[CFLAA] Add an initial CFLAnders implementation.

This adds an incomplete anders-style implementation for CFLAA. It's
incomplete in that it's missing interprocedural analysis, attrs
handling, etc. and that it needs more tests. More tests and features
will be added in future commits.

Patch by Jia Chen.

Differential Revision: https://reviews.llvm.org/D22291


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275602 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
George Burgess IV 2016-07-15 19:53:25 +00:00
parent 17ea6c191e
commit 723a3ff949
8 changed files with 628 additions and 36 deletions

View File

@ -15,33 +15,86 @@
#ifndef LLVM_ANALYSIS_CFLANDERSALIASANALYSIS_H
#define LLVM_ANALYSIS_CFLANDERSALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include <forward_list>
namespace llvm {
class TargetLibraryInfo;
namespace cflaa {
struct AliasSummary;
}
class CFLAndersAAResult : public AAResultBase<CFLAndersAAResult> {
friend AAResultBase<CFLAndersAAResult>;
class FunctionInfo;
public:
explicit CFLAndersAAResult();
explicit CFLAndersAAResult(const TargetLibraryInfo &);
CFLAndersAAResult(CFLAndersAAResult &&);
~CFLAndersAAResult();
/// Handle invalidation events from the new pass manager.
/// By definition, this result is stateless and so remains valid.
bool invalidate(Function &, const PreservedAnalyses &) { return false; }
/// Evict the given function from cache
void evict(const Function &Fn);
/// \brief Get the alias summary for the given function
/// Return nullptr if the summary is not found or not available
const cflaa::AliasSummary *getAliasSummary(Function &Fn) {
// Dummy implementation
return nullptr;
}
const cflaa::AliasSummary *getAliasSummary(const Function &);
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
// Dummy implementation
return AAResultBase::alias(LocA, LocB);
}
AliasResult query(const MemoryLocation &, const MemoryLocation &);
AliasResult alias(const MemoryLocation &, const MemoryLocation &);
private:
struct FunctionHandle final : public CallbackVH {
FunctionHandle(Function *Fn, CFLAndersAAResult *Result)
: CallbackVH(Fn), Result(Result) {
assert(Fn != nullptr);
assert(Result != nullptr);
}
void deleted() override { removeSelfFromCache(); }
void allUsesReplacedWith(Value *) override { removeSelfFromCache(); }
private:
CFLAndersAAResult *Result;
void removeSelfFromCache() {
assert(Result != nullptr);
auto *Val = getValPtr();
Result->evict(*cast<Function>(Val));
setValPtr(nullptr);
}
};
/// \brief Ensures that the given function is available in the cache.
/// Returns the appropriate entry from the cache.
const Optional<FunctionInfo> &ensureCached(const Function &);
/// \brief Inserts the given Function into the cache.
void scan(const Function &);
/// \brief Build summary for a given function
FunctionInfo buildInfoFrom(const Function &);
const TargetLibraryInfo &TLI;
/// \brief Cached mapping of Functions to their StratifiedSets.
/// If a function's sets are currently being built, it is marked
/// in the cache as an Optional without a value. This way, if we
/// have any kind of recursion, it is discernable from a function
/// that simply has empty sets.
DenseMap<const Function *, Optional<FunctionInfo>> Cache;
std::forward_list<FunctionHandle> Handles;
};
/// Analysis pass providing a never-invalidated alias analysis result.

View File

@ -114,11 +114,11 @@ struct InterfaceValue {
unsigned DerefLevel;
};
inline bool operator==(InterfaceValue lhs, InterfaceValue rhs) {
return lhs.Index == rhs.Index && lhs.DerefLevel == rhs.DerefLevel;
inline bool operator==(InterfaceValue LHS, InterfaceValue RHS) {
return LHS.Index == RHS.Index && LHS.DerefLevel == RHS.DerefLevel;
}
inline bool operator!=(InterfaceValue lhs, InterfaceValue rhs) {
return !(lhs == rhs);
inline bool operator!=(InterfaceValue LHS, InterfaceValue RHS) {
return !(LHS == RHS);
}
/// We use ExternalRelation to describe an externally visible aliasing relations
@ -150,6 +150,26 @@ struct InstantiatedValue {
};
Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue, CallSite);
inline bool operator==(InstantiatedValue LHS, InstantiatedValue RHS) {
return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
}
inline bool operator!=(InstantiatedValue LHS, InstantiatedValue RHS) {
return !(LHS == RHS);
}
inline bool operator<(InstantiatedValue LHS, InstantiatedValue RHS) {
return std::less<Value *>()(LHS.Val, RHS.Val) ||
(LHS.Val == RHS.Val && LHS.DerefLevel < RHS.DerefLevel);
}
inline bool operator>(InstantiatedValue LHS, InstantiatedValue RHS) {
return RHS < LHS;
}
inline bool operator<=(InstantiatedValue LHS, InstantiatedValue RHS) {
return !(RHS < LHS);
}
inline bool operator>=(InstantiatedValue LHS, InstantiatedValue RHS) {
return !(LHS < RHS);
}
/// This is the result of instantiating ExternalRelation at a particular
/// callsite
struct InstantiatedRelation {

