mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-03 13:51:39 +00:00
MemorySSA: Move updater to its own file
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293357 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f6dfcde86b
commit
92cf58ee36
@ -752,51 +752,6 @@ private:
|
||||
unsigned NextID;
|
||||
};
|
||||
|
||||
// An automatic updater for MemorySSA that handles arbitrary insertion,
|
||||
// deletion, and moves. It performs phi insertion where necessary, and
|
||||
// automatically updates the MemorySSA IR to be correct.
|
||||
// While updating loads or removing instructions is often easy enough to not
|
||||
// need this, updating stores should generally not be attemped outside this
|
||||
// API.
|
||||
//
|
||||
// Basic API usage:
|
||||
// Create the memory access you want for the instruction (this is mainly so
|
||||
// we know where it is, without having to duplicate the entire set of create
|
||||
// functions MemorySSA supports).
|
||||
// Call insertDef or insertUse depending on whether it's a MemoryUse or a
|
||||
// MemoryDef.
|
||||
// That's it.
|
||||
//
|
||||
// For moving, first, move the instruction itself using the normal SSA
|
||||
// instruction moving API, then just call moveBefore or moveAfter with the right
|
||||
// arguments.
|
||||
//
|
||||
class MemorySSAUpdater {
|
||||
private:
|
||||
MemorySSA *MSSA;
|
||||
SmallVector<MemoryPhi *, 8> InsertedPHIs;
|
||||
SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
|
||||
|
||||
public:
|
||||
MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
|
||||
void insertDef(MemoryDef *Def);
|
||||
void insertUse(MemoryUse *Use);
|
||||
void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
|
||||
void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
|
||||
|
||||
private:
|
||||
void moveTo(MemoryUseOrDef *What, BasicBlock *BB,
|
||||
MemorySSA::AccessList::iterator Where);
|
||||
MemoryAccess *getPreviousDef(MemoryAccess *);
|
||||
MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
|
||||
MemoryAccess *getPreviousDefFromEnd(BasicBlock *);
|
||||
MemoryAccess *getPreviousDefRecursive(BasicBlock *);
|
||||
MemoryAccess *recursePhi(MemoryAccess *Phi);
|
||||
template <class RangeType>
|
||||
MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
|
||||
void fixupDefs(const SmallVectorImpl<MemoryAccess *> &);
|
||||
};
|
||||
|
||||
// This pass does eager building and then printing of MemorySSA. It is used by
|
||||
// the tests to be able to build, dump, and verify Memory SSA.
|
||||
class MemorySSAPrinterLegacyPass : public FunctionPass {
|
||||
|
86
include/llvm/Transforms/Utils/MemorySSAUpdater.h
Normal file
86
include/llvm/Transforms/Utils/MemorySSAUpdater.h
Normal file
@ -0,0 +1,86 @@
|
||||
//===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// \file
|
||||
// \brief An automatic updater for MemorySSA that handles arbitrary insertion,
|
||||
// deletion, and moves. It performs phi insertion where necessary, and
|
||||
// automatically updates the MemorySSA IR to be correct.
|
||||
// While updating loads or removing instructions is often easy enough to not
|
||||
// need this, updating stores should generally not be attemped outside this
|
||||
// API.
|
||||
//
|
||||
// Basic API usage:
|
||||
// Create the memory access you want for the instruction (this is mainly so
|
||||
// we know where it is, without having to duplicate the entire set of create
|
||||
// functions MemorySSA supports).
|
||||
// Call insertDef or insertUse depending on whether it's a MemoryUse or a
|
||||
// MemoryDef.
|
||||
// That's it.
|
||||
//
|
||||
// For moving, first, move the instruction itself using the normal SSA
|
||||
// instruction moving API, then just call moveBefore or moveAfter with the right
|
||||
// arguments.
