Teach ConstantFolding about pointer address spaces

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188831 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Matt Arsenault 2013-08-20 21:20:04 +00:00
parent a98a486ad1
commit 80f495aab0
5 changed files with 585 additions and 37 deletions

View File

@ -367,7 +367,7 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) {
CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, TD);
}
@ -379,26 +379,29 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const DataLayout &TD) {
Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
PointerType *PTy = cast<PointerType>(C->getType());
Type *LoadTy = PTy->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
unsigned AS = PTy->getAddressSpace();
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
if (LoadTy->isHalfTy())
MapTy = Type::getInt16PtrTy(C->getContext());
MapTy = Type::getInt16PtrTy(C->getContext(), AS);
else if (LoadTy->isFloatTy())
MapTy = Type::getInt32PtrTy(C->getContext());
MapTy = Type::getInt32PtrTy(C->getContext(), AS);
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64PtrTy(C->getContext());
MapTy = Type::getInt64PtrTy(C->getContext(), AS);
else if (LoadTy->isVectorTy()) {
MapTy = IntegerType::get(C->getContext(),
TD.getTypeAllocSizeInBits(LoadTy));
MapTy = PointerType::getUnqual(MapTy);
MapTy = PointerType::getIntNPtrTy(C->getContext(),
TD.getTypeAllocSizeInBits(LoadTy),
AS);
} else
return 0;
@ -413,7 +416,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
return 0;
GlobalValue *GVal;
APInt Offset(TD.getPointerSizeInBits(), 0);
APInt Offset(TD.getPointerTypeSizeInBits(PTy), 0);
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
@ -606,8 +609,10 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
Type *ResultTy, const DataLayout *TD,
const TargetLibraryInfo *TLI) {
if (!TD) return 0;
Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
if (!TD)
return 0;
Type *IntPtrTy = TD->getIntPtrType(ResultTy);
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
@ -665,7 +670,7 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
!Ptr->getType()->isPointerTy())
return 0;
Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
Type *IntPtrTy = TD->getIntPtrType(Ptr->getType());
Type *ResultElementTy = ResultTy->getPointerElementType();
// If this is a constant expr gep that is effectively computing an
@ -741,7 +746,8 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Also, this helps GlobalOpt do SROA on GlobalVariables.
Type *Ty = Ptr->getType();
assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
SmallVector<Constant*, 32> NewIdxs;
SmallVector<Constant *, 32> NewIdxs;
do {
if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
if (ATy->isPointerTy()) {
@ -756,7 +762,6 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
if (ElemSize == 0)
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
@ -968,7 +973,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
if (TD && CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
if (TD->getPointerTypeSizeInBits(CE->getType()) < InWidth) {
Constant *Mask =
ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
@ -983,11 +988,19 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size. This requires knowing the width of a
// pointer, so it can't be done in ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
if (TD &&
TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
CE->getOpcode() == Instruction::PtrToInt)
return FoldBitCast(CE->getOperand(0), DestTy, *TD);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
if (TD && CE->getOpcode() == Instruction::PtrToInt) {
Constant *SrcPtr = CE->getOperand(0);
unsigned SrcPtrSize = TD->getPointerTypeSizeInBits(SrcPtr->getType());
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
if (MidIntSize >= SrcPtrSize) {
unsigned DestPtrSize = TD->getPointerTypeSizeInBits(DestTy);
if (SrcPtrSize == DestPtrSize)
return FoldBitCast(CE->getOperand(0), DestTy, *TD);
}
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
@ -1039,8 +1052,8 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (TD && Ops1->isNullValue()) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
@ -1051,19 +1064,21 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
}
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
@ -1075,11 +1090,17 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if ((CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
CE1->getOperand(0), TD, TLI);
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
return ConstantFoldCompareInstOperands(Predicate,
CE0->getOperand(0),
CE1->getOperand(0),
TD,
TLI);
}
}
}
}

View File

@ -0,0 +1,235 @@
; "PLAIN" - No optimizations. This tests the target-independent
; constant folder.
; RUN: opt -S -o - %s | FileCheck --check-prefix=PLAIN %s
target datalayout = "e-p:128:128:128-p1:32:32:32-p2:8:8:8-p3:16:16:16-p4:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:32"
; The automatic constant folder in opt does not have targetdata access, so
; it can't fold gep arithmetic, in general. However, the constant folder run
; from instcombine and global opt can use targetdata.
