MC: Extract ELFObjectWriter's ELF writing functionality into an ELFWriter class. NFCI.

The idea is that we will be able to use this class to create multiple
files.

Differential Revision: https://reviews.llvm.org/D47048

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332867 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Peter Collingbourne 2018-05-21 19:18:28 +00:00
parent cce1a88066
commit 815bbef5d2

View File

@ -68,9 +68,10 @@ namespace {
using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
class ELFObjectWriter; class ELFObjectWriter;
struct ELFWriter;
class SymbolTableWriter { class SymbolTableWriter {
ELFObjectWriter &EWriter; ELFWriter &EWriter;
bool Is64Bit; bool Is64Bit;
// indexes we are going to write to .symtab_shndx. // indexes we are going to write to .symtab_shndx.
@ -84,7 +85,7 @@ class SymbolTableWriter {
template <typename T> void write(T Value); template <typename T> void write(T Value);
public: public:
SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit); SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
uint8_t other, uint32_t shndx, bool Reserved); uint8_t other, uint32_t shndx, bool Reserved);
@ -92,7 +93,10 @@ public:
ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
}; };
class ELFObjectWriter : public MCObjectWriter { struct ELFWriter {
ELFObjectWriter &OWriter;
support::endian::Writer W;
static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
bool Used, bool Renamed); bool Used, bool Renamed);
@ -117,13 +121,6 @@ class ELFObjectWriter : public MCObjectWriter {
} }
}; };
/// The target specific ELF writer instance.
std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
/// @} /// @}
/// @name Symbol Table Data /// @name Symbol Table Data
/// @{ /// @{
@ -144,14 +141,8 @@ class ELFObjectWriter : public MCObjectWriter {
unsigned addToSectionTable(const MCSectionELF *Sec); unsigned addToSectionTable(const MCSectionELF *Sec);
// TargetObjectWriter wrappers. // TargetObjectWriter wrappers.
bool is64Bit() const { return TargetObjectWriter->is64Bit(); } bool is64Bit() const;
bool hasRelocationAddend() const { bool hasRelocationAddend() const;
return TargetObjectWriter->hasRelocationAddend();
}
unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
const MCFixup &Fixup, bool IsPCRel) const {
return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
}
void align(unsigned Alignment); void align(unsigned Alignment);
@ -160,23 +151,11 @@ class ELFObjectWriter : public MCObjectWriter {
bool ZLibStyle, unsigned Alignment); bool ZLibStyle, unsigned Alignment);
public: public:
support::endian::Writer W; ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
bool IsLittleEndian)
ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, : OWriter(OWriter),
raw_pwrite_stream &OS, bool IsLittleEndian)
: TargetObjectWriter(std::move(MOTW)),
W(OS, IsLittleEndian ? support::little : support::big) {} W(OS, IsLittleEndian ? support::little : support::big) {}
~ELFObjectWriter() override = default;
void reset() override {
Renames.clear();
Relocations.clear();
StrTabBuilder.clear();
SectionTable.clear();
MCObjectWriter::reset();
}
void WriteWord(uint64_t Word) { void WriteWord(uint64_t Word) {
if (is64Bit()) if (is64Bit())
W.write<uint64_t>(Word); W.write<uint64_t>(Word);
@ -197,15 +176,6 @@ public:
using SectionOffsetsTy = using SectionOffsetsTy =
std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
bool shouldRelocateWithSymbol(const MCAssembler &Asm,
const MCSymbolRefExpr *RefA,
const MCSymbolELF *Sym, uint64_t C,
unsigned Type) const;
void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
MCValue Target, uint64_t &FixedValue) override;
// Map from a signature symbol to the group section index // Map from a signature symbol to the group section index
using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
@ -224,9 +194,6 @@ public:
const MCSectionELF *createStringTable(MCContext &Ctx); const MCSectionELF *createStringTable(MCContext &Ctx);
void executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) override;
void writeSectionHeader(const MCAsmLayout &Layout, void writeSectionHeader(const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap, const SectionIndexMapTy &SectionIndexMap,
const SectionOffsetsTy &SectionOffsets); const SectionOffsetsTy &SectionOffsets);
@ -241,26 +208,69 @@ public:
void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
using MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl; uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
const MCSymbol &SymA,
const MCFragment &FB, bool InSet,
bool IsPCRel) const override;
uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
void writeSection(const SectionIndexMapTy &SectionIndexMap, void writeSection(const SectionIndexMapTy &SectionIndexMap,
uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
const MCSectionELF &Section); const MCSectionELF &Section);
}; };
class ELFObjectWriter : public MCObjectWriter {
raw_pwrite_stream &OS;
bool IsLittleEndian;
/// The target specific ELF writer instance.
