Added a custom TableGen backend to support the

enhanced disassembler, and the necessary makefile
rules to build the table for X86.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94764 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sean Callanan 2010-01-29 00:21:04 +00:00
parent 1897ed3d37
commit 95fcebd5c4
5 changed files with 911 additions and 0 deletions

View File

@ -1574,6 +1574,11 @@ $(ObjDir)/%GenDisassemblerTables.inc.tmp : %.td $(ObjDir)/.dir
$(Echo) "Building $(<F) disassembly tables with tblgen"
$(Verb) $(TableGen) -gen-disassembler -o $(call SYSPATH, $@) $<
$(TARGET:%=$(ObjDir)/%GenEDInfo.inc.tmp): \
$(ObjDir)/%GenEDInfo.inc.tmp : %.td $(ObjDir)/.dir
$(Echo) "Building $(<F) enhanced disassembly information with tblgen"
$(Verb) $(TableGen) -gen-enhanced-disassembly-info -o $(call SYSPATH, $@) $<
$(TARGET:%=$(ObjDir)/%GenFastISel.inc.tmp): \
$(ObjDir)/%GenFastISel.inc.tmp : %.td $(ObjDir)/.dir
$(Echo) "Building $(<F) \"fast\" instruction selector implementation with tblgen"

View File

@ -18,6 +18,7 @@ BUILT_SOURCES = X86GenRegisterInfo.h.inc X86GenRegisterNames.inc \
X86GenAsmWriter1.inc X86GenDAGISel.inc \
X86GenDisassemblerTables.inc X86GenFastISel.inc \
X86GenCallingConv.inc X86GenSubtarget.inc \
X86GenEDInfo.inc
DIRS = AsmPrinter AsmParser Disassembler TargetInfo

View File

@ -0,0 +1,856 @@
//===- EDEmitter.cpp - Generate instruction descriptions for ED -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of each
// instruction in a format that the enhanced disassembler can use to tokenize
// and parse instructions.
//
//===----------------------------------------------------------------------===//
#include "EDEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <string>
#define MAX_OPERANDS 5
#define MAX_SYNTAXES 2
using namespace llvm;
///////////////////////////////////////////////////////////
// Support classes for emitting nested C data structures //
///////////////////////////////////////////////////////////
namespace {
class EnumEmitter {
private:
std::string Name;
std::vector<std::string> Entries;
public:
EnumEmitter(const char *N) : Name(N) {
}
int addEntry(const char *e) {
Entries.push_back(std::string(e));
return Entries.size() - 1;
}
void emit(raw_ostream &o, unsigned int &i) {
o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
i += 2;
unsigned int index = 0;
unsigned int numEntries = Entries.size();
for(index = 0; index < numEntries; ++index) {
o.indent(i) << Entries[index];
if(index < (numEntries - 1))
o << ",";
o << "\n";
}
i -= 2;
o.indent(i) << "};" << "\n";
}
void emitAsFlags(raw_ostream &o, unsigned int &i) {
o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
i += 2;
unsigned int index = 0;
unsigned int numEntries = Entries.size();
unsigned int flag = 1;
for (index = 0; index < numEntries; ++index) {
o.indent(i) << Entries[index] << " = " << format("0x%x", flag);
if (index < (numEntries - 1))
o << ",";
o << "\n";
flag <<= 1;
}
i -= 2;
o.indent(i) << "};" << "\n";
}
};
class StructEmitter {
private:
std::string Name;
std::vector<std::string> MemberTypes;
std::vector<std::string> MemberNames;
public:
StructEmitter(const char *N) : Name(N) {
}
void addMember(const char *t, const char *n) {
MemberTypes.push_back(std::string(t));
MemberNames.push_back(std::string(n));
}
void emit(raw_ostream &o, unsigned int &i) {
o.indent(i) << "struct " << Name.c_str() << " {" << "\n";