; PLAIN: @G8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1)
@G8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1)
; PLAIN: @G1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -1)
@G1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -1)
; PLAIN: @F8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2)
@F8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2)
; PLAIN: @F1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -2)
@F1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 1 to i1 addrspace(2)*), i8 -2)
; PLAIN: @H8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* null, i32 -1)
@H8 = global i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 0 to i8 addrspace(1)*), i32 -1)
; PLAIN: @H1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i8 -1)
@H1 = global i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i8 0 to i1 addrspace(2)*), i8 -1)
; The target-independent folder should be able to do some clever
; simplifications on sizeof, alignof, and offsetof expressions. The
; target-dependent folder should fold these down to constants.
; PLAIN-X: @a = constant i64 mul (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2310)
@a = constant i64 mul (i64 3, i64 mul (i64 ptrtoint ({[7 x double], [7 x double]} addrspace(4)* getelementptr ({[7 x double], [7 x double]} addrspace(4)* null, i64 11) to i64), i64 5))
; PLAIN-X: @b = constant i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64)
@b = constant i64 ptrtoint ([13 x double] addrspace(4)* getelementptr ({i1, [13 x double]} addrspace(4)* null, i64 0, i32 1) to i64)
; PLAIN-X: @c = constant i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2)
@c = constant i64 ptrtoint (double addrspace(4)* getelementptr ({double, double, double, double} addrspace(4)* null, i64 0, i32 2) to i64)
; PLAIN-X: @d = constant i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 11)
@d = constant i64 ptrtoint (double addrspace(4)* getelementptr ([13 x double] addrspace(4)* null, i64 0, i32 11) to i64)
; PLAIN-X: @e = constant i64 ptrtoint (double addrspace(4)* getelementptr ({ double, float, double, double }* null, i64 0, i32 2) to i64)
@e = constant i64 ptrtoint (double addrspace(4)* getelementptr ({double, float, double, double} addrspace(4)* null, i64 0, i32 2) to i64)
; PLAIN-X: @f = constant i64 1
@f = constant i64 ptrtoint (<{ i16, i128 }> addrspace(4)* getelementptr ({i1, <{ i16, i128 }>} addrspace(4)* null, i64 0, i32 1) to i64)
; PLAIN-X: @g = constant i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64)
@g = constant i64 ptrtoint ({double, double} addrspace(4)* getelementptr ({i1, {double, double}} addrspace(4)* null, i64 0, i32 1) to i64)
; PLAIN-X: @h = constant i64 ptrtoint (i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i32 1) to i64)
@h = constant i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i64 1) to i64)
; PLAIN-X: @i = constant i64 ptrtoint (i1 addrspace(2)* getelementptr ({ i1, i1 addrspace(2)* }* null, i64 0, i32 1) to i64)
@i = constant i64 ptrtoint (double addrspace(4)* getelementptr ({i1, double} addrspace(4)* null, i64 0, i32 1) to i64)
; The target-dependent folder should cast GEP indices to integer-sized pointers.
; PLAIN: @M = constant i64 addrspace(4)* getelementptr (i64 addrspace(4)* null, i32 1)
; PLAIN: @N = constant i64 addrspace(4)* getelementptr ({ i64, i64 } addrspace(4)* null, i32 0, i32 1)
; PLAIN: @O = constant i64 addrspace(4)* getelementptr ([2 x i64] addrspace(4)* null, i32 0, i32 1)
@M = constant i64 addrspace(4)* getelementptr (i64 addrspace(4)* null, i32 1)
@N = constant i64 addrspace(4)* getelementptr ({ i64, i64 } addrspace(4)* null, i32 0, i32 1)
@O = constant i64 addrspace(4)* getelementptr ([2 x i64] addrspace(4)* null, i32 0, i32 1)
; Fold GEP of a GEP. Very simple cases are folded.
; PLAIN-X: @Y = global [3 x { i32, i32 }]addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 2)
@ext = external addrspace(3) global [3 x { i32, i32 }]
@Y = global [3 x { i32, i32 }]addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 1), i64 1)
; PLAIN-X: @Z = global i32addrspace(3)* getelementptr inbounds (i32addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 0, i64 1, i32 0), i64 1)
@Z = global i32addrspace(3)* getelementptr inbounds (i32addrspace(3)* getelementptr inbounds ([3 x { i32, i32 }]addrspace(3)* @ext, i64 0, i64 1, i32 0), i64 1)
; Duplicate all of the above as function return values rather than
; global initializers.
