Late evaluation of the fast-math vectorization requirement.

This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint. 


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244489 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Tyler Nowicki 2015-08-10 19:51:46 +00:00
parent beb8a9efb7
commit 9224227bc2
7 changed files with 263 additions and 14 deletions

View File

@ -56,6 +56,7 @@ enum DiagnosticKind {
DK_OptimizationRemark,
DK_OptimizationRemarkMissed,
DK_OptimizationRemarkAnalysis,
DK_OptimizationRemarkAnalysisFPCommute,
DK_OptimizationFailure,
DK_MIRParser,
DK_FirstPluginKind
@ -386,6 +387,42 @@ public:
/// \see DiagnosticInfoOptimizationBase::isEnabled.
bool isEnabled() const override;
protected:
DiagnosticInfoOptimizationRemarkAnalysis(enum DiagnosticKind Kind,
const char *PassName,
const Function &Fn,
const DebugLoc &DLoc,
const Twine &Msg)
: DiagnosticInfoOptimizationBase(Kind, DS_Remark, PassName, Fn, DLoc,
Msg) {}
};
/// Diagnostic information for optimization analysis remarks related to
/// floating-point non-commutativity.
class DiagnosticInfoOptimizationRemarkAnalysisFPCommute
: public DiagnosticInfoOptimizationRemarkAnalysis {
public:
/// \p PassName is the name of the pass emitting this diagnostic. If
/// this name matches the regular expression given in -Rpass-analysis=, then
/// the diagnostic will be emitted. \p Fn is the function where the diagnostic
/// is being emitted. \p DLoc is the location information to use in the
/// diagnostic. If line table information is available, the diagnostic will
/// include the source code location. \p Msg is the message to show. The
/// front-end will append its own message related to options that address
/// floating-point non-commutativity. Note that this class does not copy this
/// message, so this reference must be valid for the whole life time of the
/// diagnostic.
DiagnosticInfoOptimizationRemarkAnalysisFPCommute(const char *PassName,
const Function &Fn,
const DebugLoc &DLoc,
const Twine &Msg)
: DiagnosticInfoOptimizationRemarkAnalysis(
DK_OptimizationRemarkAnalysisFPCommute, PassName, Fn, DLoc, Msg) {}
static bool classof(const DiagnosticInfo *DI) {
return DI->getKind() == DK_OptimizationRemarkAnalysisFPCommute;
}
};
/// Diagnostic information for machine IR parser.
@ -438,6 +475,18 @@ void emitOptimizationRemarkAnalysis(LLVMContext &Ctx, const char *PassName,
const Function &Fn, const DebugLoc &DLoc,
const Twine &Msg);
/// Emit an optimization analysis remark related to messages about
/// floating-point non-commutativity. \p PassName is the name of the pass
/// emitting the message. If -Rpass-analysis= is given and \p PassName matches
/// the regular expression in -Rpass, then the remark will be emitted. \p Fn is
/// the function triggering the remark, \p DLoc is the debug location where the
/// diagnostic is generated. \p Msg is the message string to use.
void emitOptimizationRemarkAnalysisFPCommute(LLVMContext &Ctx,
const char *PassName,
const Function &Fn,
const DebugLoc &DLoc,
const Twine &Msg);
/// Diagnostic information for optimization failures.
class DiagnosticInfoOptimizationFailure
: public DiagnosticInfoOptimizationBase {

View File

@ -85,24 +85,32 @@ public:
RecurrenceDescriptor()
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
MinMaxKind(MRK_Invalid) {}
MinMaxKind(MRK_Invalid), UnsafeAlgebraInst(nullptr) {}
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
MinMaxRecurrenceKind MK)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
MinMaxRecurrenceKind MK,
Instruction *UAI /*Unsafe Algebra Inst*/)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
UnsafeAlgebraInst(UAI) {}
/// This POD struct holds information about a potential recurrence operation.
class InstDesc {
public:
InstDesc(bool IsRecur, Instruction *I)
: IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
: IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
UnsafeAlgebraInst(UAI) {}
InstDesc(Instruction *I, MinMaxRecurrenceKind K)
: IsRecurrence(true), PatternLastInst(I), MinMaxKind(K) {}
InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
: IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
UnsafeAlgebraInst(UAI) {}
bool isRecurrence() { return IsRecurrence; }
bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
Instruction *getPatternInst() { return PatternLastInst; }
@ -115,6 +123,8 @@ public:
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
MinMaxRecurrenceKind MinMaxKind;
// Recurrence has unsafe algebra.
Instruction *UnsafeAlgebraInst;
};
/// Returns a struct describing if the instruction 'I' can be a recurrence
@ -167,6 +177,13 @@ public:
Instruction *getLoopExitInstr() { return LoopExitInstr; }
/// Returns true if the recurrence has unsafe algebra which requires a relaxed
/// floating-point model.
bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
/// Returns first unsafe algebra instruction in the PHI node's use-chain.
Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
private:
// The starting value of the recurrence.
// It does not have to be zero!
@ -177,6 +194,8 @@ private:
RecurrenceKind Kind;
// If this a min/max recurrence the kind of recurrence.
MinMaxRecurrenceKind MinMaxKind;
// First occurance of unasfe algebra in the PHI's use-chain.
Instruction *UnsafeAlgebraInst;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);

View File

@ -196,6 +196,15 @@ void llvm::emitOptimizationRemarkAnalysis(LLVMContext &Ctx,
DiagnosticInfoOptimizationRemarkAnalysis(PassName, Fn, DLoc, Msg));
}
void llvm::emitOptimizationRemarkAnalysisFPCommute(LLVMContext &Ctx,
const char *PassName,
const Function &Fn,
const DebugLoc &DLoc,
const Twine &Msg) {
Ctx.diagnose(DiagnosticInfoOptimizationRemarkAnalysisFPCommute(PassName, Fn,
DLoc, Msg));
}
bool DiagnosticInfoOptimizationFailure::isEnabled() const {
// Only print warnings.
return getSeverity() == DS_Warning;

View File

@ -199,6 +199,11 @@ static bool isDiagnosticEnabled(const DiagnosticInfo &DI) {
if (!cast<DiagnosticInfoOptimizationRemarkAnalysis>(DI).isEnabled())
return false;
break;
case llvm::DK_OptimizationRemarkAnalysisFPCommute:
if (!cast<DiagnosticInfoOptimizationRemarkAnalysisFPCommute>(DI)
.isEnabled())
return false;
break;
default:
break;
}

View File

@ -201,7 +201,8 @@ bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
// Save the description of this reduction variable.
RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind,
ReduxDesc.getMinMaxKind());
ReduxDesc.getMinMaxKind(),
ReduxDesc.getUnsafeAlgebraInst());
RedDes = RD;
@ -263,7 +264,10 @@ RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
bool FastMath = FP && I->hasUnsafeAlgebra();
Instruction *UAI = Prev.getUnsafeAlgebraInst();
if (!UAI && FP && !I->hasUnsafeAlgebra())
UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
@ -284,10 +288,10 @@ RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
case Instruction::Xor:
return InstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return InstDesc(Kind == RK_FloatMult && FastMath, I);
return InstDesc(Kind == RK_FloatMult, I, UAI);
case Instruction::FSub:
case Instruction::FAdd:
return InstDesc(Kind == RK_FloatAdd && FastMath, I);
return InstDesc(Kind == RK_FloatAdd, I, UAI);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:

