Re-instate recent RPC updates (r280016, r280017, r280027, r280051) with a

workaround for the limitations of MSVC 2013's std::future class.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280141 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Lang Hames 2016-08-30 19:56:15 +00:00
parent b16d4d3441
commit 7ebede93b7
2 changed files with 176 additions and 74 deletions

View File

@ -17,7 +17,6 @@
#include <map>
#include <vector>
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
@ -61,6 +60,71 @@ public:
// partially specialized.
class RPCBase {
protected:
// FIXME: Remove MSVCPError/MSVCPExpected once MSVC's future implementation
// supports classes without default constructors.
#ifdef _MSC_VER
// Work around MSVC's future implementation's use of default constructors:
// A default constructed value in the promise will be overwritten when the
// real error is set - so the default constructed Error has to be checked
// already.
class MSVCPError : public Error {
public:
MSVCPError() {
(void)!!*this;
}
MSVCPError(MSVCPError &&Other) : Error(std::move(Other)) {}
MSVCPError& operator=(MSVCPError Other) {
Error::operator=(std::move(Other));
return *this;
}
MSVCPError(Error Err) : Error(std::move(Err)) {}
};
// Likewise for Expected:
template <typename T>
class MSVCPExpected : public Expected<T> {
public:
MSVCPExpected()
: Expected<T>(make_error<StringError>("", inconvertibleErrorCode())) {
consumeError(this->takeError());
}
MSVCPExpected(MSVCPExpected &&Other) : Expected<T>(std::move(Other)) {}
MSVCPExpected& operator=(MSVCPExpected &&Other) {
Expected<T>::operator=(std::move(Other));
return *this;
}
MSVCPExpected(Error Err) : Expected<T>(std::move(Err)) {}
template <typename OtherT>
MSVCPExpected(OtherT &&Val,
typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
* = nullptr) : Expected<T>(std::move(Val)) {}
template <class OtherT>
MSVCPExpected(
Expected<OtherT> &&Other,
typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
nullptr) : Expected<T>(std::move(Other)) {}
template <class OtherT>
explicit MSVCPExpected(
Expected<OtherT> &&Other,
typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
nullptr) : Expected<T>(std::move(Other)) {}
};
#endif // _MSC_VER
// RPC Function description type.
//
// This class provides the information and operations needed to support the
@ -69,12 +133,9 @@ protected:
// betwen the two. Both specializations have the same interface:
//
// Id - The function's unique identifier.
// OptionalReturn - The return type for asyncronous calls.
// ErrorReturn - The return type for synchronous calls.
// optionalToErrorReturn - Conversion from a valid OptionalReturn to an
// ErrorReturn.
// ErrorReturn - The return type for blocking calls.
// readResult - Deserialize a result from a channel.
// abandon - Abandon a promised (asynchronous) result.
// abandon - Abandon a promised result.
// respond - Retun a result on the channel.
template <typename FunctionIdT, FunctionIdT FuncId, typename FnT>
class FunctionHelper {};
@ -91,32 +152,38 @@ protected:
static const FunctionIdT Id = FuncId;
typedef Optional<RetT> OptionalReturn;
typedef Expected<RetT> ErrorReturn;
static ErrorReturn optionalToErrorReturn(OptionalReturn &&V) {
assert(V && "Return value not available");
return std::move(*V);
}
// FIXME: Ditch PErrorReturn (replace it with plain ErrorReturn) once MSVC's
// std::future implementation supports types without default
// constructors.