; PLAIN: define i8 addrspace(1)* @goo8() #0 {
; PLAIN: %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1) to i8 addrspace(1)*
; PLAIN: ret i8 addrspace(1)* %t
; PLAIN: }
; PLAIN: define i1 addrspace(2)* @goo1() #0 {
; PLAIN: %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -1) to i1 addrspace(2)*
; PLAIN: ret i1 addrspace(2)* %t
; PLAIN: }
; PLAIN: define i8 addrspace(1)* @foo8() #0 {
; PLAIN: %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2) to i8 addrspace(1)*
; PLAIN: ret i8 addrspace(1)* %t
; PLAIN: }
; PLAIN: define i1 addrspace(2)* @foo1() #0 {
; PLAIN: %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -2) to i1 addrspace(2)*
; PLAIN: ret i1 addrspace(2)* %t
; PLAIN: }
; PLAIN: define i8 addrspace(1)* @hoo8() #0 {
; PLAIN: %t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* null, i32 -1) to i8 addrspace(1)*
; PLAIN: ret i8 addrspace(1)* %t
; PLAIN: }
; PLAIN: define i1 addrspace(2)* @hoo1() #0 {
; PLAIN: %t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i32 -1) to i1 addrspace(2)*
; PLAIN: ret i1 addrspace(2)* %t
; PLAIN: }
define i8 addrspace(1)* @goo8() #0 {
%t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -1) to i8 addrspace(1)*
ret i8 addrspace(1)* %t
}
define i1 addrspace(2)* @goo1() #0 {
%t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -1) to i1 addrspace(2)*
ret i1 addrspace(2)* %t
}
define i8 addrspace(1)* @foo8() #0 {
%t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 1 to i8 addrspace(1)*), i32 -2) to i8 addrspace(1)*
ret i8 addrspace(1)* %t
}
define i1 addrspace(2)* @foo1() #0 {
%t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 1 to i1 addrspace(2)*), i32 -2) to i1 addrspace(2)*
ret i1 addrspace(2)* %t
}
define i8 addrspace(1)* @hoo8() #0 {
%t = bitcast i8 addrspace(1)* getelementptr (i8 addrspace(1)* inttoptr (i32 0 to i8 addrspace(1)*), i32 -1) to i8 addrspace(1)*
ret i8 addrspace(1)* %t
}
define i1 addrspace(2)* @hoo1() #0 {
%t = bitcast i1 addrspace(2)* getelementptr (i1 addrspace(2)* inttoptr (i32 0 to i1 addrspace(2)*), i32 -1) to i1 addrspace(2)*
ret i1 addrspace(2)* %t
}
; PLAIN-X: define i64 @fa() #0 {
; PLAIN-X: %t = bitcast i64 mul (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2310) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fb() #0 {
; PLAIN-X: %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fc() #0 {
; PLAIN-X: %t = bitcast i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 2) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fd() #0 {
; PLAIN-X: %t = bitcast i64 mul nuw (i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64), i64 11) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fe() #0 {
; PLAIN-X: %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({ double, float, double, double }* null, i64 0, i32 2) to i64) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @ff() #0 {
; PLAIN-X: %t = bitcast i64 1 to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fg() #0 {
; PLAIN-X: %t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({ i1, double }* null, i64 0, i32 1) to i64) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fh() #0 {
; PLAIN-X: %t = bitcast i64 ptrtoint (i1 addrspace(2)* getelementptr (i1 addrspace(2)* null, i32 1) to i64) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
; PLAIN-X: define i64 @fi() #0 {