|
||||
//
|
||||
// walk memory instructions using a use/def graph.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_UTILS_MEMORYSSAUPDATER_H
|
||||
#define LLVM_TRANSFORMS_UTILS_MEMORYSSAUPDATER_H
|
||||
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/OperandTraits.h"
|
||||
#include "llvm/IR/Type.h"
|
||||
#include "llvm/IR/Use.h"
|
||||
#include "llvm/IR/User.h"
|
||||
#include "llvm/IR/Value.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/Casting.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Transforms/Utils/MemorySSA.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class Function;
|
||||
class Instruction;
|
||||
class MemoryAccess;
|
||||
class LLVMContext;
|
||||
class raw_ostream;
|
||||
|
||||
class MemorySSAUpdater {
|
||||
private:
|
||||
MemorySSA *MSSA;
|
||||
SmallVector<MemoryPhi *, 8> InsertedPHIs;
|
||||
SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
|
||||
|
||||
public:
|
||||
MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
|
||||
void insertDef(MemoryDef *Def);
|
||||
void insertUse(MemoryUse *Use);
|
||||
void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
|
||||
void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
|
||||
|
||||
private:
|
||||
void moveTo(MemoryUseOrDef *What, BasicBlock *BB,
|
||||
MemorySSA::AccessList::iterator Where);
|
||||
MemoryAccess *getPreviousDef(MemoryAccess *);
|
||||
MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
|
||||
MemoryAccess *getPreviousDefFromEnd(BasicBlock *);
|
||||
MemoryAccess *getPreviousDefRecursive(BasicBlock *);
|
||||
MemoryAccess *recursePhi(MemoryAccess *Phi);
|
||||
template <class RangeType>
|
||||
MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
|
||||
void fixupDefs(const SmallVectorImpl<MemoryAccess *> &);
|
||||
};
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_TRANSFORMS_UTILS_MEMORYSSAUPDATER_H
|
@ -34,6 +34,7 @@ add_llvm_library(LLVMTransformUtils
|
||||
LowerSwitch.cpp
|
||||
Mem2Reg.cpp
|
||||
MemorySSA.cpp
|
||||
MemorySSAUpdater.cpp
|
||||
MetaRenamer.cpp
|
||||
ModuleUtils.cpp
|
||||
NameAnonGlobals.cpp
|
||||
|
@ -2397,343 +2397,4 @@ MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
|
||||
return Use->getDefiningAccess();
|
||||
return StartingAccess;
|
||||
}
|
||||
// This is the marker algorithm from "Simple and Efficient Construction of
|
||||
// Static Single Assignment Form"
|
||||
// The simple, non-marker algorithm places phi nodes at any join
|
||||
// Here, we place markers, and only place phi nodes if they end up necessary.
|
||||
// They are only necessary if they break a cycle (IE we recursively visit
|
||||
// ourselves again), or we discover, while getting the value of the operands,
|
||||
// that there are two or more definitions needing to be merged.
|
||||
// This still will leave non-minimal form in the case of irreducible control
|
||||
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
|
||||
// Single predecessor case, just recurse, we can only have one definition.
|
||||
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
|
||||
return getPreviousDefFromEnd(Pred);
|
||||
} else if (VisitedBlocks.count(BB)) {
|
||||
// We hit our node again, meaning we had a cycle, we must insert a phi
|
||||
// node to break it so we have an operand. The only case this will
|
||||
// insert useless phis is if we have irreducible control flow.
|
||||
return MSSA->createMemoryPhi(BB);
|
||||
} else if (VisitedBlocks.insert(BB).second) {
|
||||
// Mark us visited so we can detect a cycle
|
||||
SmallVector<MemoryAccess *, 8> PhiOps;
|
||||
|
||||
// Recurse to get the values in our predecessors for placement of a
|
||||
// potential phi node. This will insert phi nodes if we cycle in order to
|
||||
// break the cycle and have an operand.
|
||||
for (auto *Pred : predecessors(BB))
|
||||
PhiOps.push_back(getPreviousDefFromEnd(Pred));
|
||||
|
||||
// Now try to simplify the ops to avoid placing a phi.
|
||||
// This may return null if we never created a phi yet, that's okay
|
||||
MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
|
||||
bool PHIExistsButNeedsUpdate = false;
|
||||
// See if the existing phi operands match what we need.
|
||||
// Unlike normal SSA, we only allow one phi node per block, so we can't just
|
||||
// create a new one.
|
||||
if (Phi && Phi->getNumOperands() != 0)
|
||||
if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
|
||||
PHIExistsButNeedsUpdate = true;
|
||||
}
|
||||
|
||||
// See if we can avoid the phi by simplifying it.
|
||||
auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
|
||||
// If we couldn't simplify, we may have to create a phi
|
||||
if (Result == Phi) {
|
||||
if (!Phi)
|
||||
Phi = MSSA->createMemoryPhi(BB);
|
||||
|
||||
// These will have been filled in by the recursive read we did above.
