Recommit r255691 since PR26509 has been fixed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270113 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Wei Mi 2016-05-19 20:38:03 +00:00
parent 803d656038
commit 7aaac1e6e2
3 changed files with 178 additions and 32 deletions

View File

@ -1518,15 +1518,14 @@ private:
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
LoopInfo *LI, LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI, DemandedBits *DB,
AssumptionCache *AC, const Function *F,
const LoopVectorizeHints *Hints,
SmallPtrSetImpl<const Value *> &ValuesToIgnore)
: TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {}
const LoopVectorizeHints *Hints)
: TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
AC(AC), TheFunction(F), Hints(Hints) {}
/// Information about vectorization costs
struct VectorizationFactor {
@ -1573,6 +1572,9 @@ public:
/// given vectorization factors.
SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
/// Collect values we want to ignore in the cost model.
void collectValuesToIgnore();
private:
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
@ -1617,8 +1619,8 @@ public:
/// The loop that we evaluate.
Loop *TheLoop;
/// Scev analysis.
ScalarEvolution *SE;
/// Predicated scalar evolution analysis.
PredicatedScalarEvolution &PSE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
@ -1627,13 +1629,17 @@ public:
const TargetTransformInfo &TTI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Demanded bits analysis
/// Demanded bits analysis.
DemandedBits *DB;
/// Assumption cache.
AssumptionCache *AC;
const Function *TheFunction;
// Loop Vectorize Hint.
/// Loop Vectorize Hint.
const LoopVectorizeHints *Hints;
// Values to ignore in the cost model.
const SmallPtrSetImpl<const Value *> &ValuesToIgnore;
/// Values to ignore in the cost model.
SmallPtrSet<const Value *, 16> ValuesToIgnore;
/// Values to ignore in the cost model when VF > 1.
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
};
/// \brief This holds vectorization requirements that must be verified late in
@ -1881,19 +1887,10 @@ struct LoopVectorize : public FunctionPass {
return false;
}
// Collect values we want to ignore in the cost model. This includes
// type-promoting instructions we identified during reduction detection.
SmallPtrSet<const Value *, 32> ValuesToIgnore;
CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore);
for (auto &Reduction : *LVL.getReductionVars()) {
RecurrenceDescriptor &RedDes = Reduction.second;
SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
ValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Use the cost model.
LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC,
F, &Hints, ValuesToIgnore);
LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F,
&Hints);
CM.collectValuesToIgnore();
// Check the function attributes to find out if this function should be
// optimized for size.
@ -5190,7 +5187,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
}
// Find the trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop);
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
@ -5409,7 +5406,7 @@ unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
return 1;
// Do not interleave loops with a relatively small trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop);
unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
return 1;
@ -5639,15 +5636,15 @@ LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
if (!Ends.count(I))
continue;
// Skip ignored values.
if (ValuesToIgnore.count(I))
continue;
// Remove all of the instructions that end at this location.
InstrList &List = TransposeEnds[i];
for (unsigned int j = 0, e = List.size(); j < e; ++j)
OpenIntervals.erase(List[j]);
// Skip ignored values.
if (ValuesToIgnore.count(I))
continue;
// For each VF find the maximum usage of registers.
for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
if (VFs[j] == 1) {
@ -5657,8 +5654,12 @@ LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
// Count the number of live intervals.
unsigned RegUsage = 0;
for (auto Inst : OpenIntervals)
for (auto Inst : OpenIntervals) {
// Skip ignored values for VF > 1.
if (VecValuesToIgnore.count(Inst))
continue;
RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
}
MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
}
@ -5830,6 +5831,7 @@ unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
if (VF > 1 && MinBWs.count(I))
RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
VectorTy = ToVectorTy(RetTy, VF);
auto SE = PSE.getSE();
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
@ -6158,6 +6160,79 @@ bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
return false;
}
void LoopVectorizationCostModel::collectValuesToIgnore() {
// Ignore ephemeral values.
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
// Ignore type-promoting instructions we identified during reduction
// detection.
for (auto &Reduction : *Legal->getReductionVars()) {
RecurrenceDescriptor &RedDes = Reduction.second;
SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
VecValuesToIgnore.insert(Casts.begin(), Casts.end());
}
// Ignore induction phis that are only used in either GetElementPtr or ICmp
// instruction to exit loop. Induction variables usually have large types and
// can have big impact when estimating register usage.
// This is for when VF > 1.
for (auto &Induction : *Legal->getInductionVars()) {
auto *PN = Induction.first;
auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
// Check that the PHI is only used by the induction increment (UpdateV) or
// by GEPs. Then check that UpdateV is only used by a compare instruction or
// the loop header PHI.
// FIXME: Need precise def-use analysis to determine if this instruction
// variable will be vectorized.
if (std::all_of(PN->user_begin(), PN->user_end(),
[&](const User *U) -> bool {
return U == UpdateV || isa<GetElementPtrInst>(U);
}) &&
std::all_of(UpdateV->user_begin(), UpdateV->user_end(),
[&](const User *U) -> bool {
return U == PN || isa<ICmpInst>(U);
})) {
VecValuesToIgnore.insert(PN);
VecValuesToIgnore.insert(UpdateV);
}
}
// Ignore instructions that will not be vectorized.
// This is for when VF > 1.
for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be;
++bb) {
for (auto &Inst : **bb) {
switch (Inst.getOpcode())
case Instruction::GetElementPtr: {
// Ignore GEP if its last operand is an induction variable so that it is
// a consecutive load/store and won't be vectorized as scatter/gather
// pattern.
GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst);
unsigned NumOperands = Gep->getNumOperands();
unsigned InductionOperand = getGEPInductionOperand(Gep);
bool GepToIgnore = true;
// Check that all of the gep indices are uniform except for the
// induction operand.
for (unsigned i = 0; i != NumOperands; ++i) {
if (i != InductionOperand &&
!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
TheLoop)) {
GepToIgnore = false;
break;
}
}
if (GepToIgnore)
VecValuesToIgnore.insert(&Inst);
break;
}
}
}
}
void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
bool IfPredicateStore) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");

