add some more notes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81170 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2009-09-07 23:33:52 +00:00
parent 2a6f57763f
commit 6e9057b0ef

View File

@ -2118,7 +2118,46 @@ logically read from arbitrary registers that happen to be around when needed,
so the value is not neccesarily consistent over time. In fact, %A and %C need
to have the same semantics of the core LLVM "replace all uses with" concept
would not hold.</p>
<div class="doc_code">
<pre>
%A = fdiv undef, %X
%B = fdiv %X, undef
Safe:
%A = undef
b: unreachable
</pre>
</div>
<p>These examples show the crucial difference between an <em>undefined
value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
allowed to have an arbitrary bit-pattern. This means that the %A operation
can be constant folded to undef because the undef could be an SNaN, and fdiv is
not (currently) defined on SNaN's. However, in the second example, we can make
a more aggressive assumption: because the undef is allowed to be an arbitrary
value, we are allowed to assume that it could be zero. Since a divide by zero
is has <em>undefined behavior</em>, we are allowed to assume that the operation
does not execute at all. This allows us to delete the divide and all code after
it: since the undefined operation "can't happen", the optimizer can assume that
it occurs in dead code.
</p>
<div class="doc_code">
<pre>
a: store undef -> %X
b: store %X -> undef
Safe:
a: &lt;deleted&gt;
b: unreachable
</pre>
</div>
<p>These examples reiterate the fdiv example: a store "of" an undefined value
can be assumed to not have any effect: we can assume that the value is
overwritten with bits that happen to match what was already there. However, a
store "to" an undefined location could clobber arbitrary memory, therefore, it
has undefined behavior.</p>
</div>
<!-- ======================================================================= -->