; PLAIN-X: %t = bitcast i64 ptrtoint (i1 addrspace(2)* getelementptr ({ i1, i1 addrspace(2)* }* null, i64 0, i32 1) to i64) to i64
; PLAIN-X: ret i64 %t
; PLAIN-X: }
define i64 @fa() #0 {
%t = bitcast i64 mul (i64 3, i64 mul (i64 ptrtoint ({[7 x double], [7 x double]}* getelementptr ({[7 x double], [7 x double]}* null, i64 11) to i64), i64 5)) to i64
ret i64 %t
}
define i64 @fb() #0 {
%t = bitcast i64 ptrtoint ([13 x double] addrspace(4)* getelementptr ({i1, [13 x double]} addrspace(4)* null, i64 0, i32 1) to i64) to i64
ret i64 %t
}
define i64 @fc() #0 {
%t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({double, double, double, double} addrspace(4)* null, i64 0, i32 2) to i64) to i64
ret i64 %t
}
define i64 @fd() #0 {
%t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ([13 x double] addrspace(4)* null, i64 0, i32 11) to i64) to i64
ret i64 %t
}
define i64 @fe() #0 {
%t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({double, float, double, double} addrspace(4)* null, i64 0, i32 2) to i64) to i64
ret i64 %t
}
define i64 @ff() #0 {
%t = bitcast i64 ptrtoint (<{ i16, i128 }> addrspace(4)* getelementptr ({i1, <{ i16, i128 }>} addrspace(4)* null, i64 0, i32 1) to i64) to i64
ret i64 %t
}
define i64 @fg() #0 {
%t = bitcast i64 ptrtoint ({double, double} addrspace(4)* getelementptr ({i1, {double, double}} addrspace(4)* null, i64 0, i32 1) to i64) to i64
ret i64 %t
}
define i64 @fh() #0 {
%t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr (double addrspace(4)* null, i32 1) to i64) to i64
ret i64 %t
}
define i64 @fi() #0 {
%t = bitcast i64 ptrtoint (double addrspace(4)* getelementptr ({i1, double}addrspace(4)* null, i64 0, i32 1) to i64) to i64
ret i64 %t
}
; PLAIN: define i64* @fM() #0 {
; PLAIN: %t = bitcast i64* getelementptr (i64* null, i32 1) to i64*
; PLAIN: ret i64* %t
; PLAIN: }
; PLAIN: define i64* @fN() #0 {
; PLAIN: %t = bitcast i64* getelementptr ({ i64, i64 }* null, i32 0, i32 1) to i64*
; PLAIN: ret i64* %t
; PLAIN: }
; PLAIN: define i64* @fO() #0 {
; PLAIN: %t = bitcast i64* getelementptr ([2 x i64]* null, i32 0, i32 1) to i64*
; PLAIN: ret i64* %t
; PLAIN: }
define i64* @fM() #0 {
%t = bitcast i64* getelementptr (i64* null, i32 1) to i64*
ret i64* %t
}
define i64* @fN() #0 {
%t = bitcast i64* getelementptr ({ i64, i64 }* null, i32 0, i32 1) to i64*
ret i64* %t
}
define i64* @fO() #0 {
%t = bitcast i64* getelementptr ([2 x i64]* null, i32 0, i32 1) to i64*
ret i64* %t
}
; PLAIN: define i32 addrspace(1)* @fZ() #0 {
; PLAIN: %t = bitcast i32 addrspace(1)* getelementptr inbounds (i32 addrspace(1)* getelementptr inbounds ([3 x { i32, i32 }] addrspace(1)* @ext2, i64 0, i64 1, i32 0), i64 1) to i32 addrspace(1)*
; PLAIN: ret i32 addrspace(1)* %t
; PLAIN: }
@ext2 = external addrspace(1) global [3 x { i32, i32 }]
define i32 addrspace(1)* @fZ() #0 {
%t = bitcast i32 addrspace(1)* getelementptr inbounds (i32 addrspace(1)* getelementptr inbounds ([3 x { i32, i32 }] addrspace(1)* @ext2, i64 0, i64 1, i32 0), i64 1) to i32 addrspace(1)*
ret i32 addrspace(1)* %t
}
attributes #0 = { nounwind }

View File

@ -1,5 +1,5 @@
; RUN: opt < %s -default-data-layout="e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64" -instcombine -S | FileCheck %s --check-prefix=LE
; RUN: opt < %s -default-data-layout="E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64" -instcombine -S | FileCheck %s --check-prefix=BE