i += 2;
unsigned int index = 0;
unsigned int numMembers = MemberTypes.size();
for (index = 0; index < numMembers; ++index) {
o.indent(i) << MemberTypes[index] << " " << MemberNames[index] << ";";
o << "\n";
}
i -= 2;
o.indent(i) << "};" << "\n";
}
};
class ConstantEmitter {
public:
virtual ~ConstantEmitter() { }
virtual void emit(raw_ostream &o, unsigned int &i) = 0;
};
class LiteralConstantEmitter : public ConstantEmitter {
private:
std::string Literal;
public:
LiteralConstantEmitter(const char *literal) : Literal(literal) {
}
LiteralConstantEmitter(int literal) {
char buf[256];
snprintf(buf, 256, "%d", literal);
Literal = buf;
}
void emit(raw_ostream &o, unsigned int &i) {
o << Literal;
}
};
class CompoundConstantEmitter : public ConstantEmitter {
private:
std::vector<ConstantEmitter*> Entries;
public:
CompoundConstantEmitter() {
}
~CompoundConstantEmitter() {
unsigned int index;
unsigned int numEntries = Entries.size();
for (index = 0; index < numEntries; ++index) {
delete Entries[index];
}
}
CompoundConstantEmitter &addEntry(ConstantEmitter *e) {
Entries.push_back(e);
return *this;
}
void emit(raw_ostream &o, unsigned int &i) {
o << "{" << "\n";
i += 2;
unsigned int index;
unsigned int numEntries = Entries.size();
for (index = 0; index < numEntries; ++index) {
o.indent(i);
Entries[index]->emit(o, i);
if (index < (numEntries - 1))
o << ",";
o << "\n";
}
i -= 2;
o.indent(i) << "}";
}
};
class FlagsConstantEmitter : public ConstantEmitter {
private:
std::vector<std::string> Flags;
public:
FlagsConstantEmitter() {
}
FlagsConstantEmitter &addEntry(const char *f) {
Flags.push_back(std::string(f));
return *this;
}
void emit(raw_ostream &o, unsigned int &i) {
unsigned int index;
unsigned int numFlags = Flags.size();
if (numFlags == 0)
o << "0";
for (index = 0; index < numFlags; ++index) {
o << Flags[index].c_str();
if (index < (numFlags - 1))
o << " | ";
}
}
};
}
EDEmitter::EDEmitter(RecordKeeper &R) : Records(R) {
}
//////////////////////////////////////////////
// Support functions for parsing AsmStrings //
//////////////////////////////////////////////
/// parseError - A better error reporter for use in AsmString parsers
///
/// @arg asmString - The original assembly string, for use in the error report
/// @arg index - The character where the error occurred
/// @arg err - The text of the error itself
static void parseError(const std::string& asmString,
unsigned int index,
const char* err) {
errs() << "In: " << asmString.c_str() << "\n";
errs() << "Error at " << format("%d", index) << ": " << err << "\n";
llvm_unreachable("Parse error");
}
/// resolveBraces - Interprets the brace syntax in an AsmString in favor of just
/// one syntax, and returns the result. "{A}" is resolved to "A" for syntax 0
/// and "" for all others; "{A|B}" is resolved to "A" for syntax 0, "B" for
/// syntax 1, and "" for all others; and so on.
///
/// @arg asmString - The original string, as loaded from the .td file
/// @arg syntaxIndex - The index to use
static std::string resolveBraces(const std::string &asmString,
unsigned int syntaxIndex) {
std::string ret;
unsigned int index;
unsigned int numChars = asmString.length();
// Brace parsing countable-state transducer
//
// STATES - -1, 0, 1, ..., error
// SYMBOLS - '{', '|', '}', ?, EOF
// START STATE - -1
//
// state input -> state output
// -1 '{' -> 0
// -1 '|' -> error
// -1 '}' -> error
// -1 ? -> -1 ?
