConstantInt *Max(ConstantInt *A, ConstantInt *B,
bool isSigned) {
return GT(A, B, isSigned) ? A : B;
}
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(const Type *Ty, bool Full) {
assert(Ty->isInteger() &&
"Cannot make constant range of non-integral type!");
ConstantRange::ConstantRange(const Type *Ty, bool Full) :
Lower(cast<IntegerType>(Ty)->getBitWidth(), 0),
Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) {
uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
if (Full)
Lower = Upper = getMaxValue(Ty);
Lower = Upper = APInt::getMaxValue(BitWidth);
else
Lower = Upper = getMinValue(Ty);
Lower = Upper = APInt::getMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(Constant *V)
: Lower(cast<ConstantInt>(V)), Upper(Next(cast<ConstantInt>(V))) { }
: Lower(cast<ConstantInt>(V)->getValue()),
Upper(cast<ConstantInt>(V)->getValue() + 1) { }
/// Initialize a range of values explicitly... this will assert out if
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
/// have different types)
///
ConstantRange::ConstantRange(Constant *L, Constant *U)
: Lower(cast<ConstantInt>(L)), Upper(cast<ConstantInt>(U)) {
assert(Lower->getType() == Upper->getType() &&
"Incompatible types for ConstantRange!");
: Lower(cast<ConstantInt>(L)->getValue()),
Upper(cast<ConstantInt>(U)->getValue()) {
assert(L->getType() == U->getType() && "Invalid ConstantRange types!");
assert(L->getType()->isInteger() && "Invalid ConstantRange types!");
// Make sure that if L & U are equal that they are either Min or Max...
assert((L != U || (L == getMaxValue(L->getType()) ||
L == getMinValue(L->getType())))
uint32_t BitWidth = cast<IntegerType>(L->getType())->getBitWidth();
const IntegerType *Ty = cast<IntegerType>(L->getType());
assert((L != U || (L == ConstantInt::get(Ty, APInt::getMaxValue(BitWidth))
|| L == ConstantInt::get(Ty, APInt::getMinValue(BitWidth))))
&& "Lower == Upper, but they aren't min or max for type!");
}
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
Lower(L), Upper(U) {
assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
uint32_t BitWidth = L.getBitWidth();
assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
L == APInt::getMinValue(BitWidth))) &&
"Lower == Upper, but they aren't min or max value!");
}
/// Initialize a set of values that all satisfy the condition with C.
///
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C) {
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C)
: Lower(cast<IntegerType>(C->getType())->getBitWidth(), 0),
Upper(cast<IntegerType>(C->getType())->getBitWidth(), 0) {
const APInt& Val = C->getValue();
uint32_t BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
switch (ICmpOpcode) {
default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
case ICmpInst::ICMP_EQ: Lower = C; Upper = Next(C); return;
case ICmpInst::ICMP_NE: Upper = C; Lower = Next(C); return;
case ICmpInst::ICMP_EQ: Lower = Val; Upper = Val + 1; return;
case ICmpInst::ICMP_NE: Upper = Val; Lower = Val + 1; return;
case ICmpInst::ICMP_ULT:
Lower = getMinValue(C->getType());
Upper = C;
Lower = APInt::getMinValue(BitWidth);
Upper = Val;
return;
case ICmpInst::ICMP_SLT:
Lower = getMinValue(C->getType(), true);
Upper = C;
Lower = APInt::getSignedMinValue(BitWidth);
Upper = Val;
return;
case ICmpInst::ICMP_UGT:
Lower = Next(C);
Upper = getMinValue(C->getType()); // Min = Next(Max)
Lower = Val + 1;
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_SGT:
Lower = Next(C);
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
Lower = Val + 1;
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_ULE:
Lower = getMinValue(C->getType());
Upper = Next(C);
Lower = APInt::getMinValue(BitWidth);
Upper = Val + 1;
return;
case ICmpInst::ICMP_SLE:
Lower = getMinValue(C->getType(), true);
Upper = Next(C);
Lower = APInt::getSignedMinValue(BitWidth);
Upper = Val + 1;
return;
case ICmpInst::ICMP_UGE:
Lower = C;
Upper = getMinValue(C->getType()); // Min = Next(Max)
Lower = Val;
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_SGE:
Lower = C;
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
Lower = Val;
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
return;
}
}
/// getType - Return the LLVM data type of this range.