; RUN: opt < %s -default-data-layout="e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64" -instcombine -S | FileCheck %s --check-prefix=LE
; RUN: opt < %s -default-data-layout="E-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64" -instcombine -S | FileCheck %s --check-prefix=BE
; {{ 0xDEADBEEF, 0xBA }, 0xCAFEBABE}
@g1 = constant {{i32,i8},i32} {{i32,i8} { i32 -559038737, i8 186 }, i32 -889275714 }
@ -155,7 +155,7 @@ entry:
@test12g = private constant [6 x i8] c"a\00b\00\00\00"
define i16 @test12() {
%a = load i16* getelementptr inbounds ([3 x i16]* bitcast ([6 x i8]* @test12g to [3 x i16]*), i32 0, i64 1)
%a = load i16* getelementptr inbounds ([3 x i16]* bitcast ([6 x i8]* @test12g to [3 x i16]*), i32 0, i64 1)
ret i16 %a
; 0x0062
@ -194,6 +194,20 @@ entry:
; BE: ret i64 1
}
; Check with address space pointers
@g6_as1 = constant [2 x i8 addrspace(1)*] [i8 addrspace(1)* inttoptr (i16 1 to i8 addrspace(1)*), i8 addrspace(1)* inttoptr (i16 2 to i8 addrspace(1)*)]
define i16 @test14_as1() nounwind {
entry:
%tmp = load i16* bitcast ([2 x i8 addrspace(1)*]* @g6_as1 to i16*)
ret i16 %tmp
; LE: @test14_as1
; LE: ret i16 1
; BE: @test14_as1
; BE: ret i16 1
}
define i64 @test15() nounwind {
entry:
%tmp = load i64* bitcast (i8** getelementptr inbounds ([2 x i8*]* @g6, i32 0, i64 1) to i64*)

View File

@ -0,0 +1,224 @@
; RUN: opt -S -instcombine %s -o - | FileCheck %s
target datalayout = "e-p:32:32:32-p1:64:64:64-p2:8:8:8-p3:16:16:16-p4:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:32"
@g = addrspace(3) global i32 89
@const_zero_i8_as1 = addrspace(1) constant i8 0
@const_zero_i32_as1 = addrspace(1) constant i32 0
@const_zero_i8_as2 = addrspace(2) constant i8 0
@const_zero_i32_as2 = addrspace(2) constant i32 0
@const_zero_i8_as3 = addrspace(3) constant i8 0
@const_zero_i32_as3 = addrspace(3) constant i32 0
; Test constant folding of inttoptr (ptrtoint constantexpr)
; The intermediate integer size is the same as the pointer size
define i32 addrspace(3)* @test_constant_fold_inttoptr_as_pointer_same_size() {
; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_same_size(
; CHECK-NEXT: ret i32 addrspace(3)* @const_zero_i32_as3
%x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i32
%y = inttoptr i32 %x to i32 addrspace(3)*
ret i32 addrspace(3)* %y
}
; The intermediate integer size is larger than the pointer size
define i32 addrspace(2)* @test_constant_fold_inttoptr_as_pointer_smaller() {
; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_smaller(
; CHECK-NEXT: ret i32 addrspace(2)* @const_zero_i32_as2
%x = ptrtoint i32 addrspace(2)* @const_zero_i32_as2 to i16
%y = inttoptr i16 %x to i32 addrspace(2)*
ret i32 addrspace(2)* %y
}
; Different address spaces that are the same size, but they are
; different so there should be a bitcast.
define i32 addrspace(4)* @test_constant_fold_inttoptr_as_pointer_smaller_different_as() {
; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_smaller_different_as(
; CHECK-NEXT: ret i32 addrspace(4)* bitcast (i32 addrspace(3)* @const_zero_i32_as3 to i32 addrspace(4)*)
%x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i16
%y = inttoptr i16 %x to i32 addrspace(4)*
ret i32 addrspace(4)* %y
}
; Make sure we don't introduce a bitcast between different sized