View File

@ -0,0 +1,71 @@
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -S 2>&1 | FileCheck %s
; REQUIRES: asserts
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
@a = global [1024 x i8] zeroinitializer, align 16
@b = global [1024 x i8] zeroinitializer, align 16
define i32 @foo() {
; This function has a loop of SAD pattern. Here we check when VF = 16 the
; register usage doesn't exceed 16.
;
; CHECK-LABEL: foo
; CHECK: LV(REG): VF = 4
; CHECK-NEXT: LV(REG): Found max usage: 4
; CHECK: LV(REG): VF = 8
; CHECK-NEXT: LV(REG): Found max usage: 7
; CHECK: LV(REG): VF = 16
; CHECK-NEXT: LV(REG): Found max usage: 13
entry:
br label %for.body
for.cond.cleanup:
%add.lcssa = phi i32 [ %add, %for.body ]
ret i32 %add.lcssa
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %indvars.iv
%0 = load i8, i8* %arrayidx, align 1
%conv = zext i8 %0 to i32
%arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %indvars.iv
%1 = load i8, i8* %arrayidx2, align 1
%conv3 = zext i8 %1 to i32
%sub = sub nsw i32 %conv, %conv3
%ispos = icmp sgt i32 %sub, -1
%neg = sub nsw i32 0, %sub
%2 = select i1 %ispos, i32 %sub, i32 %neg
%add = add nsw i32 %2, %s.015
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
define i64 @bar(i64* nocapture %a) {
; CHECK-LABEL: bar
; CHECK: LV(REG): VF = 2
; CHECK: LV(REG): Found max usage: 4
;
entry:
br label %for.body
for.cond.cleanup:
%add2.lcssa = phi i64 [ %add2, %for.body ]
ret i64 %add2.lcssa
for.body:
%i.012 = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%s.011 = phi i64 [ 0, %entry ], [ %add2, %for.body ]
%arrayidx = getelementptr inbounds i64, i64* %a, i64 %i.012
%0 = load i64, i64* %arrayidx, align 8
%add = add nsw i64 %0, %i.012
store i64 %add, i64* %arrayidx, align 8
%add2 = add nsw i64 %add, %s.011
%inc = add nuw nsw i64 %i.012, 1
%exitcond = icmp eq i64 %inc, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}

View File

@ -16,7 +16,7 @@ target triple = "x86_64-unknown-linux-gnu"
; -vectorizer-maximize-bandwidth is indicated.
;
; CHECK-label: foo
; CHECK: LV: Selecting VF: 16.
; CHECK: LV: Selecting VF: 32.
define void @foo() {
entry:
br label %for.body