///
const Type *ConstantRange::getType() const { return Lower->getType(); }
const Type *ConstantRange::getType() const {
return IntegerType::get(Lower.getBitWidth());
}
ConstantInt *ConstantRange::getLower() const {
return ConstantInt::get(getType(), Lower);
}
ConstantInt *ConstantRange::getUpper() const {
return ConstantInt::get(getType(), Upper);
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower == getMaxValue(getType());
return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth());
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower == getMinValue(getType());
return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth());
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet(bool isSigned) const {
return GT(Lower, Upper, isSigned);
if (isSigned)
return Lower.sgt(Upper);
return Lower.ugt(Upper);
}
/// getSingleElement - If this set contains a single element, return it,
/// otherwise return null.
ConstantInt *ConstantRange::getSingleElement() const {
if (Upper == Next(Lower)) // Is it a single element range?
return Lower;
if (Upper == Lower + 1) // Is it a single element range?
return ConstantInt::get(getType(), Lower);
return 0;
}
/// getSetSize - Return the number of elements in this set.
///
uint64_t ConstantRange::getSetSize() const {
if (isEmptySet()) return 0;
APInt ConstantRange::getSetSize() const {
if (isEmptySet())
return APInt(Lower.getBitWidth(), 0);
if (getType() == Type::Int1Ty) {
if (Lower != Upper) // One of T or F in the set...
return 1;
return 2; // Must be full set...
return APInt(Lower.getBitWidth(), 1);
return APInt(Lower.getBitWidth(), 2); // Must be full set...
}
// Simply subtract the bounds...
Constant *Result = ConstantExpr::getSub(Upper, Lower);
return cast<ConstantInt>(Result)->getZExtValue();
return Upper - Lower;
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
if (Lower == Upper) {
if (isFullSet()) return true;
if (isFullSet())
return true;
return false;
}
const APInt &V = Val->getValue();
if (!isWrappedSet(isSigned))
return LTE(Lower, Val, isSigned) && LT(Val, Upper, isSigned);
return LTE(Lower, Val, isSigned) || LT(Val, Upper, isSigned);
if (isSigned)
return Lower.sle(V) && V.slt(Upper);
else
return Lower.ule(V) && V.ult(Upper);
if (isSigned)
return Lower.sle(V) || V.slt(Upper);
else
return Lower.ule(V) || V.ult(Upper);
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
assert(CI->getType() == getType() && getType()->isInteger() &&
assert(CI->getType() == getType() &&
"Cannot subtract from different type range or non-integer!");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper) return *this;
return ConstantRange(ConstantExpr::getSub(Lower, CI),
ConstantExpr::getSub(Upper, CI));
if (Lower == Upper)
return *this;
const APInt &Val = CI->getValue();
return ConstantRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS,
bool isSigned) {
ConstantRange
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS, bool isSigned) {
assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
// Check to see if we overlap on the Left side of RHS...
//
if (LT(RHS.getLower(), LHS.getUpper(), isSigned)) {
bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
if (LT) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
if (GT) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize() < RHS.getSetSize())
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
@ -264,7 +248,7 @@ static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
if (GT) {
// Simple overlap...
return ConstantRange(LHS.getLower(), RHS.getUpper());
} else {
@ -281,15 +265,18 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
bool isSigned) const {
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet()) return *this;
if (isFullSet() || CR.isEmptySet()) return CR;
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet(isSigned)) {
if (!CR.isWrappedSet(isSigned)) {
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
if (LT(L, U, isSigned)) // If range isn't empty...
if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getType(), false); // Otherwise, return empty set
@ -300,8 +287,9 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
return intersect1Wrapped(*this, CR, isSigned);
else {
// Both ranges are wrapped...