|
||||
if (PHIExistsButNeedsUpdate) {
|
||||
std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
|
||||
std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
|
||||
} else {
|
||||
unsigned i = 0;
|
||||
for (auto *Pred : predecessors(BB))
|
||||
Phi->addIncoming(PhiOps[i++], Pred);
|
||||
}
|
||||
|
||||
Result = Phi;
|
||||
}
|
||||
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
|
||||
InsertedPHIs.push_back(MP);
|
||||
// Set ourselves up for the next variable by resetting visited state.
|
||||
VisitedBlocks.erase(BB);
|
||||
return Result;
|
||||
}
|
||||
llvm_unreachable("Should have hit one of the three cases above");
|
||||
}
|
||||
|
||||
// This starts at the memory access, and goes backwards in the block to find the
|
||||
// previous definition. If a definition is not found the block of the access,
|
||||
// it continues globally, creating phi nodes to ensure we have a single
|
||||
// definition.
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
|
||||
auto *LocalResult = getPreviousDefInBlock(MA);
|
||||
|
||||
return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
|
||||
}
|
||||
|
||||
// This starts at the memory access, and goes backwards in the block to the find
|
||||
// the previous definition. If the definition is not found in the block of the
|
||||
// access, it returns nullptr.
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
|
||||
auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
|
||||
|
||||
// It's possible there are no defs, or we got handed the first def to start.
|
||||
if (Defs) {
|
||||
// If this is a def, we can just use the def iterators.
|
||||
if (!isa<MemoryUse>(MA)) {
|
||||
auto Iter = MA->getReverseDefsIterator();
|
||||
++Iter;
|
||||
if (Iter != Defs->rend())
|
||||
return &*Iter;
|
||||
} else {
|
||||
// Otherwise, have to walk the all access iterator.
|
||||
auto Iter = MA->getReverseIterator();
|
||||
++Iter;
|
||||
while (&*Iter != &*Defs->begin()) {
|
||||
if (!isa<MemoryUse>(*Iter))
|
||||
return &*Iter;
|
||||
--Iter;
|
||||
}
|
||||
// At this point it must be pointing at firstdef
|
||||
assert(&*Iter == &*Defs->begin() &&
|
||||
"Should have hit first def walking backwards");
|
||||
return &*Iter;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// This starts at the end of block
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
|
||||
auto *Defs = MSSA->getWritableBlockDefs(BB);
|
||||
|
||||
if (Defs)
|
||||
return &*Defs->rbegin();
|
||||
|
||||
return getPreviousDefRecursive(BB);
|
||||
}
|
||||
// Recurse over a set of phi uses to eliminate the trivial ones
|
||||
MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
|
||||
if (!Phi)
|
||||
return nullptr;
|
||||
TrackingVH<MemoryAccess> Res(Phi);
|
||||
SmallVector<TrackingVH<Value>, 8> Uses;
|
||||
std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
|
||||
for (auto &U : Uses) {
|
||||
if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
|
||||
auto OperRange = UsePhi->operands();
|
||||
tryRemoveTrivialPhi(UsePhi, OperRange);
|
||||
}
|
||||
}
|
||||
return Res;
|
||||
}
|
||||
|
||||
// Eliminate trivial phis
|
||||
// Phis are trivial if they are defined either by themselves, or all the same
|
||||
// argument.
|
||||
// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
|
||||
// We recursively try to remove them.
|
||||
template <class RangeType>
|
||||
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
|
||||
RangeType &Operands) {
|
||||
// Detect equal or self arguments
|
||||
MemoryAccess *Same = nullptr;
|
||||
for (auto &Op : Operands) {
|
||||
// If the same or self, good so far
|
||||
if (Op == Phi || Op == Same)
|
||||
continue;
|
||||
// not the same, return the phi since it's not eliminatable by us
|
||||
if (Same)
|
||||
return Phi;
|
||||
Same = cast<MemoryAccess>(Op);
|
||||
}
|
||||
// Never found a non-self reference, the phi is undef
|
||||
if (Same == nullptr)
|
||||
return MSSA->getLiveOnEntryDef();
|
||||
if (Phi) {
|
||||
Phi->replaceAllUsesWith(Same);
|
||||
MSSA->removeMemoryAccess(Phi);
|
||||
}
|
||||
|
||||
// We should only end up recursing in case we replaced something, in which
|
||||
// case, we may have made other Phis trivial.
|
||||
return recursePhi(Same);
|
||||
}
|
||||
|
||||
void MemorySSAUpdater::insertUse(MemoryUse *MU) {
|
||||
InsertedPHIs.clear();
|
||||
MU->setDefiningAccess(getPreviousDef(MU));
|
||||
// Unlike for defs, there is no extra work to do. Because uses do not create
|
||||
// new may-defs, there are only two cases:
|
||||
//
|
||||
// 1. There was a def already below us, and therefore, we should not have
|
||||
// created a phi node because it was already needed for the def.