std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
bool hasRelocationAddend() const;
bool shouldRelocateWithSymbol(const MCAssembler &Asm,
const MCSymbolRefExpr *RefA,
const MCSymbolELF *Sym, uint64_t C,
unsigned Type) const;
public:
ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS, bool IsLittleEndian)
: OS(OS), IsLittleEndian(IsLittleEndian),
TargetObjectWriter(std::move(MOTW)) {}
void reset() override {
Relocations.clear();
Renames.clear();
MCObjectWriter::reset();
}
bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
const MCSymbol &SymA,
const MCFragment &FB, bool InSet,
bool IsPCRel) const override;
void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
MCValue Target, uint64_t &FixedValue) override;
uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
return ELFWriter(*this, OS, IsLittleEndian).writeObject(Asm, Layout);
}
void executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) override;
friend struct ELFWriter;
};
} // end anonymous namespace } // end anonymous namespace
void ELFObjectWriter::align(unsigned Alignment) { void ELFWriter::align(unsigned Alignment) {
uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment); uint64_t Padding = OffsetToAlignment(W.OS.tell(), Alignment);
W.OS.write_zeros(Padding); W.OS.write_zeros(Padding);
} }
unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) { unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
SectionTable.push_back(Sec); SectionTable.push_back(Sec);
StrTabBuilder.add(Sec->getSectionName()); StrTabBuilder.add(Sec->getSectionName());
return SectionTable.size(); return SectionTable.size();
@ -277,7 +287,7 @@ template <typename T> void SymbolTableWriter::write(T Value) {
EWriter.write(Value); EWriter.write(Value);
} }
SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit) SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
: EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
@ -316,8 +326,16 @@ void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
++NumWritten; ++NumWritten;
} }
bool ELFWriter::is64Bit() const {
return OWriter.TargetObjectWriter->is64Bit();
}
bool ELFWriter::hasRelocationAddend() const {
return OWriter.hasRelocationAddend();
}
// Emit the ELF header. // Emit the ELF header.
void ELFObjectWriter::writeHeader(const MCAssembler &Asm) { void ELFWriter::writeHeader(const MCAssembler &Asm) {
// ELF Header // ELF Header
// ---------- // ----------
// //
@ -336,14 +354,14 @@ void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION]
// e_ident[EI_OSABI] // e_ident[EI_OSABI]
W.OS << char(TargetObjectWriter->getOSABI()); W.OS << char(OWriter.TargetObjectWriter->getOSABI());
W.OS << char(0); // e_ident[EI_ABIVERSION] W.OS << char(0); // e_ident[EI_ABIVERSION]
W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
W.write<uint16_t>(ELF::ET_REL); // e_type W.write<uint16_t>(ELF::ET_REL); // e_type
W.write<uint16_t>(TargetObjectWriter->getEMachine()); // e_machine = target W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
W.write<uint32_t>(ELF::EV_CURRENT); // e_version W.write<uint32_t>(ELF::EV_CURRENT); // e_version
WriteWord(0); // e_entry, no entry point in .o file WriteWord(0); // e_entry, no entry point in .o file
@ -372,8 +390,8 @@ void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
W.write<uint16_t>(StringTableIndex); W.write<uint16_t>(StringTableIndex);
} }
uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym, uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
const MCAsmLayout &Layout) { const MCAsmLayout &Layout) {
if (Sym.isCommon() && Sym.isExternal()) if (Sym.isCommon() && Sym.isExternal())
return Sym.getCommonAlignment(); return Sym.getCommonAlignment();
@ -387,49 +405,6 @@ uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
return Res; return Res;
} }
void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// The presence of symbol versions causes undefined symbols and
// versions declared with @@@ to be renamed.
