Support expanding partial-word cmpxchg to full-word cmpxchg in AtomicExpandPass.

Many CPUs only have the ability to do a 4-byte cmpxchg (or ll/sc), not 1
or 2-byte. For those, you need to mask and shift the 1 or 2 byte values
appropriately to use the 4-byte instruction.

This change adds support for cmpxchg-based instruction sets (only SPARC,
in LLVM). The support can be extended for LL/SC-based PPC and MIPS in
the future, supplanting the ISel expansions those architectures
currently use.

Tests added for the IR transform and SPARCv9.

Differential Revision: http://reviews.llvm.org/D21029

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273025 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
James Y Knight 2016-06-17 18:11:48 +00:00
parent d2e7196d0a
commit 8d30502e60
6 changed files with 723 additions and 56 deletions

View File

@ -1136,6 +1136,15 @@ public:
return MaxAtomicSizeInBitsSupported;
}
/// Returns the size of the smallest cmpxchg or ll/sc instruction
/// the backend supports. Any smaller operations are widened in
/// AtomicExpandPass.
///
/// Note that *unlike* operations above the maximum size, atomic ops
/// are still natively supported below the minimum; they just
/// require a more complex expansion.
unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
/// Whether AtomicExpandPass should automatically insert fences and reduce
/// ordering for this atomic. This should be true for most architectures with
/// weak memory ordering. Defaults to false.
@ -1552,6 +1561,11 @@ protected:
MaxAtomicSizeInBitsSupported = SizeInBits;
}
// Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
MinCmpXchgSizeInBits = SizeInBits;
}
public:
//===--------------------------------------------------------------------===//
// Addressing mode description hooks (used by LSR etc).
@ -1965,6 +1979,10 @@ private:
/// Accesses larger than this will be expanded by AtomicExpandPass.
unsigned MaxAtomicSizeInBitsSupported;
/// Size in bits of the minimum cmpxchg or ll/sc operation the
/// backend supports.
unsigned MinCmpXchgSizeInBits;
/// If set to a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
unsigned StackPointerRegisterToSaveRestore;