|
||||
//
|
||||
// 2. There is no def below us, and therefore, there is no extra renaming work
|
||||
// to do.
|
||||
}
|
||||
|
||||
void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
|
||||
MemoryAccess *NewDef) {
|
||||
// Replace any operand with us an incoming block with the new defining
|
||||
// access.
|
||||
int i = MP->getBasicBlockIndex(BB);
|
||||
assert(i != -1 && "Should have found the basic block in the phi");
|
||||
while (MP->getIncomingBlock(i) == BB) {
|
||||
// Unlike above, there is already a phi node here, so we only need
|
||||
// to set the right value.
|
||||
MP->setIncomingValue(i, NewDef);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
// A brief description of the algorithm:
|
||||
// First, we compute what should define the new def, using the SSA
|
||||
// construction algorithm.
|
||||
// Then, we update the defs below us (and any new phi nodes) in the graph to
|
||||
// point to the correct new defs, to ensure we only have one variable, and no
|
||||
// disconnected stores.
|
||||
void MemorySSAUpdater::insertDef(MemoryDef *MD) {
|
||||
InsertedPHIs.clear();
|
||||
|
||||
// See if we had a local def, and if not, go hunting.
|
||||
MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
|
||||
bool DefBeforeSameBlock = DefBefore != nullptr;
|
||||
if (!DefBefore)
|
||||
DefBefore = getPreviousDefRecursive(MD->getBlock());
|
||||
|
||||
// There is a def before us, which means we can replace any store/phi uses
|
||||
// of that thing with us, since we are in the way of whatever was there
|
||||
// before.
|
||||
// We now define that def's memorydefs and memoryphis
|
||||
for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); UI != UE;) {
|
||||
Use &U = *UI++;
|
||||
// Leave the uses alone
|
||||
if (isa<MemoryUse>(U.getUser()))
|
||||
continue;
|
||||
U.set(MD);
|
||||
}
|
||||
// and that def is now our defining access.
|
||||
// We change them in this order otherwise we will appear in the use list
|
||||
// above and reset ourselves.
|
||||
MD->setDefiningAccess(DefBefore);
|
||||
|
||||
SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
|
||||
InsertedPHIs.end());
|
||||
if (!DefBeforeSameBlock) {
|
||||
// If there was a local def before us, we must have the same effect it
|
||||
// did. Because every may-def is the same, any phis/etc we would create, it
|
||||
// would also have created. If there was no local def before us, we
|
||||
// performed a global update, and have to search all successors and make
|
||||
// sure we update the first def in each of them (following all paths until
|
||||
// we hit the first def along each path). This may also insert phi nodes.
|
||||
// TODO: There are other cases we can skip this work, such as when we have a
|
||||
// single successor, and only used a straight line of single pred blocks
|
||||
// backwards to find the def. To make that work, we'd have to track whether
|
||||
// getDefRecursive only ever used the single predecessor case. These types
|
||||
// of paths also only exist in between CFG simplifications.
|
||||
FixupList.push_back(MD);
|
||||
}
|
||||
|
||||
while (!FixupList.empty()) {
|
||||
unsigned StartingPHISize = InsertedPHIs.size();
|
||||
fixupDefs(FixupList);
|
||||
FixupList.clear();
|
||||
// Put any new phis on the fixup list, and process them
|
||||
FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
|
||||
}
|
||||
}
|
||||
|
||||
void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
|
||||
SmallPtrSet<const BasicBlock *, 8> Seen;
|
||||
SmallVector<const BasicBlock *, 16> Worklist;
|
||||
for (auto *NewDef : Vars) {
|
||||
// First, see if there is a local def after the operand.
|
||||
auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
|
||||
auto DefIter = NewDef->getDefsIterator();
|
||||
|
||||
// If there is a local def after us, we only have to rename that.
|
||||
if (++DefIter != Defs->end()) {
|
||||
cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Otherwise, we need to search down through the CFG.
|
||||
// For each of our successors, handle it directly if their is a phi, or
|
||||
// place on the fixup worklist.
|
||||
for (const auto *S : successors(NewDef->getBlock())) {
|
||||
if (auto *MP = MSSA->getMemoryAccess(S))
|
||||
setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
|
||||
else
|
||||
Worklist.push_back(S);
|
||||
}
|
||||
|
||||
while (!Worklist.empty()) {
|
||||
const BasicBlock *FixupBlock = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
|
||||
// Get the first def in the block that isn't a phi node.