for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) {
StringRef AliasName = P.first;
const auto &Symbol = cast<MCSymbolELF>(*P.second);
size_t Pos = AliasName.find('@');
assert(Pos != StringRef::npos);
StringRef Prefix = AliasName.substr(0, Pos);
StringRef Rest = AliasName.substr(Pos);
StringRef Tail = Rest;
if (Rest.startswith("@@@"))
Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
auto *Alias =
cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
Asm.registerSymbol(*Alias);
const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
Alias->setVariableValue(Value);
// Aliases defined with .symvar copy the binding from the symbol they alias.
// This is the first place we are able to copy this information.
Alias->setExternal(Symbol.isExternal());
Alias->setBinding(Symbol.getBinding());
if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
continue;
// FIXME: produce a better error message.
if (Symbol.isUndefined() && Rest.startswith("@@") &&
!Rest.startswith("@@@"))
report_fatal_error("A @@ version cannot be undefined");
if (Renames.count(&Symbol) && Renames[&Symbol] != Alias)
report_fatal_error(llvm::Twine("Multiple symbol versions defined for ") +
Symbol.getName());
Renames.insert(std::make_pair(&Symbol, Alias));
}
}
static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
uint8_t Type = newType; uint8_t Type = newType;
@ -465,9 +440,8 @@ static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
return Type; return Type;
} }
void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer, void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
uint32_t StringIndex, ELFSymbolData &MSD, ELFSymbolData &MSD, const MCAsmLayout &Layout) {
const MCAsmLayout &Layout) {
const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
const MCSymbolELF *Base = const MCSymbolELF *Base =
cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
@ -508,108 +482,6 @@ void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
IsReserved); IsReserved);
} }
// It is always valid to create a relocation with a symbol. It is preferable
// to use a relocation with a section if that is possible. Using the section
// allows us to omit some local symbols from the symbol table.
bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
const MCSymbolRefExpr *RefA,
const MCSymbolELF *Sym,
uint64_t C,
unsigned Type) const {
// A PCRel relocation to an absolute value has no symbol (or section). We
// represent that with a relocation to a null section.
if (!RefA)
return false;
MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
switch (Kind) {
default:
break;
// The .odp creation emits a relocation against the symbol ".TOC." which
// create a R_PPC64_TOC relocation. However the relocation symbol name
// in final object creation should be NULL, since the symbol does not
// really exist, it is just the reference to TOC base for the current
// object file. Since the symbol is undefined, returning false results
// in a relocation with a null section which is the desired result.
case MCSymbolRefExpr::VK_PPC_TOCBASE:
return false;
// These VariantKind cause the relocation to refer to something other than
// the symbol itself, like a linker generated table. Since the address of
// symbol is not relevant, we cannot replace the symbol with the
// section and patch the difference in the addend.
case MCSymbolRefExpr::VK_GOT:
case MCSymbolRefExpr::VK_PLT:
case MCSymbolRefExpr::VK_GOTPCREL:
case MCSymbolRefExpr::VK_PPC_GOT_LO:
case MCSymbolRefExpr::VK_PPC_GOT_HI:
case MCSymbolRefExpr::VK_PPC_GOT_HA:
return true;
}
// An undefined symbol is not in any section, so the relocation has to point
// to the symbol itself.
assert(Sym && "Expected a symbol");
if (Sym->isUndefined())
return true;
unsigned Binding = Sym->getBinding();
switch(Binding) {
default:
llvm_unreachable("Invalid Binding");
case ELF::STB_LOCAL:
break;
case ELF::STB_WEAK:
// If the symbol is weak, it might be overridden by a symbol in another
// file. The relocation has to point to the symbol so that the linker
// can update it.
return true;
case ELF::STB_GLOBAL:
// Global ELF symbols can be preempted by the dynamic linker. The relocation
// has to point to the symbol for a reason analogous to the STB_WEAK case.
return true;
}
// If a relocation points to a mergeable section, we have to be careful.