View File

@ -16,6 +16,24 @@
// precise analysis result. The precision of this analysis is roughly the same
// as that of an one level context-sensitive Andersen's algorithm.
//
// The algorithm used here is based on recursive state machine matching scheme
// proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
// Rugina. The general idea is to extend the tranditional transitive closure
// algorithm to perform CFL matching along the way: instead of recording
// "whether X is reachable from Y", we keep track of "whether X is reachable
// from Y at state Z", where the "state" field indicates where we are in the CFL
// matching process. To understand the matching better, it is advisable to have
// the state machine shown in Figure 3 of the paper available when reading the
// codes: all we do here is to selectively expand the transitive closure by
// discarding edges that are not recognized by the state machine.
//
// There is one difference between our current implementation and the one
// described in the paper: out algorithm eagerly computes all alias pairs after
// the CFLGraph is built, while in the paper the authors did the computation in
// a demand-driven fashion. We did not implement the demand-driven algorithm due
// to the additional coding complexity and higher memory profile, but if we
// found it necessary we may switch to it eventually.
//
//===----------------------------------------------------------------------===//
// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
@ -26,6 +44,7 @@
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "CFLGraph.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Pass.h"
using namespace llvm;
@ -33,12 +52,395 @@ using namespace llvm::cflaa;
#define DEBUG_TYPE "cfl-anders-aa"
CFLAndersAAResult::CFLAndersAAResult() = default;
CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {}
CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
: AAResultBase(std::move(RHS)), TLI(RHS.TLI) {}
CFLAndersAAResult::~CFLAndersAAResult() {}
static const Function *parentFunctionOfValue(const Value *Val) {
if (auto *Inst = dyn_cast<Instruction>(Val)) {
auto *Bb = Inst->getParent();
return Bb->getParent();
}
if (auto *Arg = dyn_cast<Argument>(Val))
return Arg->getParent();
return nullptr;
}
namespace {
enum class MatchState : uint8_t {
FlowFrom = 0, // S1 in the paper
FlowFromMemAlias, // S2 in the paper
FlowTo, // S3 in the paper
FlowToMemAlias // S4 in the paper
};
// We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
// the paper) during the analysis.
class ReachabilitySet {
typedef std::bitset<4> StateSet;
typedef DenseMap<InstantiatedValue, StateSet> ValueStateMap;
typedef DenseMap<InstantiatedValue, ValueStateMap> ValueReachMap;
ValueReachMap ReachMap;
public:
typedef ValueStateMap::const_iterator const_valuestate_iterator;
typedef ValueReachMap::const_iterator const_value_iterator;
// Insert edge 'From->To' at state 'State'
bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
auto &States = ReachMap[To][From];
auto Idx = static_cast<size_t>(State);
if (!States.test(Idx)) {
States.set(Idx);
return true;
}
return false;
}
// Return the set of all ('From', 'State') pair for a given node 'To'
iterator_range<const_valuestate_iterator>
reachableValueAliases(InstantiatedValue V) const {
auto Itr = ReachMap.find(V);
if (Itr == ReachMap.end())
return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
const_valuestate_iterator());
return make_range<const_valuestate_iterator>(Itr->second.begin(),
Itr->second.end());
}
iterator_range<const_value_iterator> value_mappings() const {
return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
}
};
// We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
// in the paper) during the analysis.
class AliasMemSet {
typedef DenseSet<InstantiatedValue> MemSet;
typedef DenseMap<InstantiatedValue, MemSet> MemMapType;
MemMapType MemMap;
public:
typedef MemSet::const_iterator const_mem_iterator;
bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
// Top-level values can never be memory aliases because one cannot take the
// addresses of them
assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
return MemMap[LHS].insert(RHS).second;
}
const MemSet *getMemoryAliases(InstantiatedValue V) const {
auto Itr = MemMap.find(V);
if (Itr == MemMap.end())
return nullptr;
return &Itr->second;
}
};
struct WorkListItem {
InstantiatedValue From;
InstantiatedValue To;
MatchState State;
};
}
class CFLAndersAAResult::FunctionInfo {
/// Map a value to other values that may alias it
/// Since the alias relation is symmetric, to save some space we assume values