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
@ -328,19 +316,18 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
assert(SrcTySize < Ty->getPrimitiveSizeInBits() && "Not a value extension");
unsigned SrcTySize = Lower.getBitWidth();
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet()) {
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(Constant::getNullValue(Ty),
ConstantInt::get(Ty, 1ULL << SrcTySize));
}
Constant *Lower = getLower();
Constant *Upper = getUpper();
return ConstantRange(ConstantExpr::getZExt(Lower, Ty),
ConstantExpr::getZExt(Upper, Ty));
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
@ -348,21 +335,23 @@ ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(const Type *Ty) const {
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
assert(SrcTySize > Ty->getPrimitiveSizeInBits() && "Not a value truncation");
uint64_t Size = 1ULL << Ty->getPrimitiveSizeInBits();
if (isFullSet() || getSetSize() >= Size)
unsigned SrcTySize = Lower.getBitWidth();
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
assert(SrcTySize > DstTySize && "Not a value truncation");
APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
if (isFullSet() || getSetSize().ugt(Size))
return ConstantRange(getType());
return ConstantRange(
ConstantExpr::getTrunc(getLower(), Ty),
ConstantExpr::getTrunc(getUpper(), Ty));
APInt L = Lower; L.trunc(DstTySize);
APInt U = Upper; U.trunc(DstTySize);
return ConstantRange(L, U);
}
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(std::ostream &OS) const {
OS << "[" << *Lower << "," << *Upper << " )";
OS << "[" << Lower.toStringSigned(10) << ","
<< Upper.toStringSigned(10) << " )";
}
/// dump - Allow printing from a debugger easily...

View File

@ -31,228 +31,212 @@
#include <ostream>
using namespace llvm;
static ConstantInt *getMaxValue(const Type *Ty, bool isSigned = false) {
if (Ty->isInteger()) {
if (isSigned) {
// Calculate 011111111111111...
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
int64_t Val = INT64_MAX; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return ConstantInt::get(Ty, Val);
}
return ConstantInt::getAllOnesValue(Ty);
}
return 0;
}
// Static constructor to create the minimum constant for an integral type...
static ConstantInt *getMinValue(const Type *Ty, bool isSigned = false) {
if (Ty->isInteger()) {
if (isSigned) {
// Calculate 1111111111000000000000
unsigned TypeBits = Ty->getPrimitiveSizeInBits();
int64_t Val = -1; // All ones
Val <<= TypeBits-1; // Shift over to the right spot
return ConstantInt::get(Ty, Val);
}
return ConstantInt::get(Ty, 0);
}
return 0;
}
static ConstantInt *Next(ConstantInt *CI) {
Constant *Result = ConstantExpr::getAdd(CI,
ConstantInt::get(CI->getType(), 1));
return cast<ConstantInt>(Result);
}
static bool LT(ConstantInt *A, ConstantInt *B, bool isSigned) {
Constant *C = ConstantExpr::getICmp(
(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
return cast<ConstantInt>(C)->getZExtValue();
}
static bool LTE(ConstantInt *A, ConstantInt *B, bool isSigned) {
Constant *C = ConstantExpr::getICmp(
(isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
return cast<ConstantInt>(C)->getZExtValue();
}
static bool GT(ConstantInt *A, ConstantInt *B, bool isSigned) {
return LT(B, A, isSigned); }
static ConstantInt *Min(ConstantInt *A, ConstantInt *B,
bool isSigned) {
return LT(A, B, isSigned) ? A : B;
}
static ConstantInt *Max(ConstantInt *A, ConstantInt *B,
bool isSigned) {
return GT(A, B, isSigned) ? A : B;
}
/// Initialize a full (the default) or empty set for the specified type.