View File

@ -57,10 +57,25 @@ namespace {
StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
bool expandAtomicStore(StoreInst *SI);
bool tryExpandAtomicRMW(AtomicRMWInst *AI);
bool expandAtomicOpToLLSC(
Instruction *I, Value *Addr, AtomicOrdering MemOpOrder,
Value *
insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
void expandAtomicOpToLLSC(
Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
void expandPartwordAtomicRMW(
AtomicRMWInst *I,
TargetLoweringBase::AtomicExpansionKind ExpansionKind);
void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
static Value *insertRMWCmpXchgLoop(
IRBuilder<> &Builder, Type *ResultType, Value *Addr,
AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
CreateCmpXchgInstFun CreateCmpXchg);
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
bool isIdempotentRMW(AtomicRMWInst *AI);
bool simplifyIdempotentRMW(AtomicRMWInst *AI);
@ -74,6 +89,10 @@ namespace {
void expandAtomicStoreToLibcall(StoreInst *LI);
void expandAtomicRMWToLibcall(AtomicRMWInst *I);
void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
friend bool
llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
CreateCmpXchgInstFun CreateCmpXchg);
};
}
@ -285,9 +304,17 @@ bool AtomicExpand::runOnFunction(Function &F) {
"invariant broken");
MadeChange = true;
}
if (TLI->shouldExpandAtomicCmpXchgInIR(CASI))
MadeChange |= expandAtomicCmpXchg(CASI);
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
unsigned ValueSize = getAtomicOpSize(CASI);
if (ValueSize < MinCASSize) {
assert(!TLI->shouldExpandAtomicCmpXchgInIR(CASI) &&
"MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
expandPartwordCmpXchg(CASI);
} else {
if (TLI->shouldExpandAtomicCmpXchgInIR(CASI))
MadeChange |= expandAtomicCmpXchg(CASI);
}
}
}
return MadeChange;
@ -355,9 +382,10 @@ bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
case TargetLoweringBase::AtomicExpansionKind::None:
return false;
case TargetLoweringBase::AtomicExpansionKind::LLSC:
return expandAtomicOpToLLSC(
LI, LI->getPointerOperand(), LI->getOrdering(),
expandAtomicOpToLLSC(
LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
[](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
return true;
case TargetLoweringBase::AtomicExpansionKind::LLOnly:
return expandAtomicLoadToLL(LI);
case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
@ -498,32 +526,353 @@ bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
case TargetLoweringBase::AtomicExpansionKind::None:
return false;
case TargetLoweringBase::AtomicExpansionKind::LLSC:
return expandAtomicOpToLLSC(AI, AI->getPointerOperand(), AI->getOrdering(),
[&](IRBuilder<> &Builder, Value *Loaded) {
return performAtomicOp(AI->getOperation(),
Builder, Loaded,
AI->getValOperand());
});
case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
case TargetLoweringBase::AtomicExpansionKind::LLSC: {
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
unsigned ValueSize = getAtomicOpSize(AI);
if (ValueSize < MinCASSize) {
llvm_unreachable(
"MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
} else {
auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
return performAtomicOp(AI->getOperation(), Builder, Loaded,
AI->getValOperand());
};
expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
AI->getOrdering(), PerformOp);
}
return true;
}
case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
unsigned ValueSize = getAtomicOpSize(AI);
if (ValueSize < MinCASSize) {
expandPartwordAtomicRMW(AI,
TargetLoweringBase::AtomicExpansionKind::CmpXChg);
} else {
expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
}
return true;
}
default:
llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
}
}
bool AtomicExpand::expandAtomicOpToLLSC(
Instruction *I, Value *Addr, AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
namespace {
/// Result values from createMaskInstrs helper.
struct PartwordMaskValues {
Type *WordType;
Type *ValueType;
Value *AlignedAddr;
Value *ShiftAmt;
Value *Mask;
Value *Inv_Mask;
};
} // end anonymous namespace
/// This is a helper function which builds instructions to provide
/// values necessary for partword atomic operations. It takes an
/// incoming address, Addr, and ValueType, and constructs the address,
/// shift-amounts and masks needed to work with a larger value of size
/// WordSize.
///
/// AlignedAddr: Addr rounded down to a multiple of WordSize