View File

@ -220,6 +220,7 @@ namespace {
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class LoopVectorizeHints;
class LoopVectorizationRequirements;
/// \brief This modifies LoopAccessReport to initialize message with
/// loop-vectorizer-specific part.
@ -796,10 +797,12 @@ public:
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
TargetLibraryInfo *TLI, AliasAnalysis *AA,
Function *F, const TargetTransformInfo *TTI,
LoopAccessAnalysis *LAA)
LoopAccessAnalysis *LAA,
LoopVectorizationRequirements *R)
: NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT),
Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
Requirements(R) {}
/// This enum represents the kinds of inductions that we support.
enum InductionKind {
@ -1065,6 +1068,9 @@ private:
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
/// Vectorization requirements that will go through late-evaluation.
LoopVectorizationRequirements *Requirements;
ValueToValueMap Strides;
SmallPtrSet<Value *, 8> StrideSet;
@ -1415,6 +1421,47 @@ static void emitMissedWarning(Function *F, Loop *L,
}
}
/// \brief This holds vectorization requirements that must be verified late in
/// the process. The requirements are set by legalize and costmodel. Once
/// vectorization has been determined to be possible and profitable the
/// requirements can be verified by looking for metadata or compiler options.
/// For example, some loops require FP commutativity which is only allowed if
/// vectorization is explicitly specified or if the fast-math compiler option
/// has been provided.
/// Late evaluation of these requirements allows helpful diagnostics to be
/// composed that tells the user what need to be done to vectorize the loop. For
/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
/// evaluation should be used only when diagnostics can generated that can be
/// followed by a non-expert user.
class LoopVectorizationRequirements {
public:
LoopVectorizationRequirements() : UnsafeAlgebraInst(nullptr) {}
void addUnsafeAlgebraInst(Instruction *I) {
// First unsafe algebra instruction.
if (!UnsafeAlgebraInst)
UnsafeAlgebraInst = I;
}
bool doesNotMeet(Function *F, const LoopVectorizeHints &Hints) {
if (UnsafeAlgebraInst &&
Hints.getForce() == LoopVectorizeHints::FK_Undefined &&
Hints.getWidth() == 0) {
emitOptimizationRemarkAnalysisFPCommute(
F->getContext(), DEBUG_TYPE, *F, UnsafeAlgebraInst->getDebugLoc(),
VectorizationReport() << "vectorization requires changes in the "
"order of operations, however IEEE 754 "
"floating-point operations are not "
"commutative");
return true;
}
return false;
}
private:
Instruction *UnsafeAlgebraInst;
};
static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
if (L.empty())
return V.push_back(&L);
@ -1609,7 +1656,9 @@ struct LoopVectorize : public FunctionPass {
}
// Check if it is legal to vectorize the loop.
LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA);
LoopVectorizationRequirements Requirements;
LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA,
&Requirements);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
@ -1665,6 +1714,13 @@ struct LoopVectorize : public FunctionPass {
std::string VecDiagMsg, IntDiagMsg;
bool VectorizeLoop = true, InterleaveLoop = true;
if (Requirements.doesNotMeet(F, Hints)) {
DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n");
emitMissedWarning(F, L, Hints);
return false;
}
if (VF.Width == 1) {
DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
VecDiagMsg =
@ -4079,6 +4135,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop,
Reductions[Phi])) {
if (Reductions[Phi].hasUnsafeAlgebra())
Requirements->addUnsafeAlgebraInst(
Reductions[Phi].getUnsafeAlgebraInst());
AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
continue;
}

