mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-04 09:54:09 +00:00
Implement arithmetic on APFloat with PPCDoubleDouble semantics by
treating it as if it were an IEEE floating-point type with 106-bit mantissa. This makes compile-time arithmetic on "long double" for PowerPC in clang (in particular parsing of floating point constants) work, and fixes all "long double" related failures in the test suite. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166951 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2fbc239e4f
commit
69c9c8c4cf
@ -58,10 +58,19 @@ namespace llvm {
|
|||||||
const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
|
const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
|
||||||
const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
|
const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
|
||||||
|
|
||||||
// The PowerPC format consists of two doubles. It does not map cleanly
|
/* The PowerPC format consists of two doubles. It does not map cleanly
|
||||||
// onto the usual format above. For now only storage of constants of
|
onto the usual format above. It is approximated using twice the
|
||||||
// this type is supported, no arithmetic.
|
mantissa bits. Note that for exponents near the double minimum,
|
||||||
const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
|
we no longer can represent the full 106 mantissa bits, so those
|
||||||
|
will be treated as denormal numbers.
|
||||||
|
|
||||||
|
FIXME: While this approximation is equivalent to what GCC uses for
|
||||||
|
compile-time arithmetic on PPC double-double numbers, it is not able
|
||||||
|
to represent all possible values held by a PPC double-double number,
|
||||||
|
for example: (long double) 1.0 + (long double) 0x1p-106
|
||||||
|
Should this be replaced by a full emulation of PPC double-double? */
|
||||||
|
const fltSemantics APFloat::PPCDoubleDouble =
|
||||||
|
{ 1023, -1022 + 53, 53 + 53, true };
|
||||||
|
|
||||||
/* A tight upper bound on number of parts required to hold the value
|
/* A tight upper bound on number of parts required to hold the value
|
||||||
pow(5, power) is
|
pow(5, power) is
|
||||||
@ -2790,42 +2799,46 @@ APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
|
|||||||
assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
|
assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
|
||||||
assert(partCount()==2);
|
assert(partCount()==2);
|
||||||
|
|
||||||
uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
|
uint64_t words[2];
|
||||||
|
opStatus fs;
|
||||||
|
bool losesInfo;
|
||||||
|
|
||||||
if (category==fcNormal) {
|
// Convert number to double. To avoid spurious underflows, we re-
|
||||||
myexponent = exponent + 1023; //bias
|
// normalize against the "double" minExponent first, and only *then*
|
||||||
myexponent2 = exponent2 + 1023;
|
// truncate the mantissa. The result of that second conversion
|
||||||
mysignificand = significandParts()[0];
|
// may be inexact, but should never underflow.
|
||||||
mysignificand2 = significandParts()[1];
|
APFloat extended(*this);
|
||||||
if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
|
fltSemantics extendedSemantics = *semantics;
|
||||||
myexponent = 0; // denormal
|
extendedSemantics.minExponent = IEEEdouble.minExponent;
|
||||||
if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
|
fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
|
||||||
myexponent2 = 0; // denormal
|
assert(fs == opOK && !losesInfo);
|
||||||
} else if (category==fcZero) {
|
(void)fs;
|
||||||
myexponent = 0;
|
|
||||||
mysignificand = 0;
|
APFloat u(extended);
|
||||||
myexponent2 = 0;
|
fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
|
||||||
mysignificand2 = 0;
|
assert(fs == opOK || fs == opInexact);
|
||||||
} else if (category==fcInfinity) {
|
(void)fs;
|
||||||
myexponent = 0x7ff;
|
words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
|
||||||
myexponent2 = 0;
|
|
||||||
mysignificand = 0;
|
// If conversion was exact or resulted in a special case, we're done;
|
||||||
mysignificand2 = 0;
|
// just set the second double to zero. Otherwise, re-convert back to
|
||||||
|
// the extended format and compute the difference. This now should
|
||||||
|
// convert exactly to double.
|
||||||
|
if (u.category == fcNormal && losesInfo) {
|
||||||
|
fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
|
||||||
|
assert(fs == opOK && !losesInfo);
|
||||||
|
(void)fs;
|
||||||
|
|
||||||
|
APFloat v(extended);
|
||||||
|
v.subtract(u, rmNearestTiesToEven);
|
||||||
|
fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
|
||||||
|
assert(fs == opOK && !losesInfo);
|
||||||
|
(void)fs;
|
||||||
|
words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
|
||||||
} else {
|
} else {
|
||||||
assert(category == fcNaN && "Unknown category");
|
words[1] = 0;
|
||||||
myexponent = 0x7ff;
|
|
||||||
mysignificand = significandParts()[0];
|
|
||||||
myexponent2 = exponent2;
|
|
||||||
mysignificand2 = significandParts()[1];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint64_t words[2];
|
|
||||||
words[0] = ((uint64_t)(sign & 1) << 63) |
|
|
||||||
((myexponent & 0x7ff) << 52) |
|
|
||||||
(mysignificand & 0xfffffffffffffLL);
|
|
||||||
words[1] = ((uint64_t)(sign2 & 1) << 63) |
|
|
||||||
((myexponent2 & 0x7ff) << 52) |
|
|
||||||
(mysignificand2 & 0xfffffffffffffLL);
|
|
||||||
return APInt(128, words);
|
return APInt(128, words);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3045,47 +3058,23 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
|
|||||||
assert(api.getBitWidth()==128);
|
assert(api.getBitWidth()==128);
|
||||||
uint64_t i1 = api.getRawData()[0];
|
uint64_t i1 = api.getRawData()[0];
|
||||||
uint64_t i2 = api.getRawData()[1];
|
uint64_t i2 = api.getRawData()[1];
|
||||||
uint64_t myexponent = (i1 >> 52) & 0x7ff;
|
opStatus fs;
|
||||||
uint64_t mysignificand = i1 & 0xfffffffffffffLL;
|
bool losesInfo;
|
||||||
uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
|
|
||||||
uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
|
|
||||||
|
|
||||||
initialize(&APFloat::PPCDoubleDouble);
|
// Get the first double and convert to our format.