// If the offset is zero, a relocation with the section will encode the
// same information. With a non-zero offset, the situation is different.
// For example, a relocation can point 42 bytes past the end of a string.
// If we change such a relocation to use the section, the linker would think
// that it pointed to another string and subtracting 42 at runtime will
// produce the wrong value.
if (Sym->isInSection()) {
auto &Sec = cast<MCSectionELF>(Sym->getSection());
unsigned Flags = Sec.getFlags();
if (Flags & ELF::SHF_MERGE) {
if (C != 0)
return true;
// It looks like gold has a bug (http://sourceware.org/PR16794) and can
// only handle section relocations to mergeable sections if using RELA.
if (!hasRelocationAddend())
return true;
}
// Most TLS relocations use a got, so they need the symbol. Even those that
// are just an offset (@tpoff), require a symbol in gold versions before
// 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
// http://sourceware.org/PR16773.
if (Flags & ELF::SHF_TLS)
return true;
}
// If the symbol is a thumb function the final relocation must set the lowest
// bit. With a symbol that is done by just having the symbol have that bit
// set, so we would lose the bit if we relocated with the section.
// FIXME: We could use the section but add the bit to the relocation value.
if (Asm.isThumbFunc(Sym))
return true;
if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
return true;
return false;
}
// True if the assembler knows nothing about the final value of the symbol. // True if the assembler knows nothing about the final value of the symbol.
// This doesn't cover the comdat issues, since in those cases the assembler // This doesn't cover the comdat issues, since in those cases the assembler
// can at least know that all symbols in the section will move together. // can at least know that all symbols in the section will move together.
@ -630,117 +502,8 @@ static bool isWeak(const MCSymbolELF &Sym) {
} }
} }
void ELFObjectWriter::recordRelocation(MCAssembler &Asm, bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
const MCAsmLayout &Layout, bool Used, bool Renamed) {
const MCFragment *Fragment,
const MCFixup &Fixup, MCValue Target,
uint64_t &FixedValue) {
MCAsmBackend &Backend = Asm.getBackend();
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
uint64_t C = Target.getConstant();
uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
MCContext &Ctx = Asm.getContext();
if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
// Let A, B and C being the components of Target and R be the location of
// the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
// If it is pcrel, we want to compute (A - B + C - R).
// In general, ELF has no relocations for -B. It can only represent (A + C)
// or (A + C - R). If B = R + K and the relocation is not pcrel, we can
// replace B to implement it: (A - R - K + C)
if (IsPCRel) {
Ctx.reportError(
Fixup.getLoc(),
"No relocation available to represent this relative expression");
return;
}
const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
if (SymB.isUndefined()) {
Ctx.reportError(Fixup.getLoc(),
Twine("symbol '") + SymB.getName() +
"' can not be undefined in a subtraction expression");
return;
}
assert(!SymB.isAbsolute() && "Should have been folded");
const MCSection &SecB = SymB.getSection();
if (&SecB != &FixupSection) {
Ctx.reportError(Fixup.getLoc(),
"Cannot represent a difference across sections");
return;
}
uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
uint64_t K = SymBOffset - FixupOffset;
IsPCRel = true;
C -= K;
}
// We either rejected the fixup or folded B into C at this point.
