mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-28 23:43:50 +00:00
[FastISel][X86] Refactor constant materialization. NFCI.
Split the constant materialization code into three separate helper functions for Integer-, Floating-Point-, and GlobalValue-Constants. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215586 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
047423787c
commit
a0c81f0639
@ -135,6 +135,9 @@ private:
|
||||
|
||||
bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
|
||||
|
||||
unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
|
||||
unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
|
||||
unsigned X86MaterializeGV(const GlobalValue *GV,MVT VT);
|
||||
unsigned TargetMaterializeConstant(const Constant *C) override;
|
||||
|
||||
unsigned TargetMaterializeAlloca(const AllocaInst *C) override;
|
||||
@ -3099,10 +3102,15 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
|
||||
return false;
|
||||
}
|
||||
|
||||
unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
|
||||
MVT VT;
|
||||
if (!isTypeLegal(C->getType(), VT))
|
||||
unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
|
||||
if (VT > MVT::i64)
|
||||
return 0;
|
||||
return FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
|
||||
}
|
||||
|
||||
unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
|
||||
if (CFP->isNullValue())
|
||||
return TargetMaterializeFloatZero(CFP);
|
||||
|
||||
// Can't handle alternate code models yet.
|
||||
if (TM.getCodeModel() != CodeModel::Small)
|
||||
@ -3113,23 +3121,6 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
|
||||
const TargetRegisterClass *RC = nullptr;
|
||||
switch (VT.SimpleTy) {
|
||||
default: return 0;
|
||||
case MVT::i8:
|
||||
Opc = X86::MOV8rm;
|
||||
RC = &X86::GR8RegClass;
|
||||
break;
|
||||
case MVT::i16:
|
||||
Opc = X86::MOV16rm;
|
||||
RC = &X86::GR16RegClass;
|
||||
break;
|
||||
case MVT::i32:
|
||||
Opc = X86::MOV32rm;
|
||||
RC = &X86::GR32RegClass;
|
||||
break;
|
||||
case MVT::i64:
|
||||
// Must be in x86-64 mode.
|
||||
Opc = X86::MOV64rm;
|
||||
RC = &X86::GR64RegClass;
|
||||
break;
|
||||
case MVT::f32:
|
||||
if (X86ScalarSSEf32) {
|
||||
Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
|
||||
@ -3153,39 +3144,11 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Materialize addresses with LEA/MOV instructions.
|
||||
if (isa<GlobalValue>(C)) {
|
||||
X86AddressMode AM;
|
||||
if (X86SelectAddress(C, AM)) {
|
||||
// If the expression is just a basereg, then we're done, otherwise we need
|
||||
// to emit an LEA.
|
||||
if (AM.BaseType == X86AddressMode::RegBase &&
|
||||
AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
|
||||
return AM.Base.Reg;
|
||||
|
||||
unsigned ResultReg = createResultReg(RC);
|
||||
if (TM.getRelocationModel() == Reloc::Static &&
|
||||
TLI.getPointerTy() == MVT::i64) {
|
||||
// The displacement code be more than 32 bits away so we need to use
|
||||
// an instruction with a 64 bit immediate
|
||||
Opc = X86::MOV64ri;
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc), ResultReg).addGlobalAddress(cast<GlobalValue>(C));
|
||||
} else {
|
||||
Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
|
||||
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc), ResultReg), AM);
|
||||
}
|
||||
return ResultReg;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// MachineConstantPool wants an explicit alignment.
|
||||
unsigned Align = DL.getPrefTypeAlignment(C->getType());
|
||||
unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
|
||||
if (Align == 0) {
|
||||
// Alignment of vector types. FIXME!
|
||||
Align = DL.getTypeAllocSize(C->getType());
|
||||
// Alignment of vector types. FIXME!
|
||||
Align = DL.getTypeAllocSize(CFP->getType());
|
||||
}
|
||||
|
||||
// x86-32 PIC requires a PIC base register for constant pools.
|
||||
@ -3203,15 +3166,65 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
|
||||
}
|
||||
|
||||
// Create the load from the constant pool.
|
||||
unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
|
||||
unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
|
||||
unsigned ResultReg = createResultReg(RC);
|
||||
|
||||
addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc), ResultReg),
|
||||
MCPOffset, PICBase, OpFlag);
|
||||
|
||||
CPI, PICBase, OpFlag);
|
||||
return ResultReg;
|
||||
}
|
||||
|
||||
unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
|
||||
// Can't handle alternate code models yet.
|
||||
if (TM.getCodeModel() != CodeModel::Small)
|
||||
return 0;
|
||||
|
||||
// Materialize addresses with LEA/MOV instructions.
|
||||
X86AddressMode AM;
|
||||
if (X86SelectAddress(GV, AM)) {
|
||||
// If the expression is just a basereg, then we're done, otherwise we need
|
||||
// to emit an LEA.
|
||||
if (AM.BaseType == X86AddressMode::RegBase &&
|
||||
AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
|
||||
return AM.Base.Reg;
|
||||
|
||||
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
|
||||
if (TM.getRelocationModel() == Reloc::Static &&
|
||||
TLI.getPointerTy() == MVT::i64) {
|
||||
// The displacement code could be more than 32 bits away so we need to use
|
||||
// an instruction with a 64 bit immediate
|
||||
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
|
||||
ResultReg)
|
||||
.addGlobalAddress(GV);
|
||||
} else {
|
||||
unsigned Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
|
||||
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
||||
TII.get(Opc), ResultReg), AM);
|
||||
}
|
||||
return ResultReg;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
|
||||
EVT CEVT = TLI.getValueType(C->getType(), true);
|
||||
|
||||
// Only handle simple types.
|
||||
if (!CEVT.isSimple())
|
||||
return 0;
|
||||
MVT VT = CEVT.getSimpleVT();
|
||||
|
||||
if (const auto *CI = dyn_cast<ConstantInt>(C))
|
||||
return X86MaterializeInt(CI, VT);
|
||||
else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
|
||||
return X86MaterializeFP(CFP, VT);
|
||||
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
|
||||
return X86MaterializeGV(GV, VT);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
|
||||
// Fail on dynamic allocas. At this point, getRegForValue has already
|
||||
// checked its CSE maps, so if we're here trying to handle a dynamic
|
||||
|
Loading…
Reference in New Issue
Block a user