; address spaces when folding this
define i32 addrspace(2)* @test_constant_fold_inttoptr_as_pointer_smaller_different_size_as() {
; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_smaller_different_size_as(
; CHECK-NEXT: ret i32 addrspace(2)* inttoptr (i32 ptrtoint (i32 addrspace(3)* @const_zero_i32_as3 to i32) to i32 addrspace(2)*)
%x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i32
%y = inttoptr i32 %x to i32 addrspace(2)*
ret i32 addrspace(2)* %y
}
; The intermediate integer size is too small, nothing should happen
define i32 addrspace(3)* @test_constant_fold_inttoptr_as_pointer_larger() {
; CHECK-LABEL: @test_constant_fold_inttoptr_as_pointer_larger(
; CHECK-NEXT: ret i32 addrspace(3)* inttoptr (i8 ptrtoint (i32 addrspace(3)* @const_zero_i32_as3 to i8) to i32 addrspace(3)*)
%x = ptrtoint i32 addrspace(3)* @const_zero_i32_as3 to i8
%y = inttoptr i8 %x to i32 addrspace(3)*
ret i32 addrspace(3)* %y
}
define i8 @const_fold_ptrtoint() {
; CHECK-LABEL: @const_fold_ptrtoint(
; CHECK-NEXT: ret i8 4
ret i8 ptrtoint (i32 addrspace(2)* inttoptr (i4 4 to i32 addrspace(2)*) to i8)
}
; Test that mask happens when the destination pointer is smaller than
; the original
define i8 @const_fold_ptrtoint_mask() {
; CHECK-LABEL: @const_fold_ptrtoint_mask(
; CHECK-NEXT: ret i8 1
ret i8 ptrtoint (i32 addrspace(3)* inttoptr (i32 257 to i32 addrspace(3)*) to i8)
}
define i32 addrspace(3)* @const_inttoptr() {
; CHECK-LABEL: @const_inttoptr(
; CHECK-NEXT: ret i32 addrspace(3)* inttoptr (i16 4 to i32 addrspace(3)*)
%p = inttoptr i16 4 to i32 addrspace(3)*
ret i32 addrspace(3)* %p
}
define i16 @const_ptrtoint() {
; CHECK-LABEL: @const_ptrtoint(
; CHECK-NEXT: ret i16 ptrtoint (i32 addrspace(3)* @g to i16)
%i = ptrtoint i32 addrspace(3)* @g to i16
ret i16 %i
}
define i16 @const_inttoptr_ptrtoint() {
; CHECK-LABEL: @const_inttoptr_ptrtoint(
; CHECK-NEXT: ret i16 9
ret i16 ptrtoint (i32 addrspace(3)* inttoptr (i16 9 to i32 addrspace(3)*) to i16)
}
define i1 @constant_fold_cmp_constantexpr_inttoptr() {
; CHECK-LABEL: @constant_fold_cmp_constantexpr_inttoptr(
; CHECK-NEXT: ret i1 true
%x = icmp eq i32 addrspace(3)* inttoptr (i16 0 to i32 addrspace(3)*), null
ret i1 %x
}
define i1 @constant_fold_inttoptr_null(i16 %i) {
; CHECK-LABEL: @constant_fold_inttoptr_null(
; CHECK-NEXT: ret i1 false
%x = icmp eq i32 addrspace(3)* inttoptr (i16 99 to i32 addrspace(3)*), inttoptr (i16 0 to i32 addrspace(3)*)
ret i1 %x
}
define i1 @constant_fold_ptrtoint_null() {
; CHECK-LABEL: @constant_fold_ptrtoint_null(
; CHECK-NEXT: ret i1 false
%x = icmp eq i16 ptrtoint (i32 addrspace(3)* @g to i16), ptrtoint (i32 addrspace(3)* null to i16)
ret i1 %x
}
define i1 @constant_fold_ptrtoint_null_2() {
; CHECK-LABEL: @constant_fold_ptrtoint_null_2(
; CHECK-NEXT: ret i1 false
%x = icmp eq i16 ptrtoint (i32 addrspace(3)* null to i16), ptrtoint (i32 addrspace(3)* @g to i16)
ret i1 %x
}
define i1 @constant_fold_ptrtoint() {
; CHECK-LABEL: @constant_fold_ptrtoint(
; CHECK-NEXT: ret i1 true
%x = icmp eq i16 ptrtoint (i32 addrspace(3)* @g to i16), ptrtoint (i32 addrspace(3)* @g to i16)
ret i1 %x
}
define i1 @constant_fold_inttoptr() {
; CHECK-LABEL: @constant_fold_inttoptr(
; CHECK-NEXT: ret i1 false
%x = icmp eq i32 addrspace(3)* inttoptr (i16 99 to i32 addrspace(3)*), inttoptr (i16 27 to i32 addrspace(3)*)
ret i1 %x
}