///
/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
/// from AlignAddr for it to have the same value as if
/// ValueType was loaded from Addr.
///
/// Mask: Value to mask with the value loaded from AlignAddr to
/// include only the part that would've been loaded from Addr.
///
/// Inv_Mask: The inverse of Mask.
static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
Type *ValueType, Value *Addr,
unsigned WordSize) {
PartwordMaskValues Ret;
BasicBlock *BB = I->getParent();
Function *F = BB->getParent();
Module *M = I->getModule();
LLVMContext &Ctx = F->getContext();
const DataLayout &DL = M->getDataLayout();
unsigned ValueSize = DL.getTypeStoreSize(ValueType);
assert(ValueSize < WordSize);
Ret.ValueType = ValueType;
Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
Type *WordPtrType =
Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
Ret.AlignedAddr = Builder.CreateIntToPtr(
Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
"AlignedAddr");
Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
if (DL.isLittleEndian()) {
// turn bytes into bits
Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
} else {
// turn bytes into bits, and count from the other side.
Ret.ShiftAmt =
Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
}
Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
Ret.Mask = Builder.CreateShl(
ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
"Mask");
Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
return Ret;
}
/// Emit IR to implement a masked version of a given atomicrmw
/// operation. (That is, only the bits under the Mask should be
/// affected by the operation)
static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
IRBuilder<> &Builder, Value *Loaded,
Value *Shifted_Inc, Value *Inc,
const PartwordMaskValues &PMV) {
switch (Op) {
case AtomicRMWInst::Xchg: {
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
return FinalVal;
}
case AtomicRMWInst::Or:
case AtomicRMWInst::Xor:
// Or/Xor won't affect any other bits, so can just be done
// directly.
return performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
case AtomicRMWInst::Add:
case AtomicRMWInst::Sub:
case AtomicRMWInst::And:
case AtomicRMWInst::Nand: {
// The other arithmetic ops need to be masked into place.
Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
return FinalVal;
}
case AtomicRMWInst::Max:
case AtomicRMWInst::Min:
case AtomicRMWInst::UMax:
case AtomicRMWInst::UMin: {
// Finally, comparison ops will operate on the full value, so
// truncate down to the original size, and expand out again after
// doing the operation.
Value *Loaded_Shiftdown = Builder.CreateTrunc(
Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
Value *NewVal_Shiftup = Builder.CreateShl(
Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
return FinalVal;
}
default:
llvm_unreachable("Unknown atomic op");
}
}
/// Expand a sub-word atomicrmw operation into an appropriate
/// word-sized operation.
///
/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
/// way as a typical atomicrmw expansion. The only difference here is
/// that the operation inside of the loop must operate only upon a
/// part of the value.
void AtomicExpand::expandPartwordAtomicRMW(
AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
AtomicOrdering MemOpOrder = AI->getOrdering();
IRBuilder<> Builder(AI);
PartwordMaskValues PMV =
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
TLI->getMinCmpXchgSizeInBits() / 8);
Value *ValOperand_Shifted =
Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
PMV.ShiftAmt, "ValOperand_Shifted");
auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
ValOperand_Shifted, AI->getValOperand(), PMV);
};
// TODO: When we're ready to support LLSC conversions too, use
// insertRMWLLSCLoop here for ExpansionKind==LLSC.
Value *OldResult =
insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
PerformPartwordOp, createCmpXchgInstFun);
Value *FinalOldResult = Builder.CreateTrunc(
Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
AI->replaceAllUsesWith(FinalOldResult);
AI->eraseFromParent();
}
void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
// The basic idea here is that we're expanding a cmpxchg of a
// smaller memory size up to a word-sized cmpxchg. To do this, we
// need to add a retry-loop for strong cmpxchg, so that