|
||||
if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
|
||||
auto *FirstDef = &*Defs->begin();
|
||||
// The loop above and below should have taken care of phi nodes
|
||||
assert(!isa<MemoryPhi>(FirstDef) &&
|
||||
"Should have already handled phi nodes!");
|
||||
// We are now this def's defining access, make sure we actually dominate
|
||||
// it
|
||||
assert(MSSA->dominates(NewDef, FirstDef) &&
|
||||
"Should have dominated the new access");
|
||||
|
||||
// This may insert new phi nodes, because we are not guaranteed the
|
||||
// block we are processing has a single pred, and depending where the
|
||||
// store was inserted, it may require phi nodes below it.
|
||||
cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
|
||||
return;
|
||||
}
|
||||
// We didn't find a def, so we must continue.
|
||||
for (const auto *S : successors(FixupBlock)) {
|
||||
// If there is a phi node, handle it.
|
||||
// Otherwise, put the block on the worklist
|
||||
if (auto *MP = MSSA->getMemoryAccess(S))
|
||||
setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
|
||||
else {
|
||||
// If we cycle, we should have ended up at a phi node that we already
|
||||
// processed. FIXME: Double check this
|
||||
if (!Seen.insert(S).second)
|
||||
continue;
|
||||
Worklist.push_back(S);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Move What before Where in the MemorySSA IR.
|
||||
void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
|
||||
MemorySSA::AccessList::iterator Where) {
|
||||
// Replace all our users with our defining access.
|
||||
What->replaceAllUsesWith(What->getDefiningAccess());
|
||||
|
||||
// Let MemorySSA take care of moving it around in the lists.
|
||||
MSSA->moveTo(What, BB, Where);
|
||||
|
||||
// Now reinsert it into the IR and do whatever fixups needed.
|
||||
if (auto *MD = dyn_cast<MemoryDef>(What))
|
||||
insertDef(MD);
|
||||
else
|
||||
insertUse(cast<MemoryUse>(What));
|
||||
}
|
||||
// Move What before Where in the MemorySSA IR.
|
||||
void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
|
||||
moveTo(What, Where->getBlock(), Where->getIterator());
|
||||
}
|
||||
|
||||
// Move What after Where in the MemorySSA IR.
|
||||
void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
|
||||
moveTo(What, Where->getBlock(), ++Where->getIterator());
|
||||
}
|
||||
|
||||
} // namespace llvm
|
||||
|
372
lib/Transforms/Utils/MemorySSAUpdater.cpp
Normal file
372
lib/Transforms/Utils/MemorySSAUpdater.cpp
Normal file
@ -0,0 +1,372 @@
|
||||
//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the MemorySSAUpdater class.
|
||||
//
|
||||
//===----------------------------------------------------------------===//
|
||||
#include "llvm/Transforms/Utils/MemorySSAUpdater.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "llvm/IR/DataLayout.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/GlobalVariable.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/IntrinsicInst.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Metadata.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/FormattedStream.h"
|
||||
#include "llvm/Transforms/Utils/MemorySSA.h"
|
||||
#include <algorithm>
|
||||
|
||||
#define DEBUG_TYPE "memoryssa"
|
||||
using namespace llvm;
|
||||
namespace llvm {
|
||||
// This is the marker algorithm from "Simple and Efficient Construction of
|
||||
// Static Single Assignment Form"
|
||||
// The simple, non-marker algorithm places phi nodes at any join
|
||||
// Here, we place markers, and only place phi nodes if they end up necessary.
|
||||
// They are only necessary if they break a cycle (IE we recursively visit
|
||||
// ourselves again), or we discover, while getting the value of the operands,
|
||||
// that there are two or more definitions needing to be merged.
|
||||
// This still will leave non-minimal form in the case of irreducible control
|
||||
// flow, where phi nodes may be in cycles with themselves, but unnecessary.
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) {
|
||||
// Single predecessor case, just recurse, we can only have one definition.
|
||||
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
|
||||
return getPreviousDefFromEnd(Pred);
|
||||
} else if (VisitedBlocks.count(BB)) {
|
||||
// We hit our node again, meaning we had a cycle, we must insert a phi
|
||||
// node to break it so we have an operand. The only case this will
|
||||
// insert useless phis is if we have irreducible control flow.
|
||||
return MSSA->createMemoryPhi(BB);
|
||||
} else if (VisitedBlocks.insert(BB).second) {
|
||||
// Mark us visited so we can detect a cycle
|
||||
SmallVector<MemoryAccess *, 8> PhiOps;
|
||||
|
||||
// Recurse to get the values in our predecessors for placement of a
|
||||
// potential phi node. This will insert phi nodes if we cycle in order to
|
||||
// break the cycle and have an operand.
|
||||
for (auto *Pred : predecessors(BB))
|
||||
PhiOps.push_back(getPreviousDefFromEnd(Pred));
|
||||
|
||||
// Now try to simplify the ops to avoid placing a phi.
|
||||
// This may return null if we never created a phi yet, that's okay
|
||||
MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
|
||||
bool PHIExistsButNeedsUpdate = false;
|
||||
// See if the existing phi operands match what we need.
|
||||
// Unlike normal SSA, we only allow one phi node per block, so we can't just
|
||||
// create a new one.
|
||||
if (Phi && Phi->getNumOperands() != 0)
|
||||
if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
|
||||
PHIExistsButNeedsUpdate = true;
|
||||
}
|
||||
|
||||
// See if we can avoid the phi by simplifying it.
|
||||
auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
|
||||
// If we couldn't simplify, we may have to create a phi
|
||||
if (Result == Phi) {
|
||||
if (!Phi)
|
||||
Phi = MSSA->createMemoryPhi(BB);
|
||||
|
||||
// These will have been filled in by the recursive read we did above.
|
||||
if (PHIExistsButNeedsUpdate) {
|
||||
std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin());
|
||||
std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
|
||||
} else {
|
||||
unsigned i = 0;
|
||||
for (auto *Pred : predecessors(BB))
|
||||
Phi->addIncoming(PhiOps[i++], Pred);
|
||||
}
|
||||
|
||||
Result = Phi;
|
||||
}
|
||||
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result))
|
||||
InsertedPHIs.push_back(MP);
|
||||
// Set ourselves up for the next variable by resetting visited state.
|
||||
VisitedBlocks.erase(BB);
|
||||
return Result;
|
||||
}
|
||||
llvm_unreachable("Should have hit one of the three cases above");
|
||||
}
|
||||
|
||||
// This starts at the memory access, and goes backwards in the block to find the
|
||||
// previous definition. If a definition is not found the block of the access,
|
||||
// it continues globally, creating phi nodes to ensure we have a single
|
||||
// definition.
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
|
||||
auto *LocalResult = getPreviousDefInBlock(MA);
|
||||
|
||||
return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock());
|
||||
}
|
||||
|
||||
// This starts at the memory access, and goes backwards in the block to the find
|
||||
// the previous definition. If the definition is not found in the block of the
|
||||
// access, it returns nullptr.
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
|
||||
auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
|
||||
|
||||
// It's possible there are no defs, or we got handed the first def to start.
|
||||
if (Defs) {
|
||||
// If this is a def, we can just use the def iterators.
|
||||
if (!isa<MemoryUse>(MA)) {
|
||||
auto Iter = MA->getReverseDefsIterator();
|
||||
++Iter;
|
||||
if (Iter != Defs->rend())
|
||||
return &*Iter;
|
||||
} else {
|
||||
// Otherwise, have to walk the all access iterator.
|
||||
auto Iter = MA->getReverseIterator();
|
||||
++Iter;
|
||||
while (&*Iter != &*Defs->begin()) {
|
||||
if (!isa<MemoryUse>(*Iter))
|
||||
return &*Iter;
|
||||
--Iter;
|
||||
}
|
||||
// At this point it must be pointing at firstdef
|
||||
assert(&*Iter == &*Defs->begin() &&
|
||||
"Should have hit first def walking backwards");
|
||||
return &*Iter;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// This starts at the end of block
|
||||
MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) {
|
||||
auto *Defs = MSSA->getWritableBlockDefs(BB);
|
||||
|
||||
if (Defs)
|
||||
return &*Defs->rbegin();
|
||||
|
||||
return getPreviousDefRecursive(BB);
|
||||
}
|
||||
// Recurse over a set of phi uses to eliminate the trivial ones
|
||||
MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
|
||||
if (!Phi)
|
||||
return nullptr;
|
||||
TrackingVH<MemoryAccess> Res(Phi);
|
||||
SmallVector<TrackingVH<Value>, 8> Uses;
|
||||
std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
|
||||
for (auto &U : Uses) {
|
||||
if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
|
||||
auto OperRange = UsePhi->operands();
|
||||
tryRemoveTrivialPhi(UsePhi, OperRange);
|
||||
}
|
||||
}
|
||||
return Res;
|
||||
}
|
||||
|
||||
// Eliminate trivial phis
|
||||
// Phis are trivial if they are defined either by themselves, or all the same
|
||||
// argument.
|
||||
// IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
|
||||
// We recursively try to remove them.
|
||||
template <class RangeType>
|
||||
MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
|
||||
RangeType &Operands) {
|
||||
// Detect equal or self arguments
|
||||
MemoryAccess *Same = nullptr;
|
||||
for (auto &Op : Operands) {
|
||||
// If the same or self, good so far
|
||||
if (Op == Phi || Op == Same)
|
||||
continue;
|
||||
// not the same, return the phi since it's not eliminatable by us
|
||||
if (Same)
|
||||
return Phi;
|
||||
Same = cast<MemoryAccess>(Op);
|
||||
}
|
||||
// Never found a non-self reference, the phi is undef
|
||||
if (Same == nullptr)
|
||||
return MSSA->getLiveOnEntryDef();
|
||||
if (Phi) {
|
||||
Phi->replaceAllUsesWith(Same);
|
||||
MSSA->removeMemoryAccess(Phi);
|
||||
}
|
||||
|
||||
// We should only end up recursing in case we replaced something, in which
|
||||
// case, we may have made other Phis trivial.
|
||||
return recursePhi(Same);
|
||||
}
|
||||
|
||||
void MemorySSAUpdater::insertUse(MemoryUse *MU) {
|
||||
InsertedPHIs.clear();
|
||||
MU->setDefiningAccess(getPreviousDef(MU));
|
||||
// Unlike for defs, there is no extra work to do. Because uses do not create
|
||||
// new may-defs, there are only two cases:
|
||||
//
|
||||
// 1. There was a def already below us, and therefore, we should not have
|
||||
// created a phi node because it was already needed for the def.
|
||||
//
|
||||
// 2. There is no def below us, and therefore, there is no extra renaming work
|
||||
// to do.
|
||||
}
|
||||
|
||||
void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
|
||||
MemoryAccess *NewDef) {
|
||||
// Replace any operand with us an incoming block with the new defining
|
||||
// access.
|
||||
int i = MP->getBasicBlockIndex(BB);
|
||||
assert(i != -1 && "Should have found the basic block in the phi");
|
||||
while (MP->getIncomingBlock(i) == BB) {
|
||||
// Unlike above, there is already a phi node here, so we only need
|
||||
// to set the right value.
|
||||
MP->setIncomingValue(i, NewDef);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
// A brief description of the algorithm:
|
||||
// First, we compute what should define the new def, using the SSA
|
||||
// construction algorithm.
|
||||
// Then, we update the defs below us (and any new phi nodes) in the graph to
|
||||
// point to the correct new defs, to ensure we only have one variable, and no
|
||||
// disconnected stores.
|
||||
void MemorySSAUpdater::insertDef(MemoryDef *MD) {
|
||||
InsertedPHIs.clear();
|
||||
|
||||
// See if we had a local def, and if not, go hunting.
|
||||
MemoryAccess *DefBefore = getPreviousDefInBlock(MD);
|
||||
bool DefBeforeSameBlock = DefBefore != nullptr;
|
||||
if (!DefBefore)
|
||||
DefBefore = getPreviousDefRecursive(MD->getBlock());
|
||||
|
||||
// There is a def before us, which means we can replace any store/phi uses
|
||||
// of that thing with us, since we are in the way of whatever was there
|
||||
// before.
|
||||
// We now define that def's memorydefs and memoryphis
|
||||
for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); UI != UE;) {
|
||||
Use &U = *UI++;
|
||||
// Leave the uses alone
|
||||
if (isa<MemoryUse>(U.getUser()))
|
||||
continue;
|
||||
U.set(MD);
|
||||
}
|
||||
// and that def is now our defining access.
|
||||
// We change them in this order otherwise we will appear in the use list
|
||||
// above and reset ourselves.
|
||||
MD->setDefiningAccess(DefBefore);
|
||||
|
||||
SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(),
|
||||
InsertedPHIs.end());
|
||||
if (!DefBeforeSameBlock) {
|
||||
// If there was a local def before us, we must have the same effect it
|
||||
// did. Because every may-def is the same, any phis/etc we would create, it
|
||||
// would also have created. If there was no local def before us, we
|
||||
// performed a global update, and have to search all successors and make
|
||||
// sure we update the first def in each of them (following all paths until
|
||||
// we hit the first def along each path). This may also insert phi nodes.