///
ConstantRange::ConstantRange(const Type *Ty, bool Full) {
assert(Ty->isInteger() &&
"Cannot make constant range of non-integral type!");
ConstantRange::ConstantRange(const Type *Ty, bool Full) :
Lower(cast<IntegerType>(Ty)->getBitWidth(), 0),
Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) {
uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
if (Full)
Lower = Upper = getMaxValue(Ty);
Lower = Upper = APInt::getMaxValue(BitWidth);
else
Lower = Upper = getMinValue(Ty);
Lower = Upper = APInt::getMinValue(BitWidth);
}
/// Initialize a range to hold the single specified value.
///
ConstantRange::ConstantRange(Constant *V)
: Lower(cast<ConstantInt>(V)), Upper(Next(cast<ConstantInt>(V))) { }
: Lower(cast<ConstantInt>(V)->getValue()),
Upper(cast<ConstantInt>(V)->getValue() + 1) { }
/// Initialize a range of values explicitly... this will assert out if
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
/// have different types)
///
ConstantRange::ConstantRange(Constant *L, Constant *U)
: Lower(cast<ConstantInt>(L)), Upper(cast<ConstantInt>(U)) {
assert(Lower->getType() == Upper->getType() &&
"Incompatible types for ConstantRange!");
: Lower(cast<ConstantInt>(L)->getValue()),
Upper(cast<ConstantInt>(U)->getValue()) {
assert(L->getType() == U->getType() && "Invalid ConstantRange types!");
assert(L->getType()->isInteger() && "Invalid ConstantRange types!");
// Make sure that if L & U are equal that they are either Min or Max...
assert((L != U || (L == getMaxValue(L->getType()) ||
L == getMinValue(L->getType())))
uint32_t BitWidth = cast<IntegerType>(L->getType())->getBitWidth();
const IntegerType *Ty = cast<IntegerType>(L->getType());
assert((L != U || (L == ConstantInt::get(Ty, APInt::getMaxValue(BitWidth))
|| L == ConstantInt::get(Ty, APInt::getMinValue(BitWidth))))
&& "Lower == Upper, but they aren't min or max for type!");
}
ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
Lower(L), Upper(U) {
assert(L.getBitWidth() == U.getBitWidth() &&
"ConstantRange with unequal bit widths");
uint32_t BitWidth = L.getBitWidth();
assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
L == APInt::getMinValue(BitWidth))) &&
"Lower == Upper, but they aren't min or max value!");
}
/// Initialize a set of values that all satisfy the condition with C.
///
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C) {
ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C)
: Lower(cast<IntegerType>(C->getType())->getBitWidth(), 0),
Upper(cast<IntegerType>(C->getType())->getBitWidth(), 0) {
const APInt& Val = C->getValue();
uint32_t BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
switch (ICmpOpcode) {
default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
case ICmpInst::ICMP_EQ: Lower = C; Upper = Next(C); return;
case ICmpInst::ICMP_NE: Upper = C; Lower = Next(C); return;
case ICmpInst::ICMP_EQ: Lower = Val; Upper = Val + 1; return;
case ICmpInst::ICMP_NE: Upper = Val; Lower = Val + 1; return;
case ICmpInst::ICMP_ULT:
Lower = getMinValue(C->getType());
Upper = C;
Lower = APInt::getMinValue(BitWidth);
Upper = Val;
return;
case ICmpInst::ICMP_SLT:
Lower = getMinValue(C->getType(), true);
Upper = C;
Lower = APInt::getSignedMinValue(BitWidth);
Upper = Val;
return;
case ICmpInst::ICMP_UGT:
Lower = Next(C);
Upper = getMinValue(C->getType()); // Min = Next(Max)
Lower = Val + 1;
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_SGT:
Lower = Next(C);
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
Lower = Val + 1;
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_ULE:
Lower = getMinValue(C->getType());
Upper = Next(C);
Lower = APInt::getMinValue(BitWidth);
Upper = Val + 1;
return;
case ICmpInst::ICMP_SLE:
Lower = getMinValue(C->getType(), true);
Upper = Next(C);
Lower = APInt::getSignedMinValue(BitWidth);
Upper = Val + 1;
return;
case ICmpInst::ICMP_UGE:
Lower = C;
Upper = getMinValue(C->getType()); // Min = Next(Max)
Lower = Val;
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
return;
case ICmpInst::ICMP_SGE:
Lower = C;
Upper = getMinValue(C->getType(), true); // Min = Next(Max)
Lower = Val;
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
return;
}
}
/// getType - Return the LLVM data type of this range.
