mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-24 03:25:00 +00:00
[docs] Add gpucc publication and tutorial.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264839 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
540e0f57f5
commit
8c5f0de0ab
@ -53,7 +53,7 @@ How to Compile CUDA C/C++ with LLVM
|
||||
===================================
|
||||
|
||||
We assume you have installed the CUDA driver and runtime. Consult the `NVIDIA
|
||||
CUDA installation Guide
|
||||
CUDA installation guide
|
||||
<https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html>`_ if
|
||||
you have not.
|
||||
|
||||
@ -167,10 +167,9 @@ customizable target-independent optimization pipeline.
|
||||
straight-line scalar optimizations <https://goo.gl/4Rb9As>`_.
|
||||
|
||||
* **Inferring memory spaces**. `This optimization
|
||||
<http://www.llvm.org/docs/doxygen/html/NVPTXFavorNonGenericAddrSpaces_8cpp_source.html>`_
|
||||
<https://github.com/llvm-mirror/llvm/blob/master/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp>`_
|
||||
infers the memory space of an address so that the backend can emit faster
|
||||
special loads and stores from it. Details can be found in the `design
|
||||
document for memory space inference <https://goo.gl/5wH2Ct>`_.
|
||||
special loads and stores from it.
|
||||
|
||||
* **Aggressive loop unrooling and function inlining**. Loop unrolling and
|
||||
function inlining need to be more aggressive for GPUs than for CPUs because
|
||||
@ -201,6 +200,19 @@ customizable target-independent optimization pipeline.
|
||||
divides in our benchmarks have a divisor and dividend which fit in 32-bits at
|
||||
runtime. This optimization provides a fast path for this common case.
|
||||
|
||||
Publication
|
||||
===========
|
||||
|
||||
| `gpucc: An Open-Source GPGPU Compiler <http://dl.acm.org/citation.cfm?id=2854041>`_
|
||||
| Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt
|
||||
| *Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016)*
|
||||
| `Slides for the CGO talk <http://wujingyue.com/docs/gpucc-talk.pdf>`_
|
||||
|
||||
Tutorial
|
||||
========
|
||||
|
||||
`CGO 2016 gpucc tutorial <http://wujingyue.com/docs/gpucc-tutorial.pdf>`_
|
||||
|
||||
Obtaining Help
|
||||
==============
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user