/// are properly ordered: if a and b alias each other, and a < b, then b is in
/// AliasMap[a] but not vice versa.
DenseMap<const Value *, std::vector<const Value *>> AliasMap;
/// Summary of externally visible effects.
AliasSummary Summary;
public:
FunctionInfo(const ReachabilitySet &);
bool mayAlias(const Value *LHS, const Value *RHS) const;
const AliasSummary &getAliasSummary() const { return Summary; }
};
CFLAndersAAResult::FunctionInfo::FunctionInfo(const ReachabilitySet &ReachSet) {
for (const auto &OuterMapping : ReachSet.value_mappings()) {
// AliasMap only cares about top-level values
if (OuterMapping.first.DerefLevel > 0)
continue;
auto Val = OuterMapping.first.Val;
auto &AliasList = AliasMap[Val];
for (const auto &InnerMapping : OuterMapping.second) {
// Again, AliasMap only cares about top-level values
if (InnerMapping.first.DerefLevel == 0)
AliasList.push_back(InnerMapping.first.Val);
}
// Sort AliasList for faster lookup
std::sort(AliasList.begin(), AliasList.end(), std::less<const Value *>());
}
// TODO: Populate function summary here
}
bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS,
const Value *RHS) const {
assert(LHS && RHS);
auto Itr = AliasMap.find(LHS);
if (Itr == AliasMap.end())
return false;
// TODO: Check AliasAttrs before drawing any conclusions
return std::binary_search(Itr->second.begin(), Itr->second.end(), RHS,
std::less<const Value *>());
}
static void propagate(InstantiatedValue From, InstantiatedValue To,
MatchState State, ReachabilitySet &ReachSet,
std::vector<WorkListItem> &WorkList) {
if (From == To)
return;
if (ReachSet.insert(From, To, State))
WorkList.push_back(WorkListItem{From, To, State});
}
static void initializeWorkList(std::vector<WorkListItem> &WorkList,
ReachabilitySet &ReachSet,
const CFLGraph &Graph) {
for (const auto &Mapping : Graph.value_mappings()) {
auto Val = Mapping.first;
auto &ValueInfo = Mapping.second;
assert(ValueInfo.getNumLevels() > 0);
// Insert all immediate assignment neighbors to the worklist
for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
auto Src = InstantiatedValue{Val, I};
// If there's an assignment edge from X to Y, it means Y is reachable from
// X at S2 and X is reachable from Y at S1
for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
propagate(Edge.Other, Src, MatchState::FlowFrom, ReachSet, WorkList);
propagate(Src, Edge.Other, MatchState::FlowTo, ReachSet, WorkList);
}
}
}
}
static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
InstantiatedValue V) {
auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
if (Graph.getNode(NodeBelow))
return NodeBelow;
return None;
}
static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
ReachabilitySet &ReachSet, AliasMemSet &MemSet,
std::vector<WorkListItem> &WorkList) {
auto FromNode = Item.From;
auto ToNode = Item.To;
auto NodeInfo = Graph.getNode(ToNode);
assert(NodeInfo != nullptr);
// TODO: propagate AliasAttr as well
// TODO: propagate field offsets
// FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
// relations that are symmetric, we could actually cut the storage by half by
// sorting FromNode and ToNode before insertion happens.
// The newly added value alias pair may pontentially generate more memory
// alias pairs. Check for them here.
auto FromNodeBelow = getNodeBelow(Graph, FromNode);
auto ToNodeBelow = getNodeBelow(Graph, ToNode);
if (FromNodeBelow && ToNodeBelow &&
MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
propagate(*FromNodeBelow, *ToNodeBelow, MatchState::FlowFromMemAlias,
ReachSet, WorkList);
for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
auto Src = Mapping.first;
if (Mapping.second.test(static_cast<size_t>(MatchState::FlowFrom)))
propagate(Src, *ToNodeBelow, MatchState::FlowFromMemAlias, ReachSet,
WorkList);
if (Mapping.second.test(static_cast<size_t>(MatchState::FlowTo)))
propagate(Src, *ToNodeBelow, MatchState::FlowToMemAlias, ReachSet,
WorkList);
}
}
// This is the core of the state machine walking algorithm. We expand ReachSet
// based on which state we are at (which in turn dictates what edges we
// should examine)
// From a high-level point of view, the state machine here guarantees two
// properties:
// - If *X and *Y are memory aliases, then X and Y are value aliases
// - If Y is an alias of X, then reverse assignment edges (if there is any)
// should precede any assignment edges on the path from X to Y.
switch (Item.State) {
case MatchState::FlowFrom: {
for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet,
WorkList);
for (const auto &AssignEdge : NodeInfo->Edges)
propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
WorkList);
if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
for (const auto &MemAlias : *AliasSet)
propagate(FromNode, MemAlias, MatchState::FlowFromMemAlias, ReachSet,
WorkList);
}
break;
}
case MatchState::FlowFromMemAlias: {
for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet,
WorkList);
for (const auto &AssignEdge : NodeInfo->Edges)
propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
WorkList);
break;
}
case MatchState::FlowTo: {
for (const auto &AssignEdge : NodeInfo->Edges)
propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
WorkList);
if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
for (const auto &MemAlias : *AliasSet)
propagate(FromNode, MemAlias, MatchState::FlowToMemAlias, ReachSet,
WorkList);
}
break;
}
case MatchState::FlowToMemAlias: {
for (const auto &AssignEdge : NodeInfo->Edges)
propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet,
WorkList);
break;
}
}
}
CFLAndersAAResult::FunctionInfo
CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
*this, TLI,
// Cast away the constness here due to GraphBuilder's API requirement
const_cast<Function &>(Fn));
auto &Graph = GraphBuilder.getCFLGraph();
ReachabilitySet ReachSet;
AliasMemSet MemSet;
std::vector<WorkListItem> WorkList, NextList;
initializeWorkList(WorkList, ReachSet, Graph);
// TODO: make sure we don't stop before the fix point is reached
while (!WorkList.empty()) {
for (const auto &Item : WorkList)
processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
NextList.swap(WorkList);
NextList.clear();
}
return FunctionInfo(ReachSet);
}
void CFLAndersAAResult::scan(const Function &Fn) {
auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
(void)InsertPair;
assert(InsertPair.second &&
"Trying to scan a function that has already been cached");
// Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
// may get evaluated after operator[], potentially triggering a DenseMap
// resize and invalidating the reference returned by operator[]
auto FunInfo = buildInfoFrom(Fn);
Cache[&Fn] = std::move(FunInfo);
Handles.push_front(FunctionHandle(const_cast<Function *>(&Fn), this));
}
void CFLAndersAAResult::evict(const Function &Fn) { Cache.erase(&Fn); }
const Optional<CFLAndersAAResult::FunctionInfo> &
CFLAndersAAResult::ensureCached(const Function &Fn) {
auto Iter = Cache.find(&Fn);
if (Iter == Cache.end()) {
scan(Fn);
Iter = Cache.find(&Fn);
assert(Iter != Cache.end());
assert(Iter->second.hasValue());
}
return Iter->second;
}
const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
auto &FunInfo = ensureCached(Fn);
if (FunInfo.hasValue())
return &FunInfo->getAliasSummary();
else
return nullptr;
}
AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
auto *ValA = LocA.Ptr;
auto *ValB = LocB.Ptr;
if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
return NoAlias;
auto *Fn = parentFunctionOfValue(ValA);
if (!Fn) {
Fn = parentFunctionOfValue(ValB);
if (!Fn) {
// The only times this is known to happen are when globals + InlineAsm are
// involved
DEBUG(dbgs()
<< "CFLAndersAA: could not extract parent function information.\n");
return MayAlias;
}
} else {
assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
}
assert(Fn != nullptr);
auto &FunInfo = ensureCached(*Fn);
// AliasMap lookup
if (FunInfo->mayAlias(ValA, ValB))
return MayAlias;
return NoAlias;
}
AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
if (LocA.Ptr == LocB.Ptr)
return LocA.Size == LocB.Size ? MustAlias : PartialAlias;
// Comparisons between global variables and other constants should be
// handled by BasicAA.
// CFLAndersAA may report NoAlias when comparing a GlobalValue and
// ConstantExpr, but every query needs to have at least one Value tied to a
// Function, and neither GlobalValues nor ConstantExprs are.
if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
return AAResultBase::alias(LocA, LocB);
AliasResult QueryResult = query(LocA, LocB);
if (QueryResult == MayAlias)
return AAResultBase::alias(LocA, LocB);
return QueryResult;
}
char CFLAndersAA::PassID;
CFLAndersAAResult CFLAndersAA::run(Function &F, AnalysisManager<Function> &AM) {
return CFLAndersAAResult();
return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F));
}
char CFLAndersAAWrapperPass::ID = 0;
@ -53,8 +455,12 @@ CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
void CFLAndersAAWrapperPass::initializePass() {}
void CFLAndersAAWrapperPass::initializePass() {
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
Result.reset(new CFLAndersAAResult(TLIWP.getTLI()));
}
void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}

