mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-13 23:18:58 +00:00
Factor address mode matcher out of codegen prepare to make it available to other passes, e.g. loop strength reduction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65134 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
3f315eb5e0
commit
a1fd5b386d
102
include/llvm/Transforms/Utils/AddrModeMatcher.h
Normal file
102
include/llvm/Transforms/Utils/AddrModeMatcher.h
Normal file
@ -0,0 +1,102 @@
|
||||
//===- AddrModeMatcher.h - Addressing mode matching facility ----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// AddressingModeMatcher - This class exposes a single public method, which is
|
||||
// used to construct a "maximal munch" of the addressing mode for the target
|
||||
// specified by TLI for an access to "V" with an access type of AccessTy. This
|
||||
// returns the addressing mode that is actually matched by value, but also
|
||||
// returns the list of instructions involved in that addressing computation in
|
||||
// AddrModeInsts.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_UTILS_ADDRMODEMATCHER_H
|
||||
#define LLVM_TRANSFORMS_UTILS_ADDRMODEMATCHER_H
|
||||
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/Support/Streams.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class GlobalValue;
|
||||
class Instruction;
|
||||
class Value;
|
||||
class Type;
|
||||
class User;
|
||||
|
||||
/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
|
||||
/// which holds actual Value*'s for register values.
|
||||
struct ExtAddrMode : public TargetLowering::AddrMode {
|
||||
Value *BaseReg;
|
||||
Value *ScaledReg;
|
||||
ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
|
||||
void print(OStream &OS) const;
|
||||
void dump() const;
|
||||
};
|
||||
|
||||
static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) {
|
||||
AM.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
class AddressingModeMatcher {
|
||||
SmallVectorImpl<Instruction*> &AddrModeInsts;
|
||||
const TargetLowering &TLI;
|
||||
|
||||
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
|
||||
/// the memory instruction that we're computing this address for.
|
||||
const Type *AccessTy;
|
||||
Instruction *MemoryInst;
|
||||
|
||||
/// AddrMode - This is the addressing mode that we're building up. This is
|
||||
/// part of the return value of this addressing mode matching stuff.
|
||||
ExtAddrMode &AddrMode;
|
||||
|
||||
/// IgnoreProfitability - This is set to true when we should not do
|
||||
/// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
|
||||
/// always returns true.
|
||||
bool IgnoreProfitability;
|
||||
|
||||
AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
|
||||
const TargetLowering &T, const Type *AT,
|
||||
Instruction *MI, ExtAddrMode &AM)
|
||||
: AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
|
||||
IgnoreProfitability = false;
|
||||
}
|
||||
public:
|
||||
|
||||
/// Match - Find the maximal addressing mode that a load/store of V can fold,
|
||||
/// give an access type of AccessTy. This returns a list of involved
|
||||
/// instructions in AddrModeInsts.
|
||||
static ExtAddrMode Match(Value *V, const Type *AccessTy,
|
||||
Instruction *MemoryInst,
|
||||
SmallVectorImpl<Instruction*> &AddrModeInsts,
|
||||
const TargetLowering &TLI) {
|
||||
ExtAddrMode Result;
|
||||
|
||||
bool Success =
|
||||
AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
|
||||
MemoryInst, Result).MatchAddr(V, 0);
|
||||
Success = Success; assert(Success && "Couldn't select *anything*?");
|
||||
return Result;
|
||||
}
|
||||
private:
|
||||
bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
|
||||
bool MatchAddr(Value *V, unsigned Depth);
|
||||
bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
|
||||
bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
|
||||
ExtAddrMode &AMBefore,
|
||||
ExtAddrMode &AMAfter);
|
||||
bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
@ -25,6 +25,7 @@
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
@ -552,649 +553,6 @@ static bool OptimizeCmpExpression(CmpInst *CI) {
|
||||
// Addressing Mode Analysis and Optimization
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
|
||||
/// which holds actual Value*'s for register values.
|
||||
struct ExtAddrMode : public TargetLowering::AddrMode {
|
||||
Value *BaseReg;
|
||||
Value *ScaledReg;
|
||||
ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
|
||||
void print(OStream &OS) const;
|
||||
void dump() const {
|
||||
print(cerr);
|
||||
cerr << '\n';
|
||||
}
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) {
|
||||
AM.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
void ExtAddrMode::print(OStream &OS) const {
|
||||
bool NeedPlus = false;
|
||||
OS << "[";
|
||||
if (BaseGV) {
|
||||
OS << (NeedPlus ? " + " : "")
|
||||
<< "GV:";
|
||||
WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false);
|
||||
NeedPlus = true;
|
||||
}
|
||||
|
||||
if (BaseOffs)
|
||||
OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
|
||||
|
||||
if (BaseReg) {
|
||||
OS << (NeedPlus ? " + " : "")
|
||||
<< "Base:";
|
||||
WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false);
|
||||
NeedPlus = true;
|
||||
}
|
||||
if (Scale) {
|
||||
OS << (NeedPlus ? " + " : "")
|
||||
<< Scale << "*";
|
||||
WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false);
|
||||
NeedPlus = true;
|
||||
}
|
||||
|
||||
OS << ']';
|
||||
}
|
||||
|
||||
namespace {
|
||||
/// AddressingModeMatcher - This class exposes a single public method, which is
|
||||
/// used to construct a "maximal munch" of the addressing mode for the target
|
||||
/// specified by TLI for an access to "V" with an access type of AccessTy. This
|
||||
/// returns the addressing mode that is actually matched by value, but also
|
||||
/// returns the list of instructions involved in that addressing computation in
|
||||
/// AddrModeInsts.
|
||||
class AddressingModeMatcher {
|
||||
SmallVectorImpl<Instruction*> &AddrModeInsts;
|
||||
const TargