Initial checkin of interpreter

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-08-23 17:05:04 +00:00
parent e27c344b56
commit 92101acd7f
8 changed files with 1132 additions and 0 deletions

View File

@ -0,0 +1,598 @@
//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "ExecutionAnnotations.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/Assembly/Writer.h"
static unsigned getOperandSlot(Value *V) {
SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID);
assert(SN && "Operand does not have a slot number annotation!");
return SN->SlotNum;
}
#define GET_CONST_VAL(TY, CLASS) \
case Type::TY##TyID: Result.TY##Val = ((CLASS*)CPV)->getValue(); break
static GenericValue getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstPoolVal *CPV = V->castConstant()) {
GenericValue Result;
switch (CPV->getType()->getPrimitiveID()) {
GET_CONST_VAL(Bool , ConstPoolBool);
GET_CONST_VAL(UByte , ConstPoolUInt);
GET_CONST_VAL(SByte , ConstPoolSInt);
GET_CONST_VAL(UShort , ConstPoolUInt);
GET_CONST_VAL(Short , ConstPoolSInt);
GET_CONST_VAL(UInt , ConstPoolUInt);
GET_CONST_VAL(Int , ConstPoolSInt);
GET_CONST_VAL(Float , ConstPoolFP);
GET_CONST_VAL(Double , ConstPoolFP);
default:
cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl;
}
return Result;
} else {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
return SF.Values[TyP][getOperandSlot(V)];
}
}
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value
SF.Values[TyP][getOperandSlot(V)] = Val;
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(+, UByte);
IMPLEMENT_BINARY_OPERATOR(+, SByte);
IMPLEMENT_BINARY_OPERATOR(+, UShort);
IMPLEMENT_BINARY_OPERATOR(+, Short);
IMPLEMENT_BINARY_OPERATOR(+, UInt);
IMPLEMENT_BINARY_OPERATOR(+, Int);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Add instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_BINARY_OPERATOR(-, UByte);
IMPLEMENT_BINARY_OPERATOR(-, SByte);
IMPLEMENT_BINARY_OPERATOR(-, UShort);
IMPLEMENT_BINARY_OPERATOR(-, Short);
IMPLEMENT_BINARY_OPERATOR(-, UInt);
IMPLEMENT_BINARY_OPERATOR(-, Int);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for Sub instruction: " << Ty << endl;
}
return Dest;
}
#define IMPLEMENT_SETCC(OP, TY) \
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(==, UByte);
IMPLEMENT_SETCC(==, SByte);
IMPLEMENT_SETCC(==, UShort);
IMPLEMENT_SETCC(==, Short);
IMPLEMENT_SETCC(==, UInt);
IMPLEMENT_SETCC(==, Int);
IMPLEMENT_SETCC(==, Float);
IMPLEMENT_SETCC(==, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetEQ instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(!=, UByte);
IMPLEMENT_SETCC(!=, SByte);
IMPLEMENT_SETCC(!=, UShort);
IMPLEMENT_SETCC(!=, Short);
IMPLEMENT_SETCC(!=, UInt);
IMPLEMENT_SETCC(!=, Int);
IMPLEMENT_SETCC(!=, Float);
IMPLEMENT_SETCC(!=, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetNE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<=, UByte);
IMPLEMENT_SETCC(<=, SByte);
IMPLEMENT_SETCC(<=, UShort);
IMPLEMENT_SETCC(<=, Short);
IMPLEMENT_SETCC(<=, UInt);
IMPLEMENT_SETCC(<=, Int);
IMPLEMENT_SETCC(<=, Float);
IMPLEMENT_SETCC(<=, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetLE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>=, UByte);
IMPLEMENT_SETCC(>=, SByte);
IMPLEMENT_SETCC(>=, UShort);
IMPLEMENT_SETCC(>=, Short);
IMPLEMENT_SETCC(>=, UInt);
IMPLEMENT_SETCC(>=, Int);
IMPLEMENT_SETCC(>=, Float);
IMPLEMENT_SETCC(>=, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetGE instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(<, UByte);
IMPLEMENT_SETCC(<, SByte);
IMPLEMENT_SETCC(<, UShort);
IMPLEMENT_SETCC(<, Short);
IMPLEMENT_SETCC(<, UInt);
IMPLEMENT_SETCC(<, Int);
IMPLEMENT_SETCC(<, Float);
IMPLEMENT_SETCC(<, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetLT instruction: " << Ty << endl;
}
return Dest;
}
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
const Type *Ty, ExecutionContext &SF) {
GenericValue Dest;
switch (Ty->getPrimitiveID()) {
IMPLEMENT_SETCC(>, UByte);
IMPLEMENT_SETCC(>, SByte);
IMPLEMENT_SETCC(>, UShort);
IMPLEMENT_SETCC(>, Short);
IMPLEMENT_SETCC(>, UInt);
IMPLEMENT_SETCC(>, Int);
IMPLEMENT_SETCC(>, Float);
IMPLEMENT_SETCC(>, Double);
case Type::ULongTyID:
case Type::LongTyID:
default:
cout << "Unhandled type for SetGT instruction: " << Ty << endl;
}
return Dest;
}
static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) {
const Type *Ty = I->getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I->getOperand(0), SF);
GenericValue Src2 = getOperandValue(I->getOperand(1), SF);
GenericValue R; // Result
switch (I->getOpcode()) {
case Instruction::Add: R = executeAddInst(Src1, Src2, Ty, SF); break;
case Instruction::Sub: R = executeSubInst(Src1, Src2, Ty, SF); break;
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break;
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break;
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break;
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break;
default:
cout << "Don't know how to handle this binary operator!\n-->" << I;
}
SetValue(I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) {
const Type *RetTy = 0;
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I->getNumOperands()) {
RetTy = I->getReturnValue()->getType();
Result = getOperandValue(I->getReturnValue(), SF);
}
// Save previously executing meth
const Method *M = ECStack.back().CurMethod;
// Pop the current stack frame... this invalidates SF
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy) { // Nonvoid return type?
cout << "Method " << M->getType() << " \"" << M->getName()
<< "\" returned ";
printValue(RetTy, Result);
cout << endl;
if (RetTy->isIntegral())
ExitCode = Result.SByteVal; // Capture the exit code of the program
} else {
ExitCode = 0;
}
return;
}
// If we have a previous stack frame, and we have a previous call, fill in
// the return value...
//
ExecutionContext &NewSF = ECStack.back();
if (NewSF.Caller) {
if (NewSF.Caller->getType() != Type::VoidTy) // Save result...
SetValue(NewSF.Caller, Result, NewSF);
NewSF.Caller = 0; // We returned from the call...
}
}
void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) {
SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work...
BasicBlock *Dest;
Dest = I->getSuccessor(0); // Uncond branches have a fixed dest...
if (!I->isUnconditional()) {
if (getOperandValue(I->getCondition(), SF).BoolVal == 0) // If false cond...
Dest = I->getSuccessor(1);
}
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) {
ECStack.back().Caller = I;
callMethod(I->getCalledMethod(), &ECStack.back());
}
static void executePHINode(PHINode *I, ExecutionContext &SF) {
BasicBlock *PrevBB = SF.PrevBB;
Value *IncomingValue = 0;
// Search for the value corresponding to this previous bb...
for (unsigned i = I->getNumIncomingValues(); i > 0;) {
if (I->getIncomingBlock(--i) == PrevBB) {
IncomingValue = I->getIncomingValue(i);
break;
}
}
assert(IncomingValue && "No PHI node predecessor for current PrevBB!");
// Found the value, set as the result...
SetValue(I, getOperandValue(IncomingValue, SF), SF);
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
MethodInfo::MethodInfo(Method *M) : Annotation(MethodInfoAID) {
// Assign slot numbers to the method arguments...
const Method::ArgumentListType &ArgList = M->getArgumentList();
for (Method::ArgumentListType::const_iterator AI = ArgList.begin(),
AE = ArgList.end(); AI != AE; ++AI) {
MethodArgument *MA = *AI;
MA->addAnnotation(new SlotNumber(getValueSlot(MA)));
}
// Iterate over all of the instructions...
unsigned InstNum = 0;
for (Method::inst_iterator MI = M->inst_begin(), ME = M->inst_end();
MI != ME; ++MI) {
Instruction *I = *MI; // For each instruction...
I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I))); // Add Annote
}
}
unsigned MethodInfo::getValueSlot(const Value *V) {
unsigned Plane = V->getType()->getUniqueID();
if (Plane >= NumPlaneElements.size())
NumPlaneElements.resize(Plane+1, 0);
return NumPlaneElements[Plane]++;
}
void Interpreter::initializeExecutionEngine() {
AnnotationManager::registerAnnotationFactory(MethodInfoAID, CreateMethodInfo);
}
//===----------------------------------------------------------------------===//
// callMethod - Execute the specified method...
//
void Interpreter::callMethod(Method *M, ExecutionContext *CallingSF = 0) {
if (M->isExternal()) {
// Handle builtin methods
cout << "Error: Method '" << M->getName() << "' is external!\n";
return;
}
// Process the method, assigning instruction numbers to the instructions in
// the method. Also calculate the number of values for each type slot active.
//
MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID);
ECStack.push_back(ExecutionContext()); // Make a new stack frame...
ExecutionContext &StackFrame = ECStack.back(); // Fill it in...
StackFrame.CurMethod = M;
StackFrame.CurBB = M->front();
StackFrame.CurInst = StackFrame.CurBB->begin();
StackFrame.MethInfo = MethInfo;
// Initialize the values to nothing...
StackFrame.Values.resize(MethInfo->NumPlaneElements.size());
for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i)
StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]);
StackFrame.PrevBB = 0; // No previous BB for PHI nodes...
// Run through the method arguments and initialize their values...
if (CallingSF) {
CallInst *Call = CallingSF->Caller;
assert(Call && "Caller improperly initialized!");
unsigned i = 0;
for (Method::ArgumentListType::iterator MI = M->getArgumentList().begin(),
ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) {
Value *V = Call->getOperand(i+1);
MethodArgument *MA = *MI;
SetValue(MA, getOperandValue(V, *CallingSF), StackFrame);
}
}
}
// executeInstruction - Interpret a single instruction, increment the "PC", and
// return true if the next instruction is a breakpoint...
//
bool Interpreter::executeInstruction() {
assert(!ECStack.empty() && "No program running, cannot execute inst!");
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction *I = *SF.CurInst++; // Increment before execute
if (I->isBinaryOp()) {
executeBinaryInst((BinaryOperator*)I, SF);
} else {
switch (I->getOpcode()) {
case Instruction::Ret: executeRetInst ((ReturnInst*)I, SF); break;
case Instruction::Br: executeBrInst ((BranchInst*)I, SF); break;
case Instruction::Call: executeCallInst ((CallInst*) I, SF); break;
case Instruction::PHINode: executePHINode ((PHINode*) I, SF); break;
default:
cout << "Don't know how to execute this instruction!\n-->" << I;
}
}
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
if (CurFrame == -1) return false; // No breakpoint if no code
// Return true if there is a breakpoint annotation on the instruction...
return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0;
}
void Interpreter::stepInstruction() { // Do the 'step' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot step!\n";
return;
}
// Run an instruction...
executeInstruction();
// Print the next instruction to execute...
printCurrentInstruction();
}
// --- UI Stuff...
void Interpreter::nextInstruction() { // Do the 'next' command
if (ECStack.empty()) {
cout << "Error: no program running, cannot 'next'!\n";
return;
}
// If this is a call instruction, step over the call instruction...
// TODO: ICALL, CALL WITH, ...
if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) {
// Step into the function...
if (executeInstruction()) {
// Hit a breakpoint, print current instruction, then return to user...
cout << "Breakpoint hit!\n";
printCurrentInstruction();
return;
}
// Finish executing the function...
finish();
} else {
// Normal instruction, just step...
stepInstruction();
}
}
void Interpreter::run() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
bool HitBreakpoint = false;
while (!ECStack.empty() && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
void Interpreter::finish() {
if (ECStack.empty()) {
cout << "Error: no program running, cannot run!\n";
return;
}
unsigned StackSize = ECStack.size();
bool HitBreakpoint = false;
while (ECStack.size() >= StackSize && !HitBreakpoint) {
// Run an instruction...
HitBreakpoint = executeInstruction();
}
if (HitBreakpoint) {
cout << "Breakpoint hit!\n";
}
// Print the next instruction to execute...
printCurrentInstruction();
}
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void Interpreter::printCurrentInstruction() {
if (!ECStack.empty()) {
Instruction *I = *ECStack.back().CurInst;
InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID);
assert(IN && "Instruction has no numbering annotation!");
cout << "#" << IN->InstNum << I;
}
}
void Interpreter::printValue(const Type *Ty, GenericValue V) {
cout << Ty << " ";
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break;
case Type::SByteTyID: cout << V.SByteVal; break;
case Type::UByteTyID: cout << V.UByteVal; break;
case Type::ShortTyID: cout << V.ShortVal; break;
case Type::UShortTyID: cout << V.UShortVal; break;
case Type::IntTyID: cout << V.IntVal; break;
case Type::UIntTyID: cout << V.UIntVal; break;
case Type::FloatTyID: cout << V.FloatVal; break;
case Type::DoubleTyID: cout << V.DoubleVal; break;
default:
cout << "- Don't know how to print value of this type!";
break;
}
}
void Interpreter::printValue(const string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
if (!PickedVal) return;
if (const Method *M = PickedVal->castMethod()) {
cout << M; // Print the method
} else { // Otherwise there should be an annotation for the slot#
printValue(PickedVal->getType(),
getOperandValue(PickedVal, ECStack[CurFrame]));
cout << endl;
}
}
void Interpreter::list() {
if (ECStack.empty())
cout << "Error: No program executing!\n";
else
cout << ECStack[CurFrame].CurMethod; // Just print the method out...
}
void Interpreter::printStackTrace() {
if (ECStack.empty()) cout << "No program executing!\n";
for (unsigned i = 0; i < ECStack.size(); ++i) {
cout << (((int)i == CurFrame) ? '>' : '-');
cout << "#" << i << ". " << ECStack[i].CurMethod->getType() << " \""
<< ECStack[i].CurMethod->getName() << "\"(";
// TODO: Print Args
cout << ")" << endl;
cout << *ECStack[i].CurInst;
}
}

View File

@ -0,0 +1,91 @@
//===-- ExecutionAnnotations.h ---------------------------------*- C++ -*--===//
//
// This header file defines annotations used by the execution engine.
//
//===----------------------------------------------------------------------===//
#ifndef LLI_EXECUTION_ANNOTATIONS_H
#define LLI_EXECUTION_ANNOTATIONS_H
//===----------------------------------------------------------------------===//
// Support for MethodInfo annotations
//===----------------------------------------------------------------------===//
// This annotation (attached only to Method objects) is used to cache useful
// information about the method, including the number of types present in the
// method, and the number of values for each type.
//
// This annotation object is created on demand, and attaches other annotation
// objects to the instructions in the method when it's created.
//
static AnnotationID MethodInfoAID(
AnnotationManager::getID("Interpreter::MethodInfo"));
struct MethodInfo : public Annotation {
MethodInfo(Method *M);
vector<unsigned> NumPlaneElements;
private:
unsigned getValueSlot(const Value *V);
};
// CreateMethodInfo - Factory function to allow MethodInfo annotations to be
// created on demand.
//
inline static Annotation *CreateMethodInfo(AnnotationID AID, Annotable *O) {
assert(AID == MethodInfoAID);
return new MethodInfo((Method*)O); // Simply invoke the ctor
}
//===----------------------------------------------------------------------===//
// Support for the SlotNumber annotation
//===----------------------------------------------------------------------===//
// This annotation (attached only to MethodArgument & Instruction objects) is
// used to hold the the slot number for the value in its type plane.
//
// Entities have this annotation attached to them when the containing
// method has it's MethodInfo created (by the MethodInfo ctor).
//
static AnnotationID SlotNumberAID(
AnnotationManager::getID("Interpreter::SlotNumber"));
struct SlotNumber : public Annotation {
unsigned SlotNum; // Ranges from 0->
SlotNumber(unsigned sn) : Annotation(SlotNumberAID),
SlotNum(sn) {}
};
//===----------------------------------------------------------------------===//
// Support for the InstNumber annotation
//===----------------------------------------------------------------------===//
// This annotation (attached only to Instruction objects) is used to hold the
// instruction number of the instruction, and the slot number for the value in
// its type plane. InstNumber's are used for user interaction, and for
// calculating which value slot to store the result of the instruction in.
//
// Instructions have this annotation attached to them when the containing method
// has it's MethodInfo created (by the MethodInfo ctor).
//
struct InstNumber : public SlotNumber {
unsigned InstNum; // Ranges from 1->
InstNumber(unsigned in, unsigned sn) : SlotNumber(sn), InstNum(in) {}
};
//===----------------------------------------------------------------------===//
// Support for the Breakpoint annotation
//===----------------------------------------------------------------------===//
static AnnotationID BreakpointAID(
AnnotationManager::getID("Interpreter::Breakpoint"));
// Just use an Annotation directly, Breakpoint is currently just a marker
#endif

View File

@ -0,0 +1,129 @@
//===-- Interpreter.h ------------------------------------------*- C++ -*--===//
//
// This header file defines the interpreter structure
//
//===----------------------------------------------------------------------===//
#ifndef LLI_INTERPRETER_H
#define LLI_INTERPRETER_H
#include "llvm/Module.h"
#include "llvm/Method.h"
struct MethodInfo; // Defined in ExecutionAnnotations.h
class CallInst;
class ReturnInst;
class BranchInst;
union GenericValue {
bool BoolVal;
unsigned char UByteVal;
signed char SByteVal;
unsigned short UShortVal;
signed short ShortVal;
unsigned int UIntVal;
signed int IntVal;
double DoubleVal;
float FloatVal;
GenericValue *PointerVal;
};
typedef vector<GenericValue> ValuePlaneTy;
// ExecutionContext struct - This struct represents one stack frame currently
// executing.
//
struct ExecutionContext {
Method *CurMethod; // The currently executing method
BasicBlock *CurBB; // The currently executing BB
BasicBlock::iterator CurInst; // The next instruction to execute
MethodInfo *MethInfo; // The MethInfo annotation for the method
vector<ValuePlaneTy> Values; // ValuePlanes for each type
BasicBlock *PrevBB; // The previous BB or null if in first BB
CallInst *Caller; // Holds the call that called subframes.
// NULL if main func or debugger invoked fn
};
// Interpreter - This class represents the entirety of the interpreter.
//
class Interpreter {
Module *CurMod; // The current Module being executed (0 if none)
int ExitCode; // The exit code to be returned by the lli util
bool Profile; // Profiling enabled?
int CurFrame; // The current stack frame being inspected
// The runtime stack of executing code. The top of the stack is the current
// method record.
vector<ExecutionContext> ECStack;
public:
Interpreter();
inline ~Interpreter() { delete CurMod; }
// getExitCode - return the code that should be the exit code for the lli
// utility.
inline int getExitCode() const { return ExitCode; }
// enableProfiling() - Turn profiling on, clear stats?
void enableProfiling() { Profile = true; }
void initializeExecutionEngine();
void handleUserInput();
// User Interation Methods...
bool callMethod(const string &Name); // return true on failure
void setBreakpoint(const string &Name);
void printValue(const string &Name);
void printValue(const Type *Ty, GenericValue V);
void list(); // Do the 'list' command
void printStackTrace(); // Do the 'backtrace' command
// Code execution methods...
void callMethod(Method *Meth, ExecutionContext *SF = 0);
bool executeInstruction(); // Execute one instruction...
void stepInstruction(); // Do the 'step' command
void nextInstruction(); // Do the 'next' command
void run(); // Do the 'run' command
void finish(); // Do the 'finish' command
// Opcode Implementations
void executeCallInst(CallInst *I, ExecutionContext &SF);
void executeRetInst(ReturnInst *I, ExecutionContext &SF);
void executeBrInst(BranchInst *I, ExecutionContext &SF);
// getCurrentMethod - Return the currently executing method
inline Method *getCurrentMethod() const {
return CurFrame < 0 ? 0 : ECStack[CurFrame].CurMethod;
}
// isStopped - Return true if a program is stopped. Return false if no
// program is running.
//
inline bool isStopped() const { return !ECStack.empty(); }
private: // Helper functions
// printCurrentInstruction - Print out the instruction that the virtual PC is
// at, or fail silently if no program is running.
//
void printCurrentInstruction();
// LookupMatchingNames - Search the current method namespace, then the global
// namespace looking for values that match the specified name. Return ALL
// matches to that name. This is obviously slow, and should only be used for
// user interaction.
//
vector<Value*> LookupMatchingNames(const string &Name);
// ChooseOneOption - Prompt the user to choose among the specified options to
// pick one value. If no options are provided, emit an error. If a single
// option is provided, just return that option.
//
Value *ChooseOneOption(const string &Name, const vector<Value*> &Opts);
};
#endif

View File

@ -0,0 +1,78 @@
//===-- Support.cpp - Support routines for interpreter --------------------===//
//
// This file contains support routines for the interpreter core.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/SymbolTable.h"
#include "llvm/Assembly/Writer.h"
//===----------------------------------------------------------------------===//
//
// LookupMatchingNames helper - Search a symbol table for values matching Name.
//
static inline void LookupMatchingNames(const string &Name, SymTabValue &STV,
vector<Value*> &Results) {
SymbolTable *SymTab = STV.getSymbolTable();
if (SymTab == 0) return; // No symbolic values :(
// Loop over all of the type planes in the symbol table...
for (SymbolTable::iterator I = SymTab->begin(), E = SymTab->end();
I != E; ++I) {
SymbolTable::VarMap &Plane = I->second;
// Search the symbol table plane for this name...
SymbolTable::VarMap::iterator Val = Plane.find(Name);
if (Val != Plane.end())
Results.push_back(Val->second); // Found a name match!
}
}
// LookupMatchingNames - Search the current method namespace, then the global
// namespace looking for values that match the specified name. Return ALL
// matches to that name. This is obviously slow, and should only be used for
// user interaction.
//
vector<Value*> Interpreter::LookupMatchingNames(const string &Name) {
vector<Value*> Results;
Method *CurMeth = getCurrentMethod();
if (CurMeth) ::LookupMatchingNames(Name, *CurMeth, Results);
if (CurMod ) ::LookupMatchingNames(Name, *CurMod , Results);
return Results;
}
// ChooseOneOption - Prompt the user to choose among the specified options to
// pick one value. If no options are provided, emit an error. If a single
// option is provided, just return that option.
//
Value *Interpreter::ChooseOneOption(const string &Name,
const vector<Value*> &Opts) {
switch (Opts.size()) {
case 1: return Opts[0];
case 0:
cout << "Error: no entities named '" << Name << "' found!\n";
return 0;
default: break; // Must prompt user...
}
cout << "Multiple entities named '" << Name << "' found! Please choose:\n";
cout << " 0. Cancel operation\n";
for (unsigned i = 0; i < Opts.size(); ++i) {
cout << " " << (i+1) << ".";
WriteAsOperand(cout, Opts[i]) << endl;
}
unsigned Option;
do {
cout << "lli> " << flush;
cin >> Option;
if (Option > Opts.size())
cout << "Invalid selection: Please choose from 0 to " << Opts.size()
<< endl;
} while (Option > Opts.size());
if (Option == 0) return 0;
return Opts[Option-1];
}

View File

@ -0,0 +1,147 @@
//===-- UserInput.cpp - Interpreter Input Loop support --------------------===//
//
// This file implements the interpreter Input I/O loop.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/Assembly/Writer.h"
#include <algorithm>
enum CommandID {
Quit, Help, // Basics
Print, List, StackTrace, Up, Down, // Inspection
Next, Step, Run, Finish, Call, // Control flow changes
Break, Watch, // Debugging
Load, Flush
};
// CommandTable - Build a lookup table for the commands available to the user...
static struct CommandTableElement {
const char *Name;
enum CommandID CID;
inline bool operator<(const CommandTableElement &E) const {
return string(Name) < string(E.Name);
}
inline bool operator==(const string &S) const {
return string(Name) == S;
}
} CommandTable[] = {
{ "quit" , Quit }, { "q", Quit }, { "", Quit }, // Empty str = eof
{ "help" , Help }, { "h", Help },
{ "print" , Print }, { "p", Print },
{ "list" , List },
{ "backtrace", StackTrace }, { "bt", StackTrace }, { "where", StackTrace },
{ "up" , Up },
{ "down" , Down },
{ "next" , Next }, { "n", Next },
{ "step" , Step }, { "s", Step },
{ "run" , Run },
{ "finish" , Finish },
{ "call" , Call },
{ "break" , Break }, { "b", Break },
{ "watch" , Watch },
{ "load" , Load },
{ "flush" , Flush },
};
static CommandTableElement *CommandTableEnd =
CommandTable+sizeof(CommandTable)/sizeof(CommandTable[0]);
//===----------------------------------------------------------------------===//
// handleUserInput - Enter the input loop for the interpreter. This function
// returns when the user quits the interpreter.
//
void Interpreter::handleUserInput() {
bool UserQuit = false;
// Sort the table...
sort(CommandTable, CommandTableEnd);
// Print the instruction that we are stopped at...
printCurrentInstruction();
do {
string Command;
cout << "lli> " << flush;
cin >> Command;
CommandTableElement *E = find(CommandTable, CommandTableEnd, Command);
if (E == CommandTableEnd) {
cout << "Error: '" << Command << "' not recognized!\n";
continue;
}
switch (E->CID) {
case Quit: UserQuit = true; break;
case Print:
cin >> Command;
printValue(Command);
break;
case List: list(); break;
case StackTrace: printStackTrace(); break;
case Up:
if (CurFrame > 0) --CurFrame;
else cout << "Error: Already at root of stack!\n";
break;
case Down:
if ((unsigned)CurFrame < ECStack.size()-1) ++CurFrame;
else cout << "Error: Already at bottom of stack!\n";
break;
case Next: nextInstruction(); break;
case Step: stepInstruction(); break;
case Run: run(); break;
case Finish: finish(); break;
case Call:
cin >> Command;
callMethod(Command); // Enter the specified method
finish(); // Run until it's complete
break;
default:
cout << "Command '" << Command << "' unimplemented!\n";
break;
}
} while (!UserQuit);
}
//===----------------------------------------------------------------------===//
// setBreakpoint - Enable a breakpoint at the specified location
//
void Interpreter::setBreakpoint(const string &Name) {
Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name));
// TODO: Set a breakpoint on PickedVal
}
//===----------------------------------------------------------------------===//
// callMethod - Enter the specified method...
//
bool Interpreter::callMethod(const string &Name) {
vector<Value*> Options = LookupMatchingNames(Name);
for (unsigned i = 0; i < Options.size(); ++i) { // Remove nonmethod matches...
if (!Options[i]->isMethod()) {
Options.erase(Options.begin()+i);
--i;
}
}
Value *PickedMeth = ChooseOneOption(Name, Options);
if (PickedMeth == 0)
return true;
callMethod(PickedMeth->castMethodAsserting()); // Start executing it...
// Reset the current frame location to the top of stack
CurFrame = ECStack.size()-1;
return false;
}