const MCSymbolRefExpr *RefA = Target.getSymA();
const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
bool ViaWeakRef = false;
if (SymA && SymA->isVariable()) {
const MCExpr *Expr = SymA->getVariableValue();
if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
SymA = cast<MCSymbolELF>(&Inner->getSymbol());
ViaWeakRef = true;
}
}
}
unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
uint64_t OriginalC = C;
bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
C += Layout.getSymbolOffset(*SymA);
uint64_t Addend = 0;
if (hasRelocationAddend()) {
Addend = C;
C = 0;
}
FixedValue = C;
if (!RelocateWithSymbol) {
const MCSection *SecA =
(SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
const auto *SectionSymbol =
SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
if (SectionSymbol)
SectionSymbol->setUsedInReloc();
ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
OriginalC);
Relocations[&FixupSection].push_back(Rec);
return;
}
const auto *RenamedSymA = SymA;
if (SymA) {
if (const MCSymbolELF *R = Renames.lookup(SymA))
RenamedSymA = R;
if (ViaWeakRef)
RenamedSymA->setIsWeakrefUsedInReloc();
else
RenamedSymA->setUsedInReloc();
}
ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
OriginalC);
Relocations[&FixupSection].push_back(Rec);
}
bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
const MCSymbolELF &Symbol, bool Used,
bool Renamed) {
if (Symbol.isVariable()) { if (Symbol.isVariable()) {
const MCExpr *Expr = Symbol.getVariableValue(); const MCExpr *Expr = Symbol.getVariableValue();
if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
@ -773,7 +536,7 @@ bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
return true; return true;
} }
void ELFObjectWriter::computeSymbolTable( void ELFWriter::computeSymbolTable(
MCAssembler &Asm, const MCAsmLayout &Layout, MCAssembler &Asm, const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
SectionOffsetsTy &SectionOffsets) { SectionOffsetsTy &SectionOffsets) {
@ -805,7 +568,7 @@ void ELFObjectWriter::computeSymbolTable(
bool isSignature = Symbol.isSignature(); bool isSignature = Symbol.isSignature();
if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
Renames.count(&Symbol))) OWriter.Renames.count(&Symbol)))
continue; continue;
if (Symbol.isTemporary() && Symbol.isUndefined()) { if (Symbol.isTemporary() && Symbol.isUndefined()) {
@ -923,10 +686,9 @@ void ELFObjectWriter::computeSymbolTable(
SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
} }
MCSectionELF * MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
ELFObjectWriter::createRelocationSection(MCContext &Ctx, const MCSectionELF &Sec) {
const MCSectionELF &Sec) { if (OWriter.Relocations[&Sec].empty())
if (Relocations[&Sec].empty())
return nullptr; return nullptr;
const StringRef SectionName = Sec.getSectionName(); const StringRef SectionName = Sec.getSectionName();
@ -951,7 +713,7 @@ ELFObjectWriter::createRelocationSection(MCContext &Ctx,
} }
// Include the debug info compression header. // Include the debug info compression header.
bool ELFObjectWriter::maybeWriteCompression( bool ELFWriter::maybeWriteCompression(
uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle, uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
unsigned Alignment) { unsigned Alignment) {
if (ZLibStyle) { if (ZLibStyle) {
@ -985,8 +747,8 @@ bool ELFObjectWriter::maybeWriteCompression(
return true; return true;
} }
void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
const MCAsmLayout &Layout) { const MCAsmLayout &Layout) {
MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
StringRef SectionName = Section.getSectionName(); StringRef SectionName = Section.getSectionName();
@ -1037,12 +799,10 @@ void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
W.OS << CompressedContents; W.OS << CompressedContents;
} }
void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
uint64_t Flags, uint64_t Address, uint64_t Address, uint64_t Offset,
uint64_t Offset, uint64_t Size, uint64_t Size, uint32_t Link, uint32_t Info,
uint32_t Link, uint32_t Info, uint64_t Alignment, uint64_t EntrySize) {
uint64_t Alignment,
uint64_t EntrySize) {
W.write<uint32_t>(Name); // sh_name: index into string table W.write<uint32_t>(Name); // sh_name: index into string table
W.write<uint32_t>(Type); // sh_type W.write<uint32_t>(Type); // sh_type
WriteWord(Flags); // sh_flags WriteWord(Flags); // sh_flags
@ -1055,9 +815,9 @@ void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
WriteWord(EntrySize); // sh_entsize WriteWord(EntrySize); // sh_entsize
} }
void ELFObjectWriter::writeRelocations(const MCAssembler &Asm, void ELFWriter::writeRelocations(const MCAssembler &Asm,
const MCSectionELF &Sec) { const MCSectionELF &Sec) {
std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec]; std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
// We record relocations by pushing to the end of a vector. Reverse the vector // We record relocations by pushing to the end of a vector. Reverse the vector
// to get the relocations in the order they were created. // to get the relocations in the order they were created.
@ -1066,7 +826,7 @@ void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
std::reverse(Relocs.begin(), Relocs.end()); std::reverse(Relocs.begin(), Relocs.end());
// Sort the relocation entries. MIPS needs this. // Sort the relocation entries. MIPS needs this.
TargetObjectWriter->sortRelocs(Asm, Relocs); OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
const ELFRelocationEntry &Entry = Relocs[e - i - 1]; const ELFRelocationEntry &Entry = Relocs[e - i - 1];
@ -1074,13 +834,13 @@ void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
if (is64Bit()) { if (is64Bit()) {
write(Entry.Offset); write(Entry.Offset);
if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
write(uint32_t(Index)); write(uint32_t(Index));
write(TargetObjectWriter->getRSsym(Entry.Type)); write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
write(TargetObjectWriter->getRType3(Entry.Type)); write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
write(TargetObjectWriter->getRType2(Entry.Type)); write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
write(TargetObjectWriter->getRType(Entry.Type)); write(OWriter.TargetObjectWriter->getRType(Entry.Type));
} else { } else {
struct ELF::Elf64_Rela ERE64; struct ELF::Elf64_Rela ERE64;
ERE64.setSymbolAndType(Index, Entry.Type); ERE64.setSymbolAndType(Index, Entry.Type);
@ -1098,15 +858,17 @@ void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
if (hasRelocationAddend()) if (hasRelocationAddend())
write(uint32_t(Entry.Addend)); write(uint32_t(Entry.Addend));
if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
if (uint32_t RType = TargetObjectWriter->getRType2(Entry.Type)) { if (uint32_t RType =
OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
write(uint32_t(Entry.Offset)); write(uint32_t(Entry.Offset));
ERE32.setSymbolAndType(0, RType); ERE32.setSymbolAndType(0, RType);
write(ERE32.r_info); write(ERE32.r_info);
write(uint32_t(0)); write(uint32_t(0));
} }
if (uint32_t RType = TargetObjectWriter->getRType3(Entry.Type)) { if (uint32_t RType =
OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
write(uint32_t(Entry.Offset)); write(uint32_t(Entry.Offset));
ERE32.setSymbolAndType(0, RType); ERE32.setSymbolAndType(0, RType);
@ -1118,15 +880,15 @@ void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
} }
} }
const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) { const MCSectionELF *ELFWriter::createStringTable(MCContext &Ctx) {
const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1]; const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
StrTabBuilder.write(W.OS); StrTabBuilder.write(W.OS);
return StrtabSection; return StrtabSection;
} }
void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
uint32_t GroupSymbolIndex, uint64_t Offset, uint32_t GroupSymbolIndex, uint64_t Offset,
uint64_t Size, const MCSectionELF &Section) { uint64_t Size, const MCSectionELF &Section) {
uint64_t sh_link = 0; uint64_t sh_link = 0;
uint64_t sh_info = 0; uint64_t sh_info = 0;
@ -1174,7 +936,7 @@ void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
Section.getEntrySize()); Section.getEntrySize());
} }
void ELFObjectWriter::writeSectionHeader( void ELFWriter::writeSectionHeader(
const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
const SectionOffsetsTy &SectionOffsets) { const SectionOffsetsTy &SectionOffsets) {
const unsigned NumSections = SectionTable.size(); const unsigned NumSections = SectionTable.size();
@ -1205,8 +967,7 @@ void ELFObjectWriter::writeSectionHeader(
} }
} }
uint64_t ELFObjectWriter::writeObject(MCAssembler &Asm, uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
const MCAsmLayout &Layout) {
uint64_t StartOffset = W.OS.tell(); uint64_t StartOffset = W.OS.tell();
MCContext &Ctx = Asm.getContext(); MCContext &Ctx = Asm.getContext();
@ -1340,6 +1101,263 @@ uint64_t ELFObjectWriter::writeObject(MCAssembler &Asm,
return W.OS.tell() - StartOffset; return W.OS.tell() - StartOffset;
} }
bool ELFObjectWriter::hasRelocationAddend() const {
return TargetObjectWriter->hasRelocationAddend();
}
void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// The presence of symbol versions causes undefined symbols and
// versions declared with @@@ to be renamed.