View File

@ -45,7 +45,7 @@ public:
typedef std::vector<Edge> EdgeList;
struct NodeInfo {
EdgeList Edges;
EdgeList Edges, ReverseEdges;
AliasAttrs Attr;
};
@ -77,12 +77,6 @@ private:
typedef DenseMap<Value *, ValueInfo> ValueMap;
ValueMap ValueImpls;
const NodeInfo *getNode(Node N) const {
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
return nullptr;
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
}
NodeInfo *getNode(Node N) {
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
@ -108,11 +102,20 @@ public:
}
void addEdge(Node From, Node To, int64_t Offset = 0) {
assert(getNode(To) != nullptr);
auto *FromInfo = getNode(From);
assert(FromInfo != nullptr);
auto *ToInfo = getNode(To);
assert(ToInfo != nullptr);
FromInfo->Edges.push_back(Edge{To});
ToInfo->ReverseEdges.push_back(Edge{From});
}
const NodeInfo *getNode(Node N) const {
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
return nullptr;
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
}
AliasAttrs attrFor(Node N) const {
@ -203,16 +206,24 @@ template <typename CFLAA> class CFLGraphBuilder {
}
}
void addDerefEdge(Value *From, Value *To) {
void addDerefEdge(Value *From, Value *To, bool IsRead) {
assert(From != nullptr && To != nullptr);
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
return;
addNode(From);
addNode(To);
Graph.addNode(InstantiatedValue{From, 1});
Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
if (IsRead) {
Graph.addNode(InstantiatedValue{From, 1});
Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
} else {
Graph.addNode(InstantiatedValue{To, 1});
Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
}
}
void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
public:
GetEdgesVisitor(CFLGraphBuilder &Builder)
: AA(Builder.Analysis), TLI(Builder.TLI), Graph(Builder.Graph),
@ -256,13 +267,13 @@ template <typename CFLAA> class CFLGraphBuilder {
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getNewValOperand();
addDerefEdge(Ptr, Val);
addStoreEdge(Val, Ptr);
}
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValOperand();
addDerefEdge(Ptr, Val);
addStoreEdge(Val, Ptr);
}
void visitPHINode(PHINode &Inst) {
@ -292,13 +303,13 @@ template <typename CFLAA> class CFLGraphBuilder {
void visitLoadInst(LoadInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = &Inst;
addDerefEdge(Ptr, Val);
addLoadEdge(Ptr, Val);
}
void visitStoreInst(StoreInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValueOperand();
addDerefEdge(Ptr, Val);
addStoreEdge(Val, Ptr);
}
void visitVAArgInst(VAArgInst &Inst) {
@ -419,14 +430,14 @@ template <typename CFLAA> class CFLGraphBuilder {
void visitExtractElementInst(ExtractElementInst &Inst) {
auto *Ptr = Inst.getVectorOperand();
auto *Val = &Inst;
addDerefEdge(Ptr, Val);
addLoadEdge(Ptr, Val);
}
void visitInsertElementInst(InsertElementInst &Inst) {
auto *Vec = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addAssignEdge(Vec, &Inst);
addDerefEdge(&Inst, Val);
addStoreEdge(Val, &Inst);
}
void visitLandingPadInst(LandingPadInst &Inst) {
@ -440,12 +451,12 @@ template <typename CFLAA> class CFLGraphBuilder {
auto *Agg = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addAssignEdge(Agg, &Inst);
addDerefEdge(&Inst, Val);
addStoreEdge(Val, &Inst);
}
void visitExtractValueInst(ExtractValueInst &Inst) {
auto *Ptr = Inst.getAggregateOperand();
addDerefEdge(Ptr, &Inst);
addLoadEdge(Ptr, &Inst);
}
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {

View File

@ -0,0 +1,24 @@
; This testcase ensures that CFL AA handles assignment in an inclusion-based
; manner
; RUN: opt < %s -disable-basicaa -cfl-anders-aa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; RUN: opt < %s -aa-pipeline=cfl-anders-aa -passes=aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; CHECK-LABEL: Function: test_assign
; CHECK: NoAlias: i64* %a, i64* %b
; CHECK: NoAlias: i32* %c, i64* %b
; CHECK: NoAlias: i32* %d, i64* %a
; CHECK: NoAlias: i32* %c, i32* %d
; CHECK: MayAlias: i32* %e, i64* %a
; CHECK: MayAlias: i32* %e, i64* %b
; CHECK: MayAlias: i32* %c, i32* %e
; CHECK: MayAlias: i32* %d, i32* %e
define void @test_assign(i1 %cond) {
%a = alloca i64, align 8
%b = alloca i64, align 8
%c = bitcast i64* %a to i32*
%d = bitcast i64* %b to i32*
%e = select i1 %cond, i32* %c, i32* %d
ret void
}

View File

@ -0,0 +1,23 @@
; This testcase ensures that CFL AA handles assignment in an inclusion-based
; manner
; RUN: opt < %s -disable-basicaa -cfl-anders-aa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; RUN: opt < %s -aa-pipeline=cfl-anders-aa -passes=aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; CHECK-LABEL: Function: test_assign2
; CHECK: NoAlias: i32* %b, i64* %a
; CHECK: NoAlias: i32* %b, i32* %c
; CHECK: NoAlias: i32* %b, i32* %d
; CHECK: MayAlias: i32* %e, i64* %a
; CHECK: MayAlias: i32* %b, i32* %e
; CHECK: MayAlias: i32* %c, i32* %e
; CHECK: MayAlias: i32* %d, i32* %e
define void @test_assign2(i1 %cond) {
%a = alloca i64, align 8
%b = alloca i32, align 4
%c = bitcast i64* %a to i32*
%d = bitcast i64* %a to i32*
%e = select i1 %cond, i32* %c, i32* %b
ret void
}

View File

@ -0,0 +1,34 @@
; This testcase ensures that CFL AA handles assignment cycles correctly
; RUN: opt < %s -disable-basicaa -cfl-anders-aa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; RUN: opt < %s -aa-pipeline=cfl-anders-aa -passes=aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; CHECK-LABEL: Function: test_cycle
; CHECK: NoAlias: i64* %a, i64** %b
; CHECK: NoAlias: i64* %a, i64*** %c
; CHECK: NoAlias: i64** %b, i64*** %c
; CHECK: NoAlias: i64* %a, i64**** %d
; CHECK: NoAlias: i64** %b, i64**** %d
; CHECK: NoAlias: i64*** %c, i64**** %d
; CHECK: NoAlias: i64* %a, i64* %e
; CHECK: NoAlias: i64* %e, i64** %b
; CHECK: NoAlias: i64* %e, i64*** %c
; CHECK: MayAlias: i64* %a, i64* %f
; CHECK: NoAlias: i64* %f, i64** %b
; CHECK: NoAlias: i64* %f, i64*** %c
; CHECK: MayAlias: i64* %f, i64**** %d
; CHECK: MayAlias: i64* %e, i64* %f
define void @test_cycle() {
%a = alloca i64, align 8
%b = alloca i64*, align 8
%c = alloca i64**, align 8
%d = alloca i64***, align 8
store i64* %a, i64** %b
store i64** %b, i64*** %c
store i64*** %c, i64**** %d
%e = bitcast i64**** %d to i64*
store i64* %e, i64** %b
%f = load i64*, i64** %b
ret void
}

View File

@ -0,0 +1,21 @@
; This testcase ensures that CFL AA correctly handles simple memory alias
; pattern
; RUN: opt < %s -disable-basicaa -cfl-anders-aa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; RUN: opt < %s -aa-pipeline=cfl-anders-aa -passes=aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s
; CHECK-LABEL: Function: test_memalias
; CHECK: NoAlias: i64* %a, i64** %b
; CHECK: NoAlias: i32** %c, i64* %a
; CHECK: MayAlias: i32* %d, i64* %a
; CHECK: NoAlias: i32* %d, i64** %b
; CHECK: NoAlias: i32* %d, i32** %c
define void @test_memalias() {
%a = alloca i64, align 8
%b = alloca i64*, align 8
store i64* %a, i64** %b
%c = bitcast i64** %b to i32**
%d = load i32*, i32** %c
ret void
}