// modifications to other parts of the word don't cause a spurious
// failure.
// This generates code like the following:
// [[Setup mask values PMV.*]]
// %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
// %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
// %InitLoaded = load i32* %addr
// %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
// br partword.cmpxchg.loop
// partword.cmpxchg.loop:
// %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
// [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
// %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
// %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
// %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
// i32 %FullWord_NewVal success_ordering failure_ordering
// %OldVal = extractvalue { i32, i1 } %NewCI, 0
// %Success = extractvalue { i32, i1 } %NewCI, 1
// br i1 %Success, label %partword.cmpxchg.end,
// label %partword.cmpxchg.failure
// partword.cmpxchg.failure:
// %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
// %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
// br i1 %ShouldContinue, label %partword.cmpxchg.loop,
// label %partword.cmpxchg.end
// partword.cmpxchg.end:
// %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
// %FinalOldVal = trunc i32 %tmp1 to i8
// %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
// %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
Value *Addr = CI->getPointerOperand();
Value *Cmp = CI->getCompareOperand();
Value *NewVal = CI->getNewValOperand();
BasicBlock *BB = CI->getParent();
Function *F = BB->getParent();
IRBuilder<> Builder(CI);
LLVMContext &Ctx = Builder.getContext();
const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
BasicBlock *EndBB =
BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
auto FailureBB =
BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
// The split call above "helpfully" added a branch at the end of BB
// (to the wrong place).
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
PartwordMaskValues PMV = createMaskInstrs(
Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
// Shift the incoming values over, into the right location in the word.
Value *NewVal_Shifted =
Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
Value *Cmp_Shifted =
Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
// Load the entire current word, and mask into place the expected and new
// values
LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
InitLoaded->setVolatile(CI->isVolatile());
Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
Builder.CreateBr(LoopBB);
// partword.cmpxchg.loop:
Builder.SetInsertPoint(LoopBB);
PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
// Mask/Or the expected and new values into place in the loaded word.
Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
CI->getFailureOrdering(), CI->getSynchScope());
NewCI->setVolatile(CI->isVolatile());
// When we're building a strong cmpxchg, we need a loop, so you
// might think we could use a weak cmpxchg inside. But, using strong
// allows the below comparison for ShouldContinue, and we're
// expecting the underlying cmpxchg to be a machine instruction,
// which is strong anyways.
NewCI->setWeak(CI->isWeak());
Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
Value *Success = Builder.CreateExtractValue(NewCI, 1);
if (CI->isWeak())
Builder.CreateBr(EndBB);
else
Builder.CreateCondBr(Success, EndBB, FailureBB);
// partword.cmpxchg.failure:
Builder.SetInsertPoint(FailureBB);
// Upon failure, verify that the masked-out part of the loaded value
// has been modified. If it didn't, abort the cmpxchg, since the
// masked-in part must've.
Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
// Add the second value to the phi from above
Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
// partword.cmpxchg.end:
Builder.SetInsertPoint(CI);
Value *FinalOldVal = Builder.CreateTrunc(
Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
Value *Res = UndefValue::get(CI->getType());
Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
Res = Builder.CreateInsertValue(Res, Success, 1);
CI->replaceAllUsesWith(Res);
CI->eraseFromParent();
}
void AtomicExpand::expandAtomicOpToLLSC(
Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
IRBuilder<> Builder(I);
Value *Loaded =
insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
I->replaceAllUsesWith(Loaded);