View File

@ -0,0 +1,11 @@
LEVEL = ../..
include $(LEVEL)/Makefile.common
all:: lli
clean::
rm -f lli
lli : $(ObjectsG)
$(LinkG) -o $@ $(ObjectsG) \
-lopt -lbcreader -lbcwriter \
-lvmcore -lasmwriter -lanalysis -lsupport

11
tools/lli/Makefile Normal file
View File

@ -0,0 +1,11 @@
LEVEL = ../..
include $(LEVEL)/Makefile.common
all:: lli
clean::
rm -f lli
lli : $(ObjectsG)
$(LinkG) -o $@ $(ObjectsG) \
-lopt -lbcreader -lbcwriter \
-lvmcore -lasmwriter -lanalysis -lsupport

67
tools/lli/lli.cpp Normal file
View File

@ -0,0 +1,67 @@
//===----------------------------------------------------------------------===//
// LLVM INTERPRETER/DEBUGGER/PROFILER UTILITY
//
// This utility is an interactive frontend to almost all other LLVM
// functionality. It may be used as an interpreter to run code, a debugger to
// find problems, or a profiler to analyze execution frequencies.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Bytecode/Reader.h"
cl::String InputFilename("" , "Input filename", cl::NoFlags, "-");
cl::String MainFunction ("f" , "Function to execute", cl::NoFlags, "main");
cl::Flag DebugMode ("debug" , "Start program in debugger");
cl::Alias DebugModeA ("d" , "Alias for -debug", cl::NoFlags, DebugMode);
cl::Flag ProfileMode ("profile", "Enable Profiling [unimp]");
//===----------------------------------------------------------------------===//
// Interpreter ctor - Initialize stuff
//
Interpreter::Interpreter() : ExitCode(0), Profile(ProfileMode), CurFrame(-1) {
CurMod = ParseBytecodeFile(InputFilename);
if (CurMod == 0) {
cout << "Error parsing '" << InputFilename << "': No module loaded.\n";
}
// Initialize the "backend"
initializeExecutionEngine();
}
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char** argv) {
cl::ParseCommandLineOptions(argc, argv, " llvm interpreter\n");
// Create the interpreter...
Interpreter I;
// Handle alternate names of the program. If started as llp, enable profiling
// if started as ldb, enable debugging...
//
if (argv[0] == "ldb") // TODO: Obviously incorrect, but you get the idea
DebugMode = true;
else if (argv[0] == "llp")
ProfileMode = true;
// If running with the profiler, enable it now...
if (ProfileMode) I.enableProfiling();
// Start interpreter into the main function...
//
if (!I.callMethod(MainFunction) && !DebugMode) {
// If not in debug mode and if the call succeeded, run the code now...
I.run();
}
// If debug mode, allow the user to interact... also, if the user pressed
// ctrl-c or execution hit an error, enter the event loop...
if (DebugMode || I.isStopped())
I.handleUserInput();
// Return the status code of the program executed...
return I.getExitCode();
}