///
const Type *ConstantRange::getType() const { return Lower->getType(); }
const Type *ConstantRange::getType() const {
return IntegerType::get(Lower.getBitWidth());
}
ConstantInt *ConstantRange::getLower() const {
return ConstantInt::get(getType(), Lower);
}
ConstantInt *ConstantRange::getUpper() const {
return ConstantInt::get(getType(), Upper);
}
/// isFullSet - Return true if this set contains all of the elements possible
/// for this data-type
bool ConstantRange::isFullSet() const {
return Lower == Upper && Lower == getMaxValue(getType());
return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth());
}
/// isEmptySet - Return true if this set contains no members.
///
bool ConstantRange::isEmptySet() const {
return Lower == Upper && Lower == getMinValue(getType());
return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth());
}
/// isWrappedSet - Return true if this set wraps around the top of the range,
/// for example: [100, 8)
///
bool ConstantRange::isWrappedSet(bool isSigned) const {
return GT(Lower, Upper, isSigned);
if (isSigned)
return Lower.sgt(Upper);
return Lower.ugt(Upper);
}
/// getSingleElement - If this set contains a single element, return it,
/// otherwise return null.
ConstantInt *ConstantRange::getSingleElement() const {
if (Upper == Next(Lower)) // Is it a single element range?
return Lower;
if (Upper == Lower + 1) // Is it a single element range?
return ConstantInt::get(getType(), Lower);
return 0;
}
/// getSetSize - Return the number of elements in this set.
///
uint64_t ConstantRange::getSetSize() const {
if (isEmptySet()) return 0;
APInt ConstantRange::getSetSize() const {
if (isEmptySet())
return APInt(Lower.getBitWidth(), 0);
if (getType() == Type::Int1Ty) {
if (Lower != Upper) // One of T or F in the set...
return 1;
return 2; // Must be full set...
return APInt(Lower.getBitWidth(), 1);
return APInt(Lower.getBitWidth(), 2); // Must be full set...
}
// Simply subtract the bounds...
Constant *Result = ConstantExpr::getSub(Upper, Lower);
return cast<ConstantInt>(Result)->getZExtValue();
return Upper - Lower;
}
/// contains - Return true if the specified value is in the set.
///
bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
if (Lower == Upper) {
if (isFullSet()) return true;
if (isFullSet())
return true;
return false;
}
const APInt &V = Val->getValue();
if (!isWrappedSet(isSigned))
return LTE(Lower, Val, isSigned) && LT(Val, Upper, isSigned);
return LTE(Lower, Val, isSigned) || LT(Val, Upper, isSigned);
if (isSigned)
return Lower.sle(V) && V.slt(Upper);
else
return Lower.ule(V) && V.ult(Upper);
if (isSigned)
return Lower.sle(V) || V.slt(Upper);
else
return Lower.ule(V) || V.ult(Upper);
}
/// subtract - Subtract the specified constant from the endpoints of this
/// constant range.
ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
assert(CI->getType() == getType() && getType()->isInteger() &&
assert(CI->getType() == getType() &&
"Cannot subtract from different type range or non-integer!");
// If the set is empty or full, don't modify the endpoints.
if (Lower == Upper) return *this;
return ConstantRange(ConstantExpr::getSub(Lower, CI),
ConstantExpr::getSub(Upper, CI));
if (Lower == Upper)
return *this;
const APInt &Val = CI->getValue();
return ConstantRange(Lower - Val, Upper - Val);
}
// intersect1Wrapped - This helper function is used to intersect two ranges when
// it is known that LHS is wrapped and RHS isn't.