|
||||
// TODO: There are other cases we can skip this work, such as when we have a
|
||||
// single successor, and only used a straight line of single pred blocks
|
||||
// backwards to find the def. To make that work, we'd have to track whether
|
||||
// getDefRecursive only ever used the single predecessor case. These types
|
||||
// of paths also only exist in between CFG simplifications.
|
||||
FixupList.push_back(MD);
|
||||
}
|
||||
|
||||
while (!FixupList.empty()) {
|
||||
unsigned StartingPHISize = InsertedPHIs.size();
|
||||
fixupDefs(FixupList);
|
||||
FixupList.clear();
|
||||
// Put any new phis on the fixup list, and process them
|
||||
FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end());
|
||||
}
|
||||
}
|
||||
|
||||
void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) {
|
||||
SmallPtrSet<const BasicBlock *, 8> Seen;
|
||||
SmallVector<const BasicBlock *, 16> Worklist;
|
||||
for (auto *NewDef : Vars) {
|
||||
// First, see if there is a local def after the operand.
|
||||
auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
|
||||
auto DefIter = NewDef->getDefsIterator();
|
||||
|
||||
// If there is a local def after us, we only have to rename that.
|
||||
if (++DefIter != Defs->end()) {
|
||||
cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Otherwise, we need to search down through the CFG.
|
||||
// For each of our successors, handle it directly if their is a phi, or
|
||||
// place on the fixup worklist.
|
||||
for (const auto *S : successors(NewDef->getBlock())) {
|
||||
if (auto *MP = MSSA->getMemoryAccess(S))
|
||||
setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
|
||||
else
|
||||
Worklist.push_back(S);
|
||||
}
|
||||
|
||||
while (!Worklist.empty()) {
|
||||
const BasicBlock *FixupBlock = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
|
||||
// Get the first def in the block that isn't a phi node.
|
||||
if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
|
||||
auto *FirstDef = &*Defs->begin();
|
||||
// The loop above and below should have taken care of phi nodes
|
||||
assert(!isa<MemoryPhi>(FirstDef) &&
|
||||
"Should have already handled phi nodes!");
|
||||
// We are now this def's defining access, make sure we actually dominate
|
||||
// it
|
||||
assert(MSSA->dominates(NewDef, FirstDef) &&
|
||||
"Should have dominated the new access");
|
||||
|
||||
// This may insert new phi nodes, because we are not guaranteed the
|
||||
// block we are processing has a single pred, and depending where the
|
||||
// store was inserted, it may require phi nodes below it.
|
||||
cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
|
||||
return;
|
||||
}
|
||||
// We didn't find a def, so we must continue.
|
||||
for (const auto *S : successors(FixupBlock)) {
|
||||
// If there is a phi node, handle it.
|
||||
// Otherwise, put the block on the worklist
|
||||
if (auto *MP = MSSA->getMemoryAccess(S))
|
||||
setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
|
||||
else {
|
||||
// If we cycle, we should have ended up at a phi node that we already
|
||||
// processed. FIXME: Double check this
|
||||
if (!Seen.insert(S).second)
|
||||
continue;
|
||||
Worklist.push_back(S);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Move What before Where in the MemorySSA IR.
|
||||
void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
|
||||
MemorySSA::AccessList::iterator Where) {
|
||||
// Replace all our users with our defining access.
|
||||
What->replaceAllUsesWith(What->getDefiningAccess());
|
||||
|
||||
// Let MemorySSA take care of moving it around in the lists.
|
||||
MSSA->moveTo(What, BB, Where);
|
||||
|
||||
// Now reinsert it into the IR and do whatever fixups needed.
|
||||
if (auto *MD = dyn_cast<MemoryDef>(What))
|
||||
insertDef(MD);
|
||||
else
|
||||
insertUse(cast<MemoryUse>(What));
|
||||
}
|
||||
// Move What before Where in the MemorySSA IR.
|
||||
void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
|
||||
moveTo(What, Where->getBlock(), Where->getIterator());
|
||||
}
|
||||
|
||||
// Move What after Where in the MemorySSA IR.
|
||||
void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
|
||||
moveTo(What, Where->getBlock(), ++Where->getIterator());
|
||||
}
|
||||
|
||||
} // namespace llvm
|
@ -15,6 +15,7 @@
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/Transforms/Utils/MemorySSAUpdater.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
Loading…
x
Reference in New Issue
Block a user