#ifdef _MSC_VER
typedef MSVCPExpected<RetT> PErrorReturn;
#else
typedef Expected<RetT> PErrorReturn;
#endif
template <typename ChannelT>
static Error readResult(ChannelT &C, std::promise<OptionalReturn> &P) {
static Error readResult(ChannelT &C, std::promise<PErrorReturn> &P) {
RetT Val;
auto Err = deserialize(C, Val);
auto Err2 = endReceiveMessage(C);
Err = joinErrors(std::move(Err), std::move(Err2));
if (Err) {
P.set_value(OptionalReturn());
if (Err)
return Err;
}
P.set_value(std::move(Val));
return Error::success();
}
static void abandon(std::promise<OptionalReturn> &P) {
P.set_value(OptionalReturn());
static void abandon(std::promise<PErrorReturn> &P) {
P.set_value(
make_error<StringError>("RPC function call failed to return",
inconvertibleErrorCode()));
}
static void consumeAbandoned(std::future<PErrorReturn> &P) {
consumeError(P.get().takeError());
}
template <typename ChannelT, typename SequenceNumberT>
@ -148,22 +215,33 @@ protected:
static const FunctionIdT Id = FuncId;
typedef bool OptionalReturn;
typedef Error ErrorReturn;
static ErrorReturn optionalToErrorReturn(OptionalReturn &&V) {
assert(V && "Return value not available");
return Error::success();
}
// FIXME: Ditch PErrorReturn (replace it with plain ErrorReturn) once MSVC's
// std::future implementation supports types without default
// constructors.
#ifdef _MSC_VER
typedef MSVCPError PErrorReturn;
#else
typedef Error PErrorReturn;
#endif
template <typename ChannelT>
static Error readResult(ChannelT &C, std::promise<OptionalReturn> &P) {
static Error readResult(ChannelT &C, std::promise<PErrorReturn> &P) {
// Void functions don't have anything to deserialize, so we're good.
P.set_value(true);
P.set_value(Error::success());
return endReceiveMessage(C);
}
static void abandon(std::promise<OptionalReturn> &P) { P.set_value(false); }
static void abandon(std::promise<PErrorReturn> &P) {
P.set_value(
make_error<StringError>("RPC function call failed to return",
inconvertibleErrorCode()));
}
static void consumeAbandoned(std::future<PErrorReturn> &P) {
consumeError(P.get());
}
template <typename ChannelT, typename SequenceNumberT>
static Error respond(ChannelT &C, SequenceNumberT SeqNo,
@ -378,30 +456,27 @@ public:
template <FunctionIdT FuncId, typename FnT>
using Function = FunctionHelper<FunctionIdT, FuncId, FnT>;
/// Return type for asynchronous call primitives.
/// Return type for non-blocking call primitives.
template <typename Func>
using AsyncCallResult = std::future<typename Func::OptionalReturn>;
using NonBlockingCallResult = std::future<typename Func::PErrorReturn>;
/// Return type for asynchronous call-with-seq primitives.
/// Return type for non-blocking call-with-seq primitives.
template <typename Func>
using AsyncCallWithSeqResult =
std::pair<std::future<typename Func::OptionalReturn>, SequenceNumberT>;
using NonBlockingCallWithSeqResult =
std::pair<NonBlockingCallResult<Func>, SequenceNumberT>;
/// Serialize Args... to channel C, but do not call C.send().
///
/// Returns an error (on serialization failure) or a pair of:
/// (1) A future Optional<T> (or future<bool> for void functions), and
/// (2) A sequence number.
/// Call Func on Channel C. Does not block, does not call send. Returns a pair
/// of a future result and the sequence number assigned to the result.
///
/// This utility function is primarily used for single-threaded mode support,
/// where the sequence number can be used to wait for the corresponding
/// result. In multi-threaded mode the appendCallAsync method, which does not
/// result. In multi-threaded mode the appendCallNB method, which does not
/// return the sequence numeber, should be preferred.
template <typename Func, typename... ArgTs>
Expected<AsyncCallWithSeqResult<Func>>
appendCallAsyncWithSeq(ChannelT &C, const ArgTs &... Args) {
Expected<NonBlockingCallWithSeqResult<Func>>
appendCallNBWithSeq(ChannelT &C, const ArgTs &... Args) {
auto SeqNo = SequenceNumberMgr.getSequenceNumber();
std::promise<typename Func::OptionalReturn> Promise;
std::promise<typename Func::PErrorReturn> Promise;
auto Result = Promise.get_future();
OutstandingResults[SeqNo] =
createOutstandingResult<Func>(std::move(Promise));
@ -409,21 +484,23 @@ public:
if (auto Err = CallHelper<ChannelT, SequenceNumberT, Func>::call(C, SeqNo,
Args...)) {
abandonOutstandingResults();
Func::consumeAbandoned(Result);
return std::move(Err);
} else
return AsyncCallWithSeqResult<Func>(std::move(Result), SeqNo);
return NonBlockingCallWithSeqResult<Func>(std::move(Result), SeqNo);
}
/// The same as appendCallAsyncWithSeq, except that it calls C.send() to
/// The same as appendCallNBWithSeq, except that it calls C.send() to
/// flush the channel after serializing the call.