// -1 EOF -> -1
// n '{' -> error
// n '|' -> n+1
// n '}' -> -1
// n ? -> n ? if n == syntaxIndex
// if not
// n EOF -> error
int state = -1;
for (index = 0; index < numChars; ++index) {
char input = asmString[index];
switch (state) {
default:
switch (input) {
default:
if (state == (int)syntaxIndex)
ret.push_back(input);
break;
case '{':
parseError(asmString, index, "Nested { in AsmString");
break;
case '|':
state++;
break;
case '}':
state = -1;
break;
}
break;
case -1:
switch (input) {
default:
ret.push_back(input);
break;
case '{':
state = 0;
break;
case '|':
parseError(asmString, index, "| outside braces in AsmString");
break;
case '}':
parseError(asmString, index, "Unmatched } in AsmString");
break;
}
break;
}
}
if (state != -1)
parseError(asmString, index, "Unmatched { in AsmString");
return ret;
}
/// getOperandIndex - looks up a named operand in an instruction and determines
/// its index in the operand descriptor array, returning the index or -1 if it
/// is not present.
///
/// @arg asmString - The assembly string for the instruction, for errors only
/// @arg operand - The operand's name
/// @arg inst - The instruction to use when looking up the operand
static int8_t getOperandIndex(const std::string &asmString,
const std::string &operand,
const CodeGenInstruction &inst) {
int8_t operandIndex;
if(operand.length() == 0) {
errs() << "In: " << asmString << "\n";
errs() << "Operand: " << operand << "\n";
llvm_unreachable("Empty operand");
}
try {
operandIndex = inst.getOperandNamed(operand);
}
catch (...) {
return -1;
}
return operandIndex;
}
/// isAlphanumeric - returns true if a character is a valid alphanumeric
/// character, and false otherwise
///
/// input - The character to query
static inline bool isAlphanumeric(char input) {
if((input >= 'a' && input <= 'z') ||
(input >= 'A' && input <= 'Z') ||
(input >= '0' && input <= '9') ||
(input == '_'))
return true;
else
return false;
}
/// populateOperandOrder - reads a resolved AsmString (see resolveBraces) and
/// records the index into the operand descriptor array for each operand in
/// that string, in the order of appearance.
///
/// @arg operandOrder - The array that will be populated with the operand
/// mapping. Each entry will contain -1 (invalid index
/// into the operands present in the AsmString) or a number
/// representing an index in the operand descriptor array.
/// @arg asmString - The operand's name
/// @arg inst - The instruction to use when looking up the operand
void populateOperandOrder(CompoundConstantEmitter *operandOrder,
const std::string &asmString,
const CodeGenInstruction &inst) {
std::string aux;
unsigned int index;
unsigned int numChars = asmString.length();
unsigned int numArgs = 0;
// Argument processing finite-state transducer
//
// STATES - 0, 1, error
// SYMBOLS - A(lphanumeric), '$', ?, EOF
// START STATE - 0
//
// state input -> state aux
// 0 A -> 0
// 0 '$' -> 1
// 0 ? -> 0
// 0 EOF -> 0
// 1 A -> 1 A
// 1 '$' -> error
// 1 ? -> 0 clear
// 1 EOF -> 0 clear
unsigned int state = 0;
for (index = 0; index < numChars; ++index) {
char input = asmString[index];
switch (state) {
default:
parseError(asmString, index, "Parser in unreachable state");
case 0:
if (input == '$') {
state = 1;
}
break;
case 1:
if (isAlphanumeric(input)) {
aux.push_back(input);
}
else if (input == '$') {
parseError(asmString, index, "$ found in argument name");
}
else {
int8_t operandIndex = getOperandIndex(asmString, aux, inst);