//
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS,
bool isSigned) {
ConstantRange
ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
const ConstantRange &RHS, bool isSigned) {
assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
// Check to see if we overlap on the Left side of RHS...
//
if (LT(RHS.getLower(), LHS.getUpper(), isSigned)) {
bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
if (LT) {
// We do overlap on the left side of RHS, see if we overlap on the right of
// RHS...
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
if (GT) {
// Ok, the result overlaps on both the left and right sides. See if the
// resultant interval will be smaller if we wrap or not...
//
if (LHS.getSetSize() < RHS.getSetSize())
if (LHS.getSetSize().ult(RHS.getSetSize()))
return LHS;
else
return RHS;
@ -264,7 +248,7 @@ static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
} else {
// We don't overlap on the left side of RHS, see if we overlap on the right
// of RHS...
if (GT(RHS.getUpper(), LHS.getLower(), isSigned)) {
if (GT) {
// Simple overlap...
return ConstantRange(LHS.getLower(), RHS.getUpper());
} else {
@ -281,15 +265,18 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
bool isSigned) const {
assert(getType() == CR.getType() && "ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet()) return *this;
if (isFullSet() || CR.isEmptySet()) return CR;
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet(isSigned)) {
if (!CR.isWrappedSet(isSigned)) {
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
if (LT(L, U, isSigned)) // If range isn't empty...
if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getType(), false); // Otherwise, return empty set
@ -300,8 +287,9 @@ ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
return intersect1Wrapped(*this, CR, isSigned);
else {
// Both ranges are wrapped...
ConstantInt *L = Max(Lower, CR.Lower, isSigned);
ConstantInt *U = Min(Upper, CR.Upper, isSigned);
using namespace APIntOps;
APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
@ -328,19 +316,18 @@ ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
assert(SrcTySize < Ty->getPrimitiveSizeInBits() && "Not a value extension");
unsigned SrcTySize = Lower.getBitWidth();
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet()) {
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(Constant::getNullValue(Ty),
ConstantInt::get(Ty, 1ULL << SrcTySize));
}
Constant *Lower = getLower();
Constant *Upper = getUpper();
return ConstantRange(ConstantExpr::getZExt(Lower, Ty),
ConstantExpr::getZExt(Upper, Ty));
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
/// truncate - Return a new range in the specified integer type, which must be
@ -348,21 +335,23 @@ ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
/// correspond to the possible range of values as if the source range had been
/// truncated to the specified type.
ConstantRange ConstantRange::truncate(const Type *Ty) const {
unsigned SrcTySize = getLower()->getType()->getPrimitiveSizeInBits();
assert(SrcTySize > Ty->getPrimitiveSizeInBits() && "Not a value truncation");
uint64_t Size = 1ULL << Ty->getPrimitiveSizeInBits();
if (isFullSet() || getSetSize() >= Size)
unsigned SrcTySize = Lower.getBitWidth();
unsigned DstTySize = Ty->getPrimitiveSizeInBits();
assert(SrcTySize > DstTySize && "Not a value truncation");
APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
if (isFullSet() || getSetSize().ugt(Size))
return ConstantRange(getType());
return ConstantRange(
ConstantExpr::getTrunc(getLower(), Ty),
ConstantExpr::getTrunc(getUpper(), Ty));
APInt L = Lower; L.trunc(DstTySize);
APInt U = Upper; U.trunc(DstTySize);
return ConstantRange(L, U);
}
/// print - Print out the bounds to a stream...
///
void ConstantRange::print(std::ostream &OS) const {
OS << "[" << *Lower << "," << *Upper << " )";
OS << "[" << Lower.toStringSigned(10) << ","
<< Upper.toStringSigned(10) << " )";
}
/// dump - Allow printing from a debugger easily...