I->eraseFromParent();
}
Value *AtomicExpand::insertRMWLLSCLoop(
IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
LLVMContext &Ctx = Builder.getContext();
BasicBlock *BB = Builder.GetInsertBlock();
Function *F = BB->getParent();
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
//
// The standard expansion we produce is:
// [...]
// fence?
// atomicrmw.start:
// %loaded = @load.linked(%addr)
// %new = some_op iN %loaded, %incr
@ -531,17 +880,13 @@ bool AtomicExpand::expandAtomicOpToLLSC(
// %try_again = icmp i32 ne %stored, 0
// br i1 %try_again, label %loop, label %atomicrmw.end
// atomicrmw.end:
// fence?
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(I->getIterator(), "atomicrmw.end");
BasicBlock *ExitBB =
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
// This grabs the DebugLoc from I.
IRBuilder<> Builder(I);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we might want a fence too. It's easiest to just remove
// the branch entirely.
// wrong place).
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
Builder.CreateBr(LoopBB);
@ -559,11 +904,7 @@ bool AtomicExpand::expandAtomicOpToLLSC(
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
I->replaceAllUsesWith(Loaded);
I->eraseFromParent();
return true;
return Loaded;
}
/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
@ -867,17 +1208,14 @@ bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
return false;
}
bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
CreateCmpXchgInstFun CreateCmpXchg) {
assert(AI);
AtomicOrdering MemOpOrder = AI->getOrdering() == AtomicOrdering::Unordered
? AtomicOrdering::Monotonic
: AI->getOrdering();
Value *Addr = AI->getPointerOperand();
BasicBlock *BB = AI->getParent();
Value *AtomicExpand::insertRMWCmpXchgLoop(
IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
AtomicOrdering MemOpOrder,
function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
CreateCmpXchgInstFun CreateCmpXchg) {
LLVMContext &Ctx = Builder.getContext();
BasicBlock *BB = Builder.GetInsertBlock();
Function *F = BB->getParent();
LLVMContext &Ctx = F->getContext();
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
//
@ -894,34 +1232,34 @@ bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
// br i1 %success, label %atomicrmw.end, label %loop
// atomicrmw.end:
// [...]
BasicBlock *ExitBB = BB->splitBasicBlock(AI->getIterator(), "atomicrmw.end");
BasicBlock *ExitBB =
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
// This grabs the DebugLoc from AI.
IRBuilder<> Builder(AI);
// The split call above "helpfully" added a branch at the end of BB (to the
// wrong place), but we want a load. It's easiest to just remove
// the branch entirely.
std::prev(BB->end())->eraseFromParent();
Builder.SetInsertPoint(BB);
LoadInst *InitLoaded = Builder.CreateLoad(Addr);
LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
// Atomics require at least natural alignment.
InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8);
InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
Builder.CreateBr(LoopBB);
// Start the main loop block now that we've taken care of the preliminaries.
Builder.SetInsertPoint(LoopBB);
PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
Loaded->addIncoming(InitLoaded, BB);
Value *NewVal =
performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
Value *NewVal = PerformOp(Builder, Loaded);
Value *NewLoaded = nullptr;
Value *Success = nullptr;
CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder,
CreateCmpXchg(Builder, Addr, Loaded, NewVal,
MemOpOrder == AtomicOrdering::Unordered
? AtomicOrdering::Monotonic
: MemOpOrder,
Success, NewLoaded);
assert(Success && NewLoaded);
@ -930,10 +1268,23 @@ bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
Builder.CreateCondBr(Success, ExitBB, LoopBB);
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
return NewLoaded;
}
AI->replaceAllUsesWith(NewLoaded);
// Note: This function is exposed externally by AtomicExpandUtils.h
bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
CreateCmpXchgInstFun CreateCmpXchg) {
IRBuilder<> Builder(AI);
Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
[&](IRBuilder<> &Builder, Value *Loaded) {
return performAtomicOp(AI->getOperation(), Builder, Loaded,
AI->getValOperand());
},
CreateCmpXchg);
AI->replaceAllUsesWith(Loaded);
AI->eraseFromParent();
return true;
}