@g_float_as3 = addrspace(3) global float zeroinitializer
@g_v4f_as3 = addrspace(3) global <4 x float> zeroinitializer
define float @constant_fold_bitcast_ftoi_load() {
; CHECK-LABEL: @constant_fold_bitcast_ftoi_load(
; CHECK: load float addrspace(3)* bitcast (i32 addrspace(3)* @g to float addrspace(3)*), align 4
%a = load float addrspace(3)* bitcast (i32 addrspace(3)* @g to float addrspace(3)*), align 4
ret float %a
}
define i32 @constant_fold_bitcast_itof_load() {
; CHECK-LABEL: @constant_fold_bitcast_itof_load(
; CHECK: load i32 addrspace(3)* bitcast (float addrspace(3)* @g_float_as3 to i32 addrspace(3)*), align 4
%a = load i32 addrspace(3)* bitcast (float addrspace(3)* @g_float_as3 to i32 addrspace(3)*), align 4
ret i32 %a
}
define <4 x i32> @constant_fold_bitcast_vector_as() {
; CHECK-LABEL: @constant_fold_bitcast_vector_as(
; CHECK: load <4 x float> addrspace(3)* @g_v4f_as3, align 16
; CHECK: bitcast <4 x float> %1 to <4 x i32>
%a = load <4 x i32> addrspace(3)* bitcast (<4 x float> addrspace(3)* @g_v4f_as3 to <4 x i32> addrspace(3)*), align 4
ret <4 x i32> %a
}
@i32_array_as3 = addrspace(3) global [10 x i32] zeroinitializer
define i32 @test_cast_gep_small_indices_as() {
; CHECK-LABEL: @test_cast_gep_small_indices_as(
; CHECK: load i32 addrspace(3)* getelementptr inbounds ([10 x i32] addrspace(3)* @i32_array_as3, i16 0, i16 0), align 16
%p = getelementptr [10 x i32] addrspace(3)* @i32_array_as3, i7 0, i7 0
%x = load i32 addrspace(3)* %p, align 4
ret i32 %x
}
%struct.foo = type { float, float, [4 x i32], i32 addrspace(3)* }
@constant_fold_global_ptr = addrspace(3) global %struct.foo {
float 0.0,
float 0.0,
[4 x i32] zeroinitializer,
i32 addrspace(3)* getelementptr ([10 x i32] addrspace(3)* @i32_array_as3, i64 0, i64 0)
}
define i32 @test_cast_gep_large_indices_as() {
; CHECK-LABEL: @test_cast_gep_large_indices_as(
; CHECK: load i32 addrspace(3)* getelementptr inbounds ([10 x i32] addrspace(3)* @i32_array_as3, i16 0, i16 0), align 16
%p = getelementptr [10 x i32] addrspace(3)* @i32_array_as3, i64 0, i64 0
%x = load i32 addrspace(3)* %p, align 4
ret i32 %x
}
define i32 @test_constant_cast_gep_struct_indices_as() {
; CHECK-LABEL: @test_constant_cast_gep_struct_indices_as(
; CHECK: load i32 addrspace(3)* getelementptr inbounds (%struct.foo addrspace(3)* @constant_fold_global_ptr, i16 0, i32 2, i16 2), align 8
%x = getelementptr %struct.foo addrspace(3)* @constant_fold_global_ptr, i18 0, i32 2, i12 2
%y = load i32 addrspace(3)* %x, align 4
ret i32 %y
}
@constant_data_as3 = addrspace(3) constant [5 x i32] [i32 1, i32 2, i32 3, i32 4, i32 5]
define i32 @test_read_data_from_global_as3() {
; CHECK-LABEL: @test_read_data_from_global_as3(
; CHECK-NEXT: ret i32 2
%x = getelementptr [5 x i32] addrspace(3)* @constant_data_as3, i32 0, i32 1
%y = load i32 addrspace(3)* %x, align 4
ret i32 %y
}
@a = addrspace(1) constant i32 9
@b = addrspace(1) constant i32 23
@c = addrspace(1) constant i32 34
@d = addrspace(1) constant i32 99
@ptr_array = addrspace(2) constant [4 x i32 addrspace(1)*] [ i32 addrspace(1)* @a, i32 addrspace(1)* @b, i32 addrspace(1)* @c, i32 addrspace(1)* @d]
@indirect = addrspace(0) constant i32 addrspace(1)* addrspace(2)* getelementptr inbounds ([4 x i32 addrspace(1)*] addrspace(2)* @ptr_array, i1 0, i32 2)
define i32 @constant_through_array_as_ptrs() {