char buf[3];
snprintf(buf, sizeof(buf), "%d", operandIndex);
operandOrder->addEntry(new LiteralConstantEmitter(buf));
aux.clear();
state = 0;
numArgs++;
}
break;
}
}
if (state == 1) {
int8_t operandIndex = getOperandIndex(asmString, aux, inst);
char buf[2];
snprintf(buf, 2, "%d", operandIndex);
operandOrder->addEntry(new LiteralConstantEmitter(buf));
aux.clear();
numArgs++;
}
for(; numArgs < MAX_OPERANDS; numArgs++) {
operandOrder->addEntry(new LiteralConstantEmitter("-1"));
}
}
/////////////////////////////////////////////////////
// Support functions for handling X86 instructions //
/////////////////////////////////////////////////////
#define ADDFLAG(flag) flags->addEntry(flag)
#define REG(str) if (name == str) { ADDFLAG("kOperandFlagRegister"); return 0; }
#define MEM(str) if (name == str) { ADDFLAG("kOperandFlagMemory"); return 0; }
#define LEA(str) if (name == str) { ADDFLAG("kOperandFlagEffectiveAddress"); \
return 0; }
#define IMM(str) if (name == str) { ADDFLAG("kOperandFlagImmediate"); \
return 0; }
#define PCR(str) if (name == str) { ADDFLAG("kOperandFlagMemory"); \
ADDFLAG("kOperandFlagPCRelative"); \
return 0; }
/// X86FlagFromOpName - Processes the name of a single X86 operand (which is
/// actually its type) and translates it into an operand flag
///
/// @arg flags - The flags object to add the flag to
/// @arg name - The name of the operand
static int X86FlagFromOpName(FlagsConstantEmitter *flags,
const std::string &name) {
REG("GR8");
REG("GR8_NOREX");
REG("GR16");
REG("GR32");
REG("GR32_NOREX");
REG("FR32");
REG("RFP32");
REG("GR64");
REG("FR64");
REG("VR64");
REG("RFP64");
REG("RFP80");
REG("VR128");
REG("RST");
REG("SEGMENT_REG");
REG("DEBUG_REG");
REG("CONTROL_REG_32");
REG("CONTROL_REG_64");
MEM("i8mem");
MEM("i8mem_NOREX");
MEM("i16mem");
MEM("i32mem");
MEM("f32mem");
MEM("ssmem");
MEM("opaque32mem");
MEM("opaque48mem");
MEM("i64mem");
MEM("f64mem");
MEM("sdmem");
MEM("f80mem");
MEM("opaque80mem");
MEM("i128mem");
MEM("f128mem");
MEM("opaque512mem");
LEA("lea32mem");
LEA("lea64_32mem");
LEA("lea64mem");
IMM("i8imm");
IMM("i16imm");
IMM("i16i8imm");
IMM("i32imm");
IMM("i32imm_pcrel");
IMM("i32i8imm");
IMM("i64imm");
IMM("i64i8imm");
IMM("i64i32imm");
IMM("i64i32imm_pcrel");
IMM("SSECC");
PCR("brtarget8");
PCR("offset8");
PCR("offset16");
PCR("offset32");
PCR("offset64");
PCR("brtarget");
return 1;
}
#undef REG
#undef MEM
#undef LEA
#undef IMM
#undef PCR
#undef ADDFLAG
/// X86PopulateOperands - Handles all the operands in an X86 instruction, adding
/// the appropriate flags to their descriptors
///
/// @operandFlags - A reference the array of operand flag objects
/// @inst - The instruction to use as a source of information
static void X86PopulateOperands(
FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS],
const CodeGenInstruction &inst) {
if (!inst.TheDef->isSubClassOf("X86Inst"))
return;
unsigned int index;
unsigned int numOperands = inst.OperandList.size();
for (index = 0; index < numOperands; ++index) {
const CodeGenInstruction::OperandInfo &operandInfo =
inst.OperandList[index];
Record &rec = *operandInfo.Rec;
if (X86FlagFromOpName(operandFlags[index], rec.getName())) {
errs() << "Operand type: " << rec.getName().c_str() << "\n";
errs() << "Operand name: " << operandInfo.Name.c_str() << "\n";
errs() << "Instruction mame: " << inst.TheDef->getName().c_str() << "\n";
llvm_unreachable("Unhandled type");
}
}
}
/// decorate1 - Decorates a named operand with a new flag
///
/// @operandFlags - The array of operand flag objects, which don't have names
/// @inst - The CodeGenInstruction, which provides a way to translate
/// between names and operand indices
/// @opName - The name of the operand
/// @flag - The name of the flag to add
static inline void decorate1(FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS],
const CodeGenInstruction &inst,
const char *opName,
const char *opFlag) {
unsigned opIndex;
try {
opIndex = inst.getOperandNamed(std::string(opName));
}
catch (...) {
errs() << "Instruction: " << inst.TheDef->getName().c_str() << "\n";
errs() << "Operand name: " << opName << "\n";
llvm_unreachable("Couldn't find operand");
}
operandFlags[opIndex]->addEntry(opFlag);
}
#define DECORATE1(opName, opFlag) decorate1(operandFlags, inst, opName, opFlag)
#define MOV(source, target) { \
instFlags.addEntry("kInstructionFlagMove"); \
DECORATE1(source, "kOperandFlagSource"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define BRANCH(target) { \
instFlags.addEntry("kInstructionFlagBranch"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define PUSH(source) { \
instFlags.addEntry("kInstructionFlagPush"); \
DECORATE1(source, "kOperandFlagSource"); \
}
#define POP(target) { \
instFlags.addEntry("kInstructionFlagPop"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define CALL(target) { \
instFlags.addEntry("kInstructionFlagCall"); \
DECORATE1(target, "kOperandFlagTarget"); \
}
#define RETURN() { \
instFlags.addEntry("kInstructionFlagReturn"); \
}
/// X86ExtractSemantics - Performs various checks on the name of an X86
/// instruction to determine what sort of an instruction it is and then adds
/// the appropriate flags to the instruction and its operands
///
/// @arg instFlags - A reference to the flags for the instruction as a whole
/// @arg operandFlags - A reference to the array of operand flag object pointers
/// @arg inst - A reference to the original instruction
static void X86ExtractSemantics(FlagsConstantEmitter &instFlags,
FlagsConstantEmitter *(&operandFlags)[MAX_OPERANDS],
const CodeGenInstruction &inst) {
const std::string &name = inst.TheDef->getName();
if (name.find("MOV") != name.npos) {
if (name.find("MOV_V") != name.npos) {
// ignore (this is a pseudoinstruction)
}
else if (name.find("MASK") != name.npos) {
// ignore (this is a masking move)
}
else if (name.find("r0") != name.npos) {
// ignore (this is a pseudoinstruction)
}
else if (name.find("PS") != name.npos ||
name.find("PD") != name.npos) {
// ignore (this is a shuffling move)
}
else if (name.find("MOVS") != name.npos) {
// ignore (this is a string move)
}
else if (name.find("_F") != name.npos) {
// TODO handle _F moves to ST(0)
}
else if (name.find("a") != name.npos) {
// TODO handle moves to/from %ax
}
else if (name.find("CMOV") != name.npos) {
MOV("src2", "dst");
}
else if (name.find("PC") != name.npos) {
MOV("label", "reg")
}
else {
MOV("src", "dst");
}
}
if (name.find("JMP") != name.npos ||
name.find("J") == 0) {
if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
BRANCH("off");
}
else {
BRANCH("dst");
}
}
if (name.find("PUSH") != name.npos) {
if (name.find("FS") != name.npos ||
name.find("GS") != name.npos) {
instFlags.addEntry("kInstructionFlagPush");
// TODO add support for fixed operands
}
else if (name.find("F") != name.npos) {
// ignore (this pushes onto the FP stack)
}
else if (name[name.length() - 1] == 'm') {
PUSH("src");
}
else if (name.find("i") != name.npos) {
PUSH("imm");
}
else {
PUSH("reg");
}
}
if (name.find("POP") != name.npos) {
if (name.find("POPCNT") != name.npos) {
// ignore (not a real pop)
}
else if (name.find("FS") != name.npos ||
name.find("GS") != name.npos) {
instFlags.addEntry("kInstructionFlagPop");
// TODO add support for fixed operands
}
else if (name.find("F") != name.npos) {
// ignore (this pops from the FP stack)
}
else if (name[name.length() - 1] == 'm') {
POP("dst");
}
else {
POP("reg");
}
}
if (name.find("CALL") != name.npos) {
if (name.find("ADJ") != name.npos) {
// ignore (not a call)
}
else if (name.find("SYSCALL") != name.npos) {
// ignore (doesn't go anywhere we know about)
}
else if (name.find("VMCALL") != name.npos) {
// ignore (rather different semantics than a regular call)
}
else if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
CALL("off");
}
else {
CALL("dst");
}
}
if (name.find("RET") != name.npos) {
RETURN();
}
}
#undef MOV
#undef BRANCH
#undef PUSH
#undef POP
#undef CALL
#undef RETURN
#undef COND_DECORATE_2
#undef COND_DECORATE_1
#undef DECORATE1
/// populateInstInfo - Fills an array of InstInfos with information about each
/// instruction in a target
///
/// @arg infoArray - The array of InstInfo objects to populate
/// @arg target - The CodeGenTarget to use as a source of instructions
static void populateInstInfo(CompoundConstantEmitter &infoArray,
CodeGenTarget &target) {
std::vector<const CodeGenInstruction*> numberedInstructions;
target.getInstructionsByEnumValue(numberedInstructions);
unsigned int index;
unsigned int numInstructions = numberedInstructions.size();
for (index = 0; index < numInstructions; ++index) {
const CodeGenInstruction& inst = *numberedInstructions[index];
CompoundConstantEmitter *infoStruct = new CompoundConstantEmitter;
infoArray.addEntry(infoStruct);
FlagsConstantEmitter *instFlags = new FlagsConstantEmitter;
infoStruct->addEntry(instFlags);
LiteralConstantEmitter *numOperandsEmitter =
new LiteralConstantEmitter(inst.OperandList.size());
infoStruct->addEntry(numOperandsEmitter);
CompoundConstantEmitter *operandFlagArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandFlagArray);
FlagsConstantEmitter *operandFlags[MAX_OPERANDS];
for (unsigned operandIndex = 0; operandIndex < MAX_OPERANDS; ++operandIndex) {
operandFlags[operandIndex] = new FlagsConstantEmitter;
operandFlagArray->addEntry(operandFlags[operandIndex]);
}
unsigned numSyntaxes = 0;
if (target.getName() == "X86") {
X86PopulateOperands(operandFlags, inst);
X86ExtractSemantics(*instFlags, operandFlags, inst);
numSyntaxes = 2;
}
CompoundConstantEmitter *operandOrderArray = new CompoundConstantEmitter;
infoStruct->addEntry(operandOrderArray);
for (unsigned syntaxIndex = 0; syntaxIndex < MAX_SYNTAXES; ++syntaxIndex) {
CompoundConstantEmitter *operandOrder = new CompoundConstantEmitter;
operandOrderArray->addEntry(operandOrder);
if (syntaxIndex < numSyntaxes) {
std::string asmString = inst.AsmString;
asmString = resolveBraces(asmString, syntaxIndex);
populateOperandOrder(operandOrder, asmString, inst);
}
else {
for (unsigned operandIndex = 0;
operandIndex < MAX_OPERANDS;
++operandIndex) {
operandOrder->addEntry(new LiteralConstantEmitter("-1"));
}
}
}
}
}
void EDEmitter::run(raw_ostream &o) {
unsigned int i = 0;
CompoundConstantEmitter infoArray;
CodeGenTarget target;
populateInstInfo(infoArray, target);
o << "InstInfo instInfo" << target.getName().c_str() << "[] = ";
infoArray.emit(o, i);
o << ";" << "\n";
}
void EDEmitter::runHeader(raw_ostream &o) {
EmitSourceFileHeader("Semantic Information Header", o);
o << "#ifndef SemanticInfo_" << "\n";
o << "#define SemanticInfo_" << "\n";
o << "\n";
o << "#include <inttypes.h>" << "\n";
o << "\n";
o << "#define MAX_OPERANDS " << format("%d", MAX_OPERANDS) << "\n";
o << "#define MAX_SYNTAXES " << format("%d", MAX_SYNTAXES) << "\n";
o << "\n";
unsigned int i = 0;
EnumEmitter operandFlags("OperandFlags");
operandFlags.addEntry("kOperandFlagImmediate");
operandFlags.addEntry("kOperandFlagRegister");
operandFlags.addEntry("kOperandFlagMemory");
operandFlags.addEntry("kOperandFlagEffectiveAddress");
operandFlags.addEntry("kOperandFlagPCRelative");
operandFlags.addEntry("kOperandFlagSource");
operandFlags.addEntry("kOperandFlagTarget");
operandFlags.emitAsFlags(o, i);
o << "\n";
EnumEmitter instructionFlags("InstructionFlags");
instructionFlags.addEntry("kInstructionFlagMove");
instructionFlags.addEntry("kInstructionFlagBranch");
instructionFlags.addEntry("kInstructionFlagPush");
instructionFlags.addEntry("kInstructionFlagPop");
instructionFlags.addEntry("kInstructionFlagCall");
instructionFlags.addEntry("kInstructionFlagReturn");
instructionFlags.emitAsFlags(o, i);
o << "\n";
StructEmitter instInfo("InstInfo");
instInfo.addMember("uint32_t", "instructionFlags");
instInfo.addMember("uint8_t", "numOperands");
instInfo.addMember("uint8_t", "operandFlags[MAX_OPERANDS]");
instInfo.addMember("const char", "operandOrders[MAX_SYNTAXES][MAX_OPERANDS]");
instInfo.emit(o, i);
o << "\n";
o << "#endif" << "\n";
}

View File

@ -0,0 +1,37 @@
//===- EDEmitter.h - Generate instruction descriptions for ED ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of each
// instruction in a format that the semantic disassembler can use to tokenize
// and parse instructions.
//
//===----------------------------------------------------------------------===//
#ifndef SEMANTIC_INFO_EMITTER_H
#define SEMANTIC_INFO_EMITTER_H
#include "TableGenBackend.h"
namespace llvm {
class EDEmitter : public TableGenBackend {
RecordKeeper &Records;
public:
EDEmitter(RecordKeeper &R);
// run - Output the instruction table.
void run(raw_ostream &o);
// runHeader - Emit a header file that allows use of the instruction table.
void runHeader(raw_ostream &o);
};
} // End llvm namespace
#endif

View File

@ -22,6 +22,7 @@
#include "CodeEmitterGen.h"
#include "DAGISelEmitter.h"
#include "DisassemblerEmitter.h"
#include "EDEmitter.h"
#include "FastISelEmitter.h"
#include "InstrEnumEmitter.h"
#include "InstrInfoEmitter.h"
@ -58,6 +59,7 @@ enum ActionType {
GenIntrinsic,
GenTgtIntrinsic,
GenLLVMCConf,
GenEDHeader, GenEDInfo,
PrintEnums
};
@ -106,6 +108,10 @@ namespace {
"Generate Clang diagnostic groups"),
clEnumValN(GenLLVMCConf, "gen-llvmc",
"Generate LLVMC configuration library"),
clEnumValN(GenEDHeader, "gen-enhanced-disassembly-header",
"Generate enhanced disassembly info header"),
clEnumValN(GenEDInfo, "gen-enhanced-disassembly-info",
"Generate enhanced disassembly info"),
clEnumValN(PrintEnums, "print-enums",
"Print enum values for a class"),
clEnumValEnd));
@ -259,6 +265,12 @@ int main(int argc, char **argv) {
case GenLLVMCConf:
LLVMCConfigurationEmitter(Records).run(*Out);
break;
case GenEDHeader:
EDEmitter(Records).runHeader(*Out);
break;
case GenEDInfo:
EDEmitter(Records).run(*Out);
break;
case PrintEnums:
{
std::vector<Record*> Recs = Records.getAllDerivedDefinitions(Class);