View File

@ -0,0 +1,104 @@
; RUN: opt < %s -loop-vectorize -S -pass-remarks='loop-vectorize' -pass-remarks-missed='loop-vectorize' -pass-remarks-analysis='loop-vectorize' 2>&1 | FileCheck %s
; CHECK: remark: no_fpmath.c:6:11: loop not vectorized: vectorization requires changes in the order of operations, however IEEE 754 floating-point operations are not commutative
; CHECK: remark: no_fpmath.c:6:14: loop not vectorized:
; CHECK: remark: no_fpmath.c:17:14: vectorized loop (vectorization width: 2, interleaved count: 2)
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
; Function Attrs: nounwind readonly ssp uwtable
define double @cond_sum(i32* nocapture readonly %v, i32 %n) #0 {
entry:
%cmp.7 = icmp sgt i32 %n, 0, !dbg !3
br i1 %cmp.7, label %for.body.preheader, label %for.cond.cleanup, !dbg !8
for.body.preheader: ; preds = %entry
br label %for.body, !dbg !9
for.cond.cleanup.loopexit: ; preds = %for.body
%add.lcssa = phi double [ %add, %for.body ]
br label %for.cond.cleanup, !dbg !10
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
%a.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add.lcssa, %for.cond.cleanup.loopexit ]
ret double %a.0.lcssa, !dbg !10
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%a.08 = phi double [ %add, %for.body ], [ 0.000000e+00, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %v, i64 %indvars.iv, !dbg !9
%0 = load i32, i32* %arrayidx, align 4, !dbg !9, !tbaa !11
%cmp1 = icmp eq i32 %0, 0, !dbg !15
%cond = select i1 %cmp1, double 3.400000e+00, double 1.150000e+00, !dbg !9
%add = fadd double %a.08, %cond, !dbg !16
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1, !dbg !8
%lftr.wideiv = trunc i64 %indvars.iv.next to i32, !dbg !8
%exitcond = icmp eq i32 %lftr.wideiv, %n, !dbg !8
br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body, !dbg !8, !llvm.loop !17
}
; Function Attrs: nounwind readonly ssp uwtable
define double @cond_sum_loop_hint(i32* nocapture readonly %v, i32 %n) #0 {
entry:
%cmp.7 = icmp sgt i32 %n, 0, !dbg !19
br i1 %cmp.7, label %for.body.preheader, label %for.cond.cleanup, !dbg !21
for.body.preheader: ; preds = %entry
br label %for.body, !dbg !22
for.cond.cleanup.loopexit: ; preds = %for.body
%add.lcssa = phi double [ %add, %for.body ]
br label %for.cond.cleanup, !dbg !23
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
%a.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add.lcssa, %for.cond.cleanup.loopexit ]
ret double %a.0.lcssa, !dbg !23
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%a.08 = phi double [ %add, %for.body ], [ 0.000000e+00, %for.body.preheader ]
%arrayidx = getelementptr inbounds i32, i32* %v, i64 %indvars.iv, !dbg !22
%0 = load i32, i32* %arrayidx, align 4, !dbg !22, !tbaa !11
%cmp1 = icmp eq i32 %0, 0, !dbg !24
%cond = select i1 %cmp1, double 3.400000e+00, double 1.150000e+00, !dbg !22
%add = fadd double %a.08, %cond, !dbg !25
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1, !dbg !21
%lftr.wideiv = trunc i64 %indvars.iv.next to i32, !dbg !21
%exitcond = icmp eq i32 %lftr.wideiv, %n, !dbg !21
br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body, !dbg !21, !llvm.loop !26
}
attributes #0 = { nounwind }
!llvm.module.flags = !{!0, !1}
!llvm.ident = !{!2}
!0 = !{i32 2, !"Debug Info Version", i32 3}
!1 = !{i32 1, !"PIC Level", i32 2}
!2 = !{!"clang version 3.7.0"}
!3 = !DILocation(line: 5, column: 20, scope: !4)
!4 = !DISubprogram(name: "cond_sum", scope: !5, file: !5, line: 1, type: !6, isLocal: false, isDefinition: true, scopeLine: 1, flags: DIFlagPrototyped, isOptimized: true, function: double (i32*, i32)* @cond_sum, variables: !7)
!5 = !DIFile(filename: "no_fpmath.c", directory: "")
!6 = !DISubroutineType(types: !7)
!7 = !{}
!8 = !DILocation(line: 5, column: 3, scope: !4)
!9 = !DILocation(line: 6, column: 14, scope: !4)
!10 = !DILocation(line: 9, column: 3, scope: !4)
!11 = !{!12, !12, i64 0}
!12 = !{!"int", !13, i64 0}
!13 = !{!"omnipotent char", !14, i64 0}
!14 = !{!"Simple C/C++ TBAA"}
!15 = !DILocation(line: 6, column: 19, scope: !4)
!16 = !DILocation(line: 6, column: 11, scope: !4)
!17 = distinct !{!17, !18}
!18 = !{!"llvm.loop.unroll.disable"}
!19 = !DILocation(line: 16, column: 20, scope: !20)
!20 = !DISubprogram(name: "cond_sum_loop_hint", scope: !5, file: !5, line: 12, type: !6, isLocal: false, isDefinition: true, scopeLine: 12, flags: DIFlagPrototyped, isOptimized: true, function: double (i32*, i32)* @cond_sum_loop_hint, variables: !7)
!21 = !DILocation(line: 16, column: 3, scope: !20)
!22 = !DILocation(line: 17, column: 14, scope: !20)
!23 = !DILocation(line: 20, column: 3, scope: !20)
!24 = !DILocation(line: 17, column: 19, scope: !20)
!25 = !DILocation(line: 17, column: 11, scope: !20)
!26 = distinct !{!26, !27, !18}
!27 = !{!"llvm.loop.vectorize.enable", i1 true}