; CHECK-LABEL: @constant_through_array_as_ptrs(
; CHECK-NEXT: ret i32 34
%p = load i32 addrspace(1)* addrspace(2)* addrspace(0)* @indirect, align 4
%a = load i32 addrspace(1)* addrspace(2)* %p, align 4
%b = load i32 addrspace(1)* %a, align 4
ret i32 %b
}

View File

@ -1,6 +1,7 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
target datalayout = "e-p:64:64"
target datalayout = "e-p:64:64-p1:16:16-p2:32:32:32"
%intstruct = type { i32 }
%pair = type { i32, i32 }
%struct.B = type { double }
@ -8,6 +9,7 @@ target datalayout = "e-p:64:64"
@Global = constant [10 x i8] c"helloworld"
@Global_as1 = addrspace(1) constant [10 x i8] c"helloworld"
; Test noop elimination
define i32* @test1(i32* %I) {
@ -17,6 +19,13 @@ define i32* @test1(i32* %I) {
; CHECK: ret i32* %I
}
define i32 addrspace(1)* @test1_as1(i32 addrspace(1)* %I) {
%A = getelementptr i32 addrspace(1)* %I, i64 0
ret i32 addrspace(1)* %A
; CHECK-LABEL: @test1_as1(
; CHECK: ret i32 addrspace(1)* %I
}
; Test noop elimination
define i32* @test2(i32* %I) {
%A = getelementptr i32* %I
@ -52,6 +61,42 @@ define void @test5(i8 %B) {
; CHECK: store i8 %B, i8* getelementptr inbounds ([10 x i8]* @Global, i64 0, i64 4)
}
define void @test5_as1(i8 %B) {
; This should be turned into a constexpr instead of being an instruction
%A = getelementptr [10 x i8] addrspace(1)* @Global_as1, i16 0, i16 4
store i8 %B, i8 addrspace(1)* %A
ret void
; CHECK-LABEL: @test5_as1(
; CHECK: store i8 %B, i8 addrspace(1)* getelementptr inbounds ([10 x i8] addrspace(1)* @Global_as1, i16 0, i16 4)
}
%as1_ptr_struct = type { i32 addrspace(1)* }
%as2_ptr_struct = type { i32 addrspace(2)* }
@global_as2 = addrspace(2) global i32 zeroinitializer
@global_as1_as2_ptr = addrspace(1) global %as2_ptr_struct { i32 addrspace(2)* @global_as2 }
; This should be turned into a constexpr instead of being an instruction
define void @test_evaluate_gep_nested_as_ptrs(i32 addrspace(2)* %B) {
; CHECK-LABEL: @test_evaluate_gep_nested_as_ptrs(
; CHECK-NEXT: store i32 addrspace(2)* %B, i32 addrspace(2)* addrspace(1)* getelementptr inbounds (%as2_ptr_struct addrspace(1)* @global_as1_as2_ptr, i16 0, i32 0), align 8
; CHECK-NEXT: ret void
%A = getelementptr %as2_ptr_struct addrspace(1)* @global_as1_as2_ptr, i16 0, i32 0
store i32 addrspace(2)* %B, i32 addrspace(2)* addrspace(1)* %A
ret void
}
@arst = addrspace(1) global [4 x i8 addrspace(2)*] zeroinitializer
define void @test_evaluate_gep_as_ptrs_array(i8 addrspace(2)* %B) {
; CHECK-LABEL: @test_evaluate_gep_as_ptrs_array(
; CHECK-NEXT: store i8 addrspace(2)* %B, i8 addrspace(2)* addrspace(1)* getelementptr inbounds ([4 x i8 addrspace(2)*] addrspace(1)* @arst, i16 0, i16 2), align 4
; CHECK-NEXT: ret void
%A = getelementptr [4 x i8 addrspace(2)*] addrspace(1)* @arst, i16 0, i16 2
store i8 addrspace(2)* %B, i8 addrspace(2)* addrspace(1)* %A
ret void
}
define i32* @test7(i32* %I, i64 %C, i64 %D) {
%A = getelementptr i32* %I, i64 %C
@ -259,6 +304,15 @@ define i32 @test20(i32* %P, i32 %A, i32 %B) {
; CHECK: icmp eq i32 %A, 0
}
define i32 @test20_as1(i32 addrspace(1)* %P, i32 %A, i32 %B) {
%tmp.4 = getelementptr inbounds i32 addrspace(1)* %P, i32 %A
%tmp.6 = icmp eq i32 addrspace(1)* %tmp.4, %P
%tmp.7 = zext i1 %tmp.6 to i32
ret i32 %tmp.7
; CHECK-LABEL: @test20_as1(
; CHECK: icmp eq i16 %1, 0
}
define i32 @test21() {
%pbob1 = alloca %intstruct