View File

@ -830,6 +830,8 @@ TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
// with the Target-specific changes necessary.
MaxAtomicSizeInBitsSupported = 1024;
MinCmpXchgSizeInBits = 0;
std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());

View File

@ -1647,6 +1647,8 @@ SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
else
setMaxAtomicSizeInBitsSupported(0);
setMinCmpXchgSizeInBits(32);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);

View File

@ -64,6 +64,90 @@ entry:
ret i64 %2
}
;; TODO: the "move %icc" and related instructions are totally
;; redundant here. There's something weird happening in optimization
;; of the success value of cmpxchg.
; CHECK-LABEL: test_cmpxchg_i8
; CHECK: and %o1, -4, %o2
; CHECK: mov 3, %o3
; CHECK: andn %o3, %o1, %o1
; CHECK: sll %o1, 3, %o1
; CHECK: mov 255, %o3
; CHECK: sll %o3, %o1, %o5
; CHECK: xor %o5, -1, %o3
; CHECK: mov 123, %o4
; CHECK: ld [%o2], %g2
; CHECK: sll %o4, %o1, %o4
; CHECK: and %o0, 255, %o0
; CHECK: sll %o0, %o1, %o0
; CHECK: andn %g2, %o5, %g2
; CHECK: sethi 0, %o5
; CHECK: [[LABEL1:\.L.*]]:
; CHECK: or %g2, %o4, %g3
; CHECK: or %g2, %o0, %g4
; CHECK: cas [%o2], %g4, %g3
; CHECK: cmp %g3, %g4
; CHECK: mov %o5, %g4
; CHECK: move %icc, 1, %g4
; CHECK: cmp %g4, 0
; CHECK: bne [[LABEL2:\.L.*]]
; CHECK: nop
; CHECK: and %g3, %o3, %g4
; CHECK: cmp %g2, %g4
; CHECK: bne [[LABEL1]]
; CHECK: mov %g4, %g2
; CHECK: [[LABEL2]]:
; CHECK: retl
; CHECK: srl %g3, %o1, %o0
define i8 @test_cmpxchg_i8(i8 %a, i8* %ptr) {
entry:
%pair = cmpxchg i8* %ptr, i8 %a, i8 123 monotonic monotonic
%b = extractvalue { i8, i1 } %pair, 0
ret i8 %b
}
; CHECK-LABEL: test_cmpxchg_i16
; CHECK: and %o1, -4, %o2
; CHECK: and %o1, 3, %o1
; CHECK: xor %o1, 2, %o1
; CHECK: sll %o1, 3, %o1
; CHECK: sethi 63, %o3
; CHECK: or %o3, 1023, %o4
; CHECK: sll %o4, %o1, %o5
; CHECK: xor %o5, -1, %o3
; CHECK: and %o0, %o4, %o4
; CHECK: ld [%o2], %g2
; CHECK: mov 123, %o0
; CHECK: sll %o0, %o1, %o0
; CHECK: sll %o4, %o1, %o4
; CHECK: andn %g2, %o5, %g2
; CHECK: sethi 0, %o5
; CHECK: [[LABEL1:\.L.*]]:
; CHECK: or %g2, %o0, %g3
; CHECK: or %g2, %o4, %g4
; CHECK: cas [%o2], %g4, %g3
; CHECK: cmp %g3, %g4
; CHECK: mov %o5, %g4
; CHECK: move %icc, 1, %g4
; CHECK: cmp %g4, 0
; CHECK: bne [[LABEL2:\.L.*]]
; CHECK: nop
; CHECK: and %g3, %o3, %g4
; CHECK: cmp %g2, %g4
; CHECK: bne [[LABEL1]]
; CHECK: mov %g4, %g2
; CHECK: [[LABEL2]]:
; CHECK: retl
; CHECK: srl %g3, %o1, %o0
define i16 @test_cmpxchg_i16(i16 %a, i16* %ptr) {
entry:
%pair = cmpxchg i16* %ptr, i16 %a, i16 123 monotonic monotonic
%b = extractvalue { i16, i1 } %pair, 0
ret i16 %b
}
; CHECK-LABEL: test_cmpxchg_i32
; CHECK: mov 123, [[R:%[gilo][0-7]]]
; CHECK: cas [%o1], %o0, [[R]]
@ -86,6 +170,26 @@ entry:
ret i64 %b
}
; CHECK-LABEL: test_swap_i8
; CHECK: mov 42, [[R:%[gilo][0-7]]]
; CHECK: cas
define i8 @test_swap_i8(i8 %a, i8* %ptr) {
entry:
%b = atomicrmw xchg i8* %ptr, i8 42 monotonic
ret i8 %b
}
; CHECK-LABEL: test_swap_i16
; CHECK: mov 42, [[R:%[gilo][0-7]]]
; CHECK: cas
define i16 @test_swap_i16(i16 %a, i16* %ptr) {
entry:
%b = atomicrmw xchg i16* %ptr, i16 42 monotonic
ret i16 %b
}
; CHECK-LABEL: test_swap_i32
; CHECK: mov 42, [[R:%[gilo][0-7]]]
; CHECK: swap [%o1], [[R]]
@ -105,12 +209,36 @@ entry:
ret i64 %b
}
; CHECK-LABEL: test_load_add_32
; CHECK-LABEL: test_load_sub_i8
; CHECK: membar
; CHECK: .L{{.*}}:
; CHECK: sub
; CHECK: cas [{{%[gilo][0-7]}}]
; CHECK: membar
define zeroext i8 @test_load_sub_i8(i8* %p, i8 zeroext %v) {
entry:
%0 = atomicrmw sub i8* %p, i8 %v seq_cst
ret i8 %0
}
; CHECK-LABEL: test_load_sub_i16
; CHECK: membar
; CHECK: .L{{.*}}:
; CHECK: sub
; CHECK: cas [{{%[gilo][0-7]}}]
; CHECK: membar
define zeroext i16 @test_load_sub_i16(i16* %p, i16 zeroext %v) {
entry:
%0 = atomicrmw sub i16* %p, i16 %v seq_cst
ret i16 %0
}
; CHECK-LABEL: test_load_add_i32
; CHECK: membar
; CHECK: add [[V:%[gilo][0-7]]], %o1, [[U:%[gilo][0-7]]]
; CHECK: cas [%o0], [[V]], [[U]]
; CHECK: membar
define zeroext i32 @test_load_add_32(i32* %p, i32 zeroext %v) {
define zeroext i32 @test_load_add_i32(i32* %p, i32 zeroext %v) {
entry:
%0 = atomicrmw add i32* %p, i32 %v seq_cst
ret i32 %0