for (const std::pair<StringRef, const MCSymbol *> &P : Asm.Symvers) {
StringRef AliasName = P.first;
const auto &Symbol = cast<MCSymbolELF>(*P.second);
size_t Pos = AliasName.find('@');
assert(Pos != StringRef::npos);
StringRef Prefix = AliasName.substr(0, Pos);
StringRef Rest = AliasName.substr(Pos);
StringRef Tail = Rest;
if (Rest.startswith("@@@"))
Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
auto *Alias =
cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
Asm.registerSymbol(*Alias);
const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
Alias->setVariableValue(Value);
// Aliases defined with .symvar copy the binding from the symbol they alias.
// This is the first place we are able to copy this information.
Alias->setExternal(Symbol.isExternal());
Alias->setBinding(Symbol.getBinding());
if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
continue;
// FIXME: produce a better error message.
if (Symbol.isUndefined() && Rest.startswith("@@") &&
!Rest.startswith("@@@"))
report_fatal_error("A @@ version cannot be undefined");
if (Renames.count(&Symbol) && Renames[&Symbol] != Alias)
report_fatal_error(llvm::Twine("Multiple symbol versions defined for ") +
Symbol.getName());
Renames.insert(std::make_pair(&Symbol, Alias));
}
}
// It is always valid to create a relocation with a symbol. It is preferable
// to use a relocation with a section if that is possible. Using the section
// allows us to omit some local symbols from the symbol table.
bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
const MCSymbolRefExpr *RefA,
const MCSymbolELF *Sym,
uint64_t C,
unsigned Type) const {
// A PCRel relocation to an absolute value has no symbol (or section). We
// represent that with a relocation to a null section.
if (!RefA)
return false;
MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
switch (Kind) {
default:
break;
// The .odp creation emits a relocation against the symbol ".TOC." which
// create a R_PPC64_TOC relocation. However the relocation symbol name
// in final object creation should be NULL, since the symbol does not
// really exist, it is just the reference to TOC base for the current
// object file. Since the symbol is undefined, returning false results
// in a relocation with a null section which is the desired result.
case MCSymbolRefExpr::VK_PPC_TOCBASE:
return false;
// These VariantKind cause the relocation to refer to something other than
// the symbol itself, like a linker generated table. Since the address of
// symbol is not relevant, we cannot replace the symbol with the
// section and patch the difference in the addend.
case MCSymbolRefExpr::VK_GOT:
case MCSymbolRefExpr::VK_PLT:
case MCSymbolRefExpr::VK_GOTPCREL:
case MCSymbolRefExpr::VK_PPC_GOT_LO:
case MCSymbolRefExpr::VK_PPC_GOT_HI:
case MCSymbolRefExpr::VK_PPC_GOT_HA:
return true;
}
// An undefined symbol is not in any section, so the relocation has to point
// to the symbol itself.
assert(Sym && "Expected a symbol");
if (Sym->isUndefined())
return true;
unsigned Binding = Sym->getBinding();
switch(Binding) {
default:
llvm_unreachable("Invalid Binding");
case ELF::STB_LOCAL:
break;
case ELF::STB_WEAK:
// If the symbol is weak, it might be overridden by a symbol in another
// file. The relocation has to point to the symbol so that the linker
// can update it.
return true;
case ELF::STB_GLOBAL:
// Global ELF symbols can be preempted by the dynamic linker. The relocation
// has to point to the symbol for a reason analogous to the STB_WEAK case.
return true;
}
// If a relocation points to a mergeable section, we have to be careful.
