[AArch64] Refactor the NEON scalar floating-point reciprocal step and

floating-point reciprocal square root step LLVM AArch64 intrinsics to
use f32/f64 types, rather than their vector equivalents.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197067 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chad Rosier 2013-12-11 21:03:43 +00:00
parent c3e5d72ba8
commit 73f468218f
3 changed files with 33 additions and 35 deletions

View File

@ -272,6 +272,16 @@ def int_aarch64_neon_vrecpx :
def int_aarch64_neon_vrsqrte :
Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>], [IntrNoMem]>;
// Scalar Floating-point Reciprocal Step
def int_aarch64_neon_vrecps :
Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
// Scalar Floating-point Reciprocal Square Root Step
def int_aarch64_neon_vrsqrts :
Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem]>;
class Neon_Cmp_Intrinsic
: Intrinsic<[llvm_anyvector_ty], [llvm_anyvector_ty, llvm_anyvector_ty],
[IntrNoMem]>;

View File

@ -4187,11 +4187,14 @@ multiclass Neon_Scalar3Same_fabd_SD_size_patterns<SDPatternOperator opnode,
}
multiclass Neon_Scalar3Same_SD_size_patterns<SDPatternOperator opnode,
SDPatternOperator opnodeV,
Instruction INSTS,
Instruction INSTD> {
def : Pat<(v1f32 (opnode (v1f32 FPR32:$Rn), (v1f32 FPR32:$Rm))),
def : Pat<(f32 (opnode (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
(INSTS FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v1f64 (opnode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
def : Pat<(f64 (opnode (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (opnodeV (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(INSTD FPR64:$Rn, FPR64:$Rm)>;
}
@ -4874,18 +4877,15 @@ defm FMULX : NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11011, "fmulx", 1>;
// Scalar Floating-point Reciprocal Step
defm FRECPS : NeonI_Scalar3Same_SD_sizes<0b0, 0b0, 0b11111, "frecps", 0>;
defm : Neon_Scalar3Same_SD_size_patterns<int_aarch64_neon_vrecps,
int_arm_neon_vrecps, FRECPSsss,
FRECPSddd>;
// Scalar Floating-point Reciprocal Square Root Step
defm FRSQRTS : NeonI_Scalar3Same_SD_sizes<0b0, 0b1, 0b11111, "frsqrts", 0>;
// Patterns to match llvm.arm.* intrinsic for
// Scalar Floating-point Reciprocal Step and
// Scalar Floating-point Reciprocal Square Root Step
defm : Neon_Scalar3Same_SD_size_patterns<int_arm_neon_vrecps, FRECPSsss,
FRECPSddd>;
defm : Neon_Scalar3Same_SD_size_patterns<int_arm_neon_vrsqrts, FRSQRTSsss,
FRSQRTSddd>;
defm : Neon_Scalar3Same_SD_size_patterns<int_aarch64_neon_vrsqrts,
int_arm_neon_vrsqrts, FRSQRTSsss,
FRSQRTSddd>;
def : Pat<(v1f64 (fsqrt (v1f64 FPR64:$Rn))), (FSQRTdd FPR64:$Rn)>;
// Patterns to match llvm.aarch64.* intrinsic for

View File

@ -3,48 +3,36 @@
define float @test_vrecpss_f32(float %a, float %b) {
; CHECK: test_vrecpss_f32
; CHECK: frecps {{s[0-9]+}}, {{s[0-9]+}}, {{s[0-9]+}}
%1 = insertelement <1 x float> undef, float %a, i32 0
%2 = insertelement <1 x float> undef, float %b, i32 0
%3 = call <1 x float> @llvm.arm.neon.vrecps.v1f32(<1 x float> %1, <1 x float> %2)
%4 = extractelement <1 x float> %3, i32 0
ret float %4
%1 = call float @llvm.aarch64.neon.vrecps.f32(float %a, float %b)
ret float %1
}
define double @test_vrecpsd_f64(double %a, double %b) {
; CHECK: test_vrecpsd_f64
; CHECK: frecps {{d[0-9]+}}, {{d[0-9]+}}, {{d[0-9]+}}
%1 = insertelement <1 x double> undef, double %a, i32 0
%2 = insertelement <1 x double> undef, double %b, i32 0
%3 = call <1 x double> @llvm.arm.neon.vrecps.v1f64(<1 x double> %1, <1 x double> %2)
%4 = extractelement <1 x double> %3, i32 0
ret double %4
%1 = call double @llvm.aarch64.neon.vrecps.f64(double %a, double %b)
ret double %1
}
declare <1 x float> @llvm.arm.neon.vrecps.v1f32(<1 x float>, <1 x float>)
declare <1 x double> @llvm.arm.neon.vrecps.v1f64(<1 x double>, <1 x double>)
declare float @llvm.aarch64.neon.vrecps.f32(float, float)
declare double @llvm.aarch64.neon.vrecps.f64(double, double)
define float @test_vrsqrtss_f32(float %a, float %b) {
; CHECK: test_vrsqrtss_f32
; CHECK: frsqrts {{s[0-9]+}}, {{s[0-9]+}}, {{s[0-9]+}}
%1 = insertelement <1 x float> undef, float %a, i32 0
%2 = insertelement <1 x float> undef, float %b, i32 0
%3 = call <1 x float> @llvm.arm.neon.vrsqrts.v1f32(<1 x float> %1, <1 x float> %2)
%4 = extractelement <1 x float> %3, i32 0
ret float %4
%1 = call float @llvm.aarch64.neon.vrsqrts.f32(float %a, float %b)
ret float %1
}
define double @test_vrsqrtsd_f64(double %a, double %b) {
; CHECK: test_vrsqrtsd_f64
; CHECK: frsqrts {{d[0-9]+}}, {{d[0-9]+}}, {{d[0-9]+}}
%1 = insertelement <1 x double> undef, double %a, i32 0
%2 = insertelement <1 x double> undef, double %b, i32 0
%3 = call <1 x double> @llvm.arm.neon.vrsqrts.v1f64(<1 x double> %1, <1 x double> %2)
%4 = extractelement <1 x double> %3, i32 0
ret double %4
%1 = call double @llvm.aarch64.neon.vrsqrts.f64(double %a, double %b)
ret double %1
}
declare <1 x float> @llvm.arm.neon.vrsqrts.v1f32(<1 x float>, <1 x float>)
declare <1 x double> @llvm.arm.neon.vrsqrts.v1f64(<1 x double>, <1 x double>)
declare float @llvm.aarch64.neon.vrsqrts.f32(float, float)
declare double @llvm.aarch64.neon.vrsqrts.f64(double, double)
define float @test_vrecpes_f32(float %a) {
; CHECK: test_vrecpes_f32