View File

@ -0,0 +1,166 @@
; RUN: opt -S %s -atomic-expand | FileCheck %s
;; Verify the cmpxchg and atomicrmw expansions where sub-word-size
;; instructions are not available.
;;; NOTE: this test is mostly target-independent -- any target which
;;; doesn't support cmpxchg of sub-word sizes would do.
target datalayout = "E-m:e-i64:64-n32:64-S128"
target triple = "sparcv9-unknown-unknown"
; CHECK-LABEL: @test_cmpxchg_i8(
; CHECK: fence seq_cst
; CHECK: %0 = ptrtoint i8* %arg to i64
; CHECK: %1 = and i64 %0, -4
; CHECK: %AlignedAddr = inttoptr i64 %1 to i32*
; CHECK: %PtrLSB = and i64 %0, 3
; CHECK: %2 = xor i64 %PtrLSB, 3
; CHECK: %3 = shl i64 %2, 3
; CHECK: %ShiftAmt = trunc i64 %3 to i32
; CHECK: %Mask = shl i32 255, %ShiftAmt
; CHECK: %Inv_Mask = xor i32 %Mask, -1
; CHECK: %4 = zext i8 %new to i32
; CHECK: %5 = shl i32 %4, %ShiftAmt
; CHECK: %6 = zext i8 %old to i32
; CHECK: %7 = shl i32 %6, %ShiftAmt
; CHECK: %8 = load i32, i32* %AlignedAddr
; CHECK: %9 = and i32 %8, %Inv_Mask
; CHECK: br label %partword.cmpxchg.loop
; CHECK:partword.cmpxchg.loop:
; CHECK: %10 = phi i32 [ %9, %entry ], [ %16, %partword.cmpxchg.failure ]
; CHECK: %11 = or i32 %10, %5
; CHECK: %12 = or i32 %10, %7
; CHECK: %13 = cmpxchg i32* %AlignedAddr, i32 %12, i32 %11 monotonic monotonic
; CHECK: %14 = extractvalue { i32, i1 } %13, 0
; CHECK: %15 = extractvalue { i32, i1 } %13, 1
; CHECK: br i1 %15, label %partword.cmpxchg.end, label %partword.cmpxchg.failure
; CHECK:partword.cmpxchg.failure:
; CHECK: %16 = and i32 %14, %Inv_Mask
; CHECK: %17 = icmp ne i32 %10, %16
; CHECK: br i1 %17, label %partword.cmpxchg.loop, label %partword.cmpxchg.end
; CHECK:partword.cmpxchg.end:
; CHECK: %18 = lshr i32 %14, %ShiftAmt
; CHECK: %19 = trunc i32 %18 to i8
; CHECK: %20 = insertvalue { i8, i1 } undef, i8 %19, 0
; CHECK: %21 = insertvalue { i8, i1 } %20, i1 %15, 1
; CHECK: fence seq_cst
; CHECK: %ret = extractvalue { i8, i1 } %21, 0
; CHECK: ret i8 %ret
define i8 @test_cmpxchg_i8(i8* %arg, i8 %old, i8 %new) {
entry:
%ret_succ = cmpxchg i8* %arg, i8 %old, i8 %new seq_cst monotonic
%ret = extractvalue { i8, i1 } %ret_succ, 0
ret i8 %ret
}
; CHECK-LABEL: @test_cmpxchg_i16(
; CHECK: fence seq_cst
; CHECK: %0 = ptrtoint i16* %arg to i64
; CHECK: %1 = and i64 %0, -4
; CHECK: %AlignedAddr = inttoptr i64 %1 to i32*
; CHECK: %PtrLSB = and i64 %0, 3
; CHECK: %2 = xor i64 %PtrLSB, 2
; CHECK: %3 = shl i64 %2, 3
; CHECK: %ShiftAmt = trunc i64 %3 to i32
; CHECK: %Mask = shl i32 65535, %ShiftAmt
; CHECK: %Inv_Mask = xor i32 %Mask, -1
; CHECK: %4 = zext i16 %new to i32
; CHECK: %5 = shl i32 %4, %ShiftAmt
; CHECK: %6 = zext i16 %old to i32
; CHECK: %7 = shl i32 %6, %ShiftAmt
; CHECK: %8 = load i32, i32* %AlignedAddr
; CHECK: %9 = and i32 %8, %Inv_Mask
; CHECK: br label %partword.cmpxchg.loop
; CHECK:partword.cmpxchg.loop:
; CHECK: %10 = phi i32 [ %9, %entry ], [ %16, %partword.cmpxchg.failure ]
; CHECK: %11 = or i32 %10, %5
; CHECK: %12 = or i32 %10, %7
; CHECK: %13 = cmpxchg i32* %AlignedAddr, i32 %12, i32 %11 monotonic monotonic
; CHECK: %14 = extractvalue { i32, i1 } %13, 0
; CHECK: %15 = extractvalue { i32, i1 } %13, 1