|
||||||
assert(partCount()==2);
|
initFromDoubleAPInt(APInt(64, i1));
|
||||||
|
fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
|
||||||
|
assert(fs == opOK && !losesInfo);
|
||||||
|
(void)fs;
|
||||||
|
|
||||||
sign = static_cast<unsigned int>(i1>>63);
|
// Unless we have a special case, add in second double.
|
||||||
sign2 = static_cast<unsigned int>(i2>>63);
|
if (category == fcNormal) {
|
||||||
if (myexponent==0 && mysignificand==0) {
|
APFloat v(APInt(64, i2));
|
||||||
// exponent, significand meaningless
|
fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
|
||||||
// exponent2 and significand2 are required to be 0; we don't check
|
assert(fs == opOK && !losesInfo);
|
||||||
category = fcZero;
|
(void)fs;
|
||||||
} else if (myexponent==0x7ff && mysignificand==0) {
|
|
||||||
// exponent, significand meaningless
|
add(v, rmNearestTiesToEven);
|
||||||
// exponent2 and significand2 are required to be 0; we don't check
|
|
||||||
category = fcInfinity;
|
|
||||||
} else if (myexponent==0x7ff && mysignificand!=0) {
|
|
||||||
// exponent meaningless. So is the whole second word, but keep it
|
|
||||||
// for determinism.
|
|
||||||
category = fcNaN;
|
|
||||||
exponent2 = myexponent2;
|
|
||||||
significandParts()[0] = mysignificand;
|
|
||||||
significandParts()[1] = mysignificand2;
|
|
||||||
} else {
|
|
||||||
category = fcNormal;
|
|
||||||
// Note there is no category2; the second word is treated as if it is
|
|
||||||
// fcNormal, although it might be something else considered by itself.
|
|
||||||
exponent = myexponent - 1023;
|
|
||||||
exponent2 = myexponent2 - 1023;
|
|
||||||
significandParts()[0] = mysignificand;
|
|
||||||
significandParts()[1] = mysignificand2;
|
|
||||||
if (myexponent==0) // denormal
|
|
||||||
exponent = -1022;
|
|
||||||
else
|
|
||||||
significandParts()[0] |= 0x10000000000000LL; // integer bit
|
|
||||||
if (myexponent2==0)
|
|
||||||
exponent2 = -1022;
|
|
||||||
else
|
|
||||||
significandParts()[1] |= 0x10000000000000LL; // integer bit
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -737,4 +737,40 @@ TEST(APFloatTest, convert) {
|
|||||||
EXPECT_EQ(4294967295.0, test.convertToDouble());
|
EXPECT_EQ(4294967295.0, test.convertToDouble());
|
||||||
EXPECT_FALSE(losesInfo);
|
EXPECT_FALSE(losesInfo);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(APFloatTest, PPCDoubleDouble) {
|
||||||
|
APFloat test(APFloat::PPCDoubleDouble, "1.0");
|
||||||
|
EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
|
||||||
|
EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
|
||||||
|
test.divide(APFloat(APFloat::PPCDoubleDouble, "3.0"), APFloat::rmNearestTiesToEven);
|
||||||
|
EXPECT_EQ(0x3fd5555555555555ull, test.bitcastToAPInt().getRawData()[0]);
|
||||||
|
EXPECT_EQ(0x3c75555555555556ull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
|
||||||
|
// LDBL_MAX
|
||||||
|
test = APFloat(APFloat::PPCDoubleDouble, "1.79769313486231580793728971405301e+308");
|
||||||
|
EXPECT_EQ(0x7fefffffffffffffull, test.bitcastToAPInt().getRawData()[0]);
|
||||||
|
EXPECT_EQ(0x7c8ffffffffffffeull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
|
||||||
|
// LDBL_MIN
|
||||||
|
test = APFloat(APFloat::PPCDoubleDouble, "2.00416836000897277799610805135016e-292");
|
||||||
|
EXPECT_EQ(0x0360000000000000ull, test.bitcastToAPInt().getRawData()[0]);
|
||||||
|
EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
|
||||||
|
test = APFloat(APFloat::PPCDoubleDouble, "1.0");
|
||||||
|
test.add(APFloat(APFloat::PPCDoubleDouble, "0x1p-105"), APFloat::rmNearestTiesToEven);
|
||||||
|
EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
|
||||||
|
EXPECT_EQ(0x3960000000000000ull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
|
||||||
|
test = APFloat(APFloat::PPCDoubleDouble, "1.0");
|
||||||
|
test.add(APFloat(APFloat::PPCDoubleDouble, "0x1p-106"), APFloat::rmNearestTiesToEven);
|
||||||
|
EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
|
||||||
|
#if 0 // XFAIL
|
||||||
|
// This is what we would expect with a true double-double implementation
|
||||||
|
EXPECT_EQ(0x3950000000000000ull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
#else
|
||||||
|
// This is what we get with our 106-bit mantissa approximation
|
||||||
|
EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user