// If the offset is zero, a relocation with the section will encode the
// same information. With a non-zero offset, the situation is different.
// For example, a relocation can point 42 bytes past the end of a string.
// If we change such a relocation to use the section, the linker would think
// that it pointed to another string and subtracting 42 at runtime will
// produce the wrong value.
if (Sym->isInSection()) {
auto &Sec = cast<MCSectionELF>(Sym->getSection());
unsigned Flags = Sec.getFlags();
if (Flags & ELF::SHF_MERGE) {
if (C != 0)
return true;
// It looks like gold has a bug (http://sourceware.org/PR16794) and can
// only handle section relocations to mergeable sections if using RELA.
if (!hasRelocationAddend())
return true;
}
// Most TLS relocations use a got, so they need the symbol. Even those that
// are just an offset (@tpoff), require a symbol in gold versions before
// 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
// http://sourceware.org/PR16773.
if (Flags & ELF::SHF_TLS)
return true;
}
// If the symbol is a thumb function the final relocation must set the lowest
// bit. With a symbol that is done by just having the symbol have that bit
// set, so we would lose the bit if we relocated with the section.
// FIXME: We could use the section but add the bit to the relocation value.
if (Asm.isThumbFunc(Sym))
return true;
if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
return true;
return false;
}
void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
const MCFixup &Fixup, MCValue Target,
uint64_t &FixedValue) {
MCAsmBackend &Backend = Asm.getBackend();
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
uint64_t C = Target.getConstant();
uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
MCContext &Ctx = Asm.getContext();
if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
// Let A, B and C being the components of Target and R be the location of
// the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
// If it is pcrel, we want to compute (A - B + C - R).
// In general, ELF has no relocations for -B. It can only represent (A + C)
// or (A + C - R). If B = R + K and the relocation is not pcrel, we can
// replace B to implement it: (A - R - K + C)
if (IsPCRel) {
Ctx.reportError(
Fixup.getLoc(),
"No relocation available to represent this relative expression");
return;
}
const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
if (SymB.isUndefined()) {
Ctx.reportError(Fixup.getLoc(),
Twine("symbol '") + SymB.getName() +
"' can not be undefined in a subtraction expression");
return;
}
assert(!SymB.isAbsolute() && "Should have been folded");
const MCSection &SecB = SymB.getSection();
if (&SecB != &FixupSection) {
Ctx.reportError(Fixup.getLoc(),
"Cannot represent a difference across sections");
return;
}
uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
uint64_t K = SymBOffset - FixupOffset;
IsPCRel = true;
C -= K;
}
// We either rejected the fixup or folded B into C at this point.
const MCSymbolRefExpr *RefA = Target.getSymA();
const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
bool ViaWeakRef = false;
if (SymA && SymA->isVariable()) {
const MCExpr *Expr = SymA->getVariableValue();
if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
SymA = cast<MCSymbolELF>(&Inner->getSymbol());
ViaWeakRef = true;
}
}
}
unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
uint64_t OriginalC = C;
bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
C += Layout.getSymbolOffset(*SymA);
uint64_t Addend = 0;
if (hasRelocationAddend()) {
Addend = C;
C = 0;
}
FixedValue = C;
if (!RelocateWithSymbol) {
const MCSection *SecA =
(SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
const auto *SectionSymbol =
SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
if (SectionSymbol)
SectionSymbol->setUsedInReloc();
ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
OriginalC);
Relocations[&FixupSection].push_back(Rec);
return;
}
const auto *RenamedSymA = SymA;
if (SymA) {
if (const MCSymbolELF *R = Renames.lookup(SymA))
RenamedSymA = R;
if (ViaWeakRef)
RenamedSymA->setIsWeakrefUsedInReloc();
else
RenamedSymA->setUsedInReloc();
}
ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
OriginalC);
Relocations[&FixupSection].push_back(Rec);
}
bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
bool InSet, bool IsPCRel) const { bool InSet, bool IsPCRel) const {