; CHECK: br i1 %15, label %partword.cmpxchg.end, label %partword.cmpxchg.failure
; CHECK:partword.cmpxchg.failure:
; CHECK: %16 = and i32 %14, %Inv_Mask
; CHECK: %17 = icmp ne i32 %10, %16
; CHECK: br i1 %17, label %partword.cmpxchg.loop, label %partword.cmpxchg.end
; CHECK:partword.cmpxchg.end:
; CHECK: %18 = lshr i32 %14, %ShiftAmt
; CHECK: %19 = trunc i32 %18 to i16
; CHECK: %20 = insertvalue { i16, i1 } undef, i16 %19, 0
; CHECK: %21 = insertvalue { i16, i1 } %20, i1 %15, 1
; CHECK: fence seq_cst
; CHECK: %ret = extractvalue { i16, i1 } %21, 0
; CHECK: ret i16 %ret
define i16 @test_cmpxchg_i16(i16* %arg, i16 %old, i16 %new) {
entry:
%ret_succ = cmpxchg i16* %arg, i16 %old, i16 %new seq_cst monotonic
%ret = extractvalue { i16, i1 } %ret_succ, 0
ret i16 %ret
}
; CHECK-LABEL: @test_add_i16(
; CHECK: fence seq_cst
; CHECK: %0 = ptrtoint i16* %arg to i64
; CHECK: %1 = and i64 %0, -4
; CHECK: %AlignedAddr = inttoptr i64 %1 to i32*
; CHECK: %PtrLSB = and i64 %0, 3
; CHECK: %2 = xor i64 %PtrLSB, 2
; CHECK: %3 = shl i64 %2, 3
; CHECK: %ShiftAmt = trunc i64 %3 to i32
; CHECK: %Mask = shl i32 65535, %ShiftAmt
; CHECK: %Inv_Mask = xor i32 %Mask, -1
; CHECK: %4 = zext i16 %val to i32
; CHECK: %ValOperand_Shifted = shl i32 %4, %ShiftAmt
; CHECK: %5 = load i32, i32* %AlignedAddr, align 4
; CHECK: br label %atomicrmw.start
; CHECK:atomicrmw.start:
; CHECK: %loaded = phi i32 [ %5, %entry ], [ %newloaded, %atomicrmw.start ]
; CHECK: %new = add i32 %loaded, %ValOperand_Shifted
; CHECK: %6 = and i32 %new, %Mask
; CHECK: %7 = and i32 %loaded, %Inv_Mask
; CHECK: %8 = or i32 %7, %6
; CHECK: %9 = cmpxchg i32* %AlignedAddr, i32 %loaded, i32 %8 monotonic monotonic
; CHECK: %success = extractvalue { i32, i1 } %9, 1
; CHECK: %newloaded = extractvalue { i32, i1 } %9, 0
; CHECK: br i1 %success, label %atomicrmw.end, label %atomicrmw.start
; CHECK:atomicrmw.end:
; CHECK: %10 = lshr i32 %newloaded, %ShiftAmt
; CHECK: %11 = trunc i32 %10 to i16
; CHECK: fence seq_cst
; CHECK: ret i16 %11
define i16 @test_add_i16(i16* %arg, i16 %val) {
entry:
%ret = atomicrmw add i16* %arg, i16 %val seq_cst
ret i16 %ret
}
; CHECK-LABEL: @test_xor_i16(
; (I'm going to just assert on the bits that differ from add, above.)
; CHECK:atomicrmw.start:
; CHECK: %new = xor i32 %loaded, %ValOperand_Shifted
; CHECK: %6 = cmpxchg i32* %AlignedAddr, i32 %loaded, i32 %new monotonic monotonic
; CHECK:atomicrmw.end:
define i16 @test_xor_i16(i16* %arg, i16 %val) {
entry:
%ret = atomicrmw xor i16* %arg, i16 %val seq_cst
ret i16 %ret
}
; CHECK-LABEL: @test_min_i16(
; CHECK:atomicrmw.start:
; CHECK: %6 = lshr i32 %loaded, %ShiftAmt
; CHECK: %7 = trunc i32 %6 to i16
; CHECK: %8 = icmp sle i16 %7, %val
; CHECK: %new = select i1 %8, i16 %7, i16 %val
; CHECK: %9 = zext i16 %new to i32
; CHECK: %10 = shl i32 %9, %ShiftAmt
; CHECK: %11 = and i32 %loaded, %Inv_Mask
; CHECK: %12 = or i32 %11, %10
; CHECK: %13 = cmpxchg i32* %AlignedAddr, i32 %loaded, i32 %12 monotonic monotonic
; CHECK:atomicrmw.end:
define i16 @test_min_i16(i16* %arg, i16 %val) {
entry:
%ret = atomicrmw min i16* %arg, i16 %val seq_cst
ret i16 %ret
}