[SCEV] Bring some methods up to coding style; NFC

- Start methods with lower case
 - Reflow a comment
 - Delete header comment repeated in .cpp file

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249716 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjoy Das 2015-10-08 18:46:59 +00:00
parent 7db72f8f99
commit 8b6e5f368c
2 changed files with 34 additions and 39 deletions

View File

@ -446,16 +446,16 @@ namespace llvm {
const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
/// Compute the number of times the specified loop will iterate.
BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L);
/// Compute the number of times the backedge of the specified loop will
/// execute if it exits via the specified block.
ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a conditional branch of ExitCond,
/// TBB, and FBB.
ExitLimit ComputeExitLimitFromCond(const Loop *L,
ExitLimit computeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
@ -464,7 +464,7 @@ namespace llvm {
/// Compute the number of times the backedge of the specified loop will
/// execute if its exit condition were a conditional branch of the ICmpInst
/// ExitCond, TBB, and FBB.
ExitLimit ComputeExitLimitFromICmp(const Loop *L,
ExitLimit computeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
@ -474,12 +474,12 @@ namespace llvm {
/// execute if its exit condition were a switch with a single exiting case
/// to ExitingBB.
ExitLimit
ComputeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
BasicBlock *ExitingBB, bool IsSubExpr);
/// Given an exit condition of 'icmp op load X, cst', try to see if we can
/// compute the backedge-taken count.
ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
Constant *RHS,
const Loop *L,
ICmpInst::Predicate p);
@ -489,7 +489,7 @@ namespace llvm {
/// of the loop until we get the exit condition gets a value of ExitWhen
/// (true or false). If we cannot evaluate the exit count of the loop,
/// return CouldNotCompute.
const SCEV *ComputeExitCountExhaustively(const Loop *L,
const SCEV *computeExitCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen);

View File

@ -4878,10 +4878,10 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
if (!Pair.second)
return Pair.first->second;
// ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
// computeBackedgeTakenCount may allocate memory for its result. Inserting it
// into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
// must be cleared in this scope.
BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
if (Result.getExact(this) != getCouldNotCompute()) {
assert(isLoopInvariant(Result.getExact(this), L) &&
@ -4934,7 +4934,7 @@ ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
}
// Re-lookup the insert position, since the call to
// ComputeBackedgeTakenCount above could result in a
// computeBackedgeTakenCount above could result in a
// recusive call to getBackedgeTakenInfo (on a different
// loop), which would invalidate the iterator computed
// earlier.
@ -5115,10 +5115,10 @@ void ScalarEvolution::BackedgeTakenInfo::clear() {
delete[] ExitNotTaken.getNextExit();
}
/// ComputeBackedgeTakenCount - Compute the number of times the backedge
/// computeBackedgeTakenCount - Compute the number of times the backedge
/// of the specified loop will execute.
ScalarEvolution::BackedgeTakenInfo
ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
@ -5132,7 +5132,7 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
// and compute maxBECount.
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BasicBlock *ExitBB = ExitingBlocks[i];
ExitLimit EL = ComputeExitLimit(L, ExitBB);
ExitLimit EL = computeExitLimit(L, ExitBB);
// 1. For each exit that can be computed, add an entry to ExitCounts.
// CouldComputeBECount is true only if all exits can be computed.
@ -5174,13 +5174,11 @@ ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
}
/// ComputeExitLimit - Compute the number of times the backedge of the specified
/// loop will execute if it exits via the specified block.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
// Okay, we've chosen an exiting block. See what condition causes us to
// exit at this block and remember the exit block and whether all other targets
// Okay, we've chosen an exiting block. See what condition causes us to exit
// at this block and remember the exit block and whether all other targets
// lead to the loop header.
bool MustExecuteLoopHeader = true;
BasicBlock *Exit = nullptr;
@ -5243,19 +5241,19 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
assert(BI->isConditional() && "If unconditional, it can't be in loop!");
// Proceed to the next level to examine the exit condition expression.
return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
BI->getSuccessor(1),
/*ControlsExit=*/IsOnlyExit);
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
/*ControlsExit=*/IsOnlyExit);
return getCouldNotCompute();
}
/// ComputeExitLimitFromCond - Compute the number of times the
/// computeExitLimitFromCond - Compute the number of times the
/// backedge of the specified loop will execute if its exit condition
/// were a conditional branch of ExitCond, TBB, and FBB.
///
@ -5264,7 +5262,7 @@ ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
/// condition is true and can infer that failing to meet the condition prior to
/// integer wraparound results in undefined behavior.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
ScalarEvolution::computeExitLimitFromCond(const Loop *L,
Value *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
@ -5274,9 +5272,9 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
if (BO->getOpcode() == Instruction::And) {
// Recurse on the operands of the and.
bool EitherMayExit = L->contains(TBB);
ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
ControlsExit && !EitherMayExit);
ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
ControlsExit && !EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
@ -5309,9 +5307,9 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
if (BO->getOpcode() == Instruction::Or) {
// Recurse on the operands of the or.
bool EitherMayExit = L->contains(FBB);
ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
ControlsExit && !EitherMayExit);
ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
ControlsExit && !EitherMayExit);
const SCEV *BECount = getCouldNotCompute();
const SCEV *MaxBECount = getCouldNotCompute();
@ -5346,7 +5344,7 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
// With an icmp, it may be feasible to compute an exact backedge-taken count.
// Proceed to the next level to examine the icmp.
if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
// Check for a constant condition. These are normally stripped out by
// SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
@ -5362,14 +5360,11 @@ ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
}
// If it's not an integer or pointer comparison then compute it the hard way.
return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
}
/// ComputeExitLimitFromICmp - Compute the number of times the
/// backedge of the specified loop will execute if its exit condition
/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
ICmpInst *ExitCond,
BasicBlock *TBB,
BasicBlock *FBB,
@ -5386,7 +5381,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
ExitLimit ItCnt =
ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
if (ItCnt.hasAnyInfo())
return ItCnt;
}
@ -5451,7 +5446,7 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
}
default:
#if 0
dbgs() << "ComputeBackedgeTakenCount ";
dbgs() << "computeBackedgeTakenCount ";
if (ExitCond->getOperand(0)->getType()->isUnsigned())
dbgs() << "[unsigned] ";
dbgs() << *LHS << " "
@ -5460,11 +5455,11 @@ ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
#endif
break;
}
return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
}
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
SwitchInst *Switch,
BasicBlock *ExitingBlock,
bool ControlsExit) {
@ -5497,11 +5492,11 @@ EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
return cast<SCEVConstant>(Val)->getValue();
}
/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
/// computeLoadConstantCompareExitLimit - Given an exit condition of
/// 'icmp op load X, cst', try to see if we can compute the backedge
/// execution count.
ScalarEvolution::ExitLimit
ScalarEvolution::ComputeLoadConstantCompareExitLimit(
ScalarEvolution::computeLoadConstantCompareExitLimit(
LoadInst *LI,
Constant *RHS,
const Loop *L,
@ -5826,7 +5821,7 @@ ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
}
}
const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
Value *Cond,
bool ExitWhen) {
PHINode *PN = getConstantEvolvingPHI(Cond, L);