template <typename Func, typename... ArgTs>
Expected<AsyncCallWithSeqResult<Func>>
callAsyncWithSeq(ChannelT &C, const ArgTs &... Args) {
auto Result = appendCallAsyncWithSeq<Func>(C, Args...);
Expected<NonBlockingCallWithSeqResult<Func>>
callNBWithSeq(ChannelT &C, const ArgTs &... Args) {
auto Result = appendCallNBWithSeq<Func>(C, Args...);
if (!Result)
return Result;
if (auto Err = C.send()) {
abandonOutstandingResults();
Func::consumeAbandoned(Result->first);
return std::move(Err);
}
return Result;
@ -431,41 +508,66 @@ public:
/// Serialize Args... to channel C, but do not call send.
/// Returns an error if serialization fails, otherwise returns a
/// std::future<Optional<T>> (or a future<bool> for void functions).
/// std::future<Expected<T>> (or a future<Error> for void functions).
template <typename Func, typename... ArgTs>
Expected<AsyncCallResult<Func>> appendCallAsync(ChannelT &C,
const ArgTs &... Args) {
auto ResAndSeqOrErr = appendCallAsyncWithSeq<Func>(C, Args...);
if (ResAndSeqOrErr)
return std::move(ResAndSeqOrErr->first);
return ResAndSeqOrErr.getError();
Expected<NonBlockingCallResult<Func>> appendCallNB(ChannelT &C,
const ArgTs &... Args) {
auto FutureResAndSeqOrErr = appendCallNBWithSeq<Func>(C, Args...);
if (FutureResAndSeqOrErr)
return std::move(FutureResAndSeqOrErr->first);
return FutureResAndSeqOrErr.takeError();
}
/// The same as appendCallAsync, except that it calls C.send to flush the
/// The same as appendCallNB, except that it calls C.send to flush the
/// channel after serializing the call.
template <typename Func, typename... ArgTs>
Expected<AsyncCallResult<Func>> callAsync(ChannelT &C,
const ArgTs &... Args) {
auto ResAndSeqOrErr = callAsyncWithSeq<Func>(C, Args...);
if (ResAndSeqOrErr)
return std::move(ResAndSeqOrErr->first);
return ResAndSeqOrErr.getError();
Expected<NonBlockingCallResult<Func>> callNB(ChannelT &C,
const ArgTs &... Args) {
auto FutureResAndSeqOrErr = callNBWithSeq<Func>(C, Args...);
if (FutureResAndSeqOrErr)
return std::move(FutureResAndSeqOrErr->first);
return FutureResAndSeqOrErr.takeError();
}
/// This can be used in single-threaded mode.
/// Call Func on Channel C. Blocks waiting for a result. Returns an Error
/// for void functions or an Expected<T> for functions returning a T.
///
/// This function is for use in threaded code where another thread is
/// handling responses and incoming calls.
template <typename Func, typename... ArgTs>
typename Func::ErrorReturn callB(ChannelT &C, const ArgTs &... Args) {
if (auto FutureResOrErr = callNBWithSeq(C, Args...)) {
if (auto Err = C.send()) {
abandonOutstandingResults();
Func::consumeAbandoned(*FutureResOrErr);
return std::move(Err);
}
return FutureResOrErr->get();
} else
return FutureResOrErr.takeError();
}
/// Call Func on Channel C. Block waiting for a result. While blocked, run
/// HandleOther to handle incoming calls (Response calls will be handled
/// implicitly before calling HandleOther). Returns an Error for void
/// functions or an Expected<T> for functions returning a T.
///
/// This function is for use in single threaded mode when the calling thread
/// must act as both sender and receiver.
template <typename Func, typename HandleFtor, typename... ArgTs>
typename Func::ErrorReturn
callSTHandling(ChannelT &C, HandleFtor &HandleOther, const ArgTs &... Args) {
if (auto ResultAndSeqNoOrErr = callAsyncWithSeq<Func>(C, Args...)) {
if (auto ResultAndSeqNoOrErr = callNBWithSeq<Func>(C, Args...)) {
auto &ResultAndSeqNo = *ResultAndSeqNoOrErr;
if (auto Err = waitForResult(C, ResultAndSeqNo.second, HandleOther))
return std::move(Err);
return Func::optionalToErrorReturn(ResultAndSeqNo.first.get());
return ResultAndSeqNo.first.get();
} else
return ResultAndSeqNoOrErr.takeError();
}
// This can be used in single-threaded mode.
/// Call Func on Channel C. Block waiting for a result. Returns an Error for
/// void functions or an Expected<T> for functions returning a T.
template <typename Func, typename... ArgTs>
typename Func::ErrorReturn callST(ChannelT &C, const ArgTs &... Args) {
return callSTHandling<Func>(C, handleNone, Args...);
@ -656,7 +758,7 @@ private:
class OutstandingResultImpl : public OutstandingResult {
private:
public:
OutstandingResultImpl(std::promise<typename Func::OptionalReturn> &&P)
OutstandingResultImpl(std::promise<typename Func::PErrorReturn> &&P)
: P(std::move(P)) {}
Error readResult(ChannelT &C) override { return Func::readResult(C, P); }
@ -664,13 +766,13 @@ private:
void abandon() override { Func::abandon(P); }
private:
std::promise<typename Func::OptionalReturn> P;
std::promise<typename Func::PErrorReturn> P;
};
// Create an outstanding result for the given function.
template <typename Func>
std::unique_ptr<OutstandingResult>
createOutstandingResult(std::promise<typename Func::OptionalReturn> &&P) {
createOutstandingResult(std::promise<typename Func::PErrorReturn> &&P) {
return llvm::make_unique<OutstandingResultImpl<Func>>(std::move(P));
}

View File

@ -83,7 +83,7 @@ TEST_F(DummyRPC, TestAsyncVoidBool) {
QueueChannel C2(Q2, Q1);
// Make an async call.
auto ResOrErr = callAsyncWithSeq<VoidBool>(C1, true);
auto ResOrErr = callNBWithSeq<VoidBool>(C1, true);
EXPECT_TRUE(!!ResOrErr) << "Simple call over queue failed";
{
@ -102,8 +102,8 @@ TEST_F(DummyRPC, TestAsyncVoidBool) {
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(Val) << "Remote void function failed to execute.";
auto Err = ResOrErr->first.get();
EXPECT_FALSE(!!Err) << "Remote void function failed to execute.";
}
TEST_F(DummyRPC, TestAsyncIntInt) {
@ -112,7 +112,7 @@ TEST_F(DummyRPC, TestAsyncIntInt) {
QueueChannel C2(Q2, Q1);
// Make an async call.
auto ResOrErr = callAsyncWithSeq<IntInt>(C1, 21);
auto ResOrErr = callNBWithSeq<IntInt>(C1, 21);
EXPECT_TRUE(!!ResOrErr) << "Simple call over queue failed";
{
@ -143,7 +143,7 @@ TEST_F(DummyRPC, TestSerialization) {
// Make a call to Proc1.
std::vector<int> v({42, 7});
auto ResOrErr = callAsyncWithSeq<AllTheTypes>(
auto ResOrErr = callNBWithSeq<AllTheTypes>(
C1, -101, 250, -10000, 10000, -1000000000, 1000000000, -10000000000,
10000000000, true, "foo", v);
EXPECT_TRUE(!!ResOrErr) << "Big (serialization test) call over queue failed";
@ -179,8 +179,8 @@ TEST_F(DummyRPC, TestSerialization) {
}
// Verify that the function returned ok.
auto Val = ResOrErr->first.get();
EXPECT_TRUE(Val) << "Remote void function failed to execute.";
auto Err = ResOrErr->first.get();
EXPECT_FALSE(!!Err) << "Remote void function failed to execute.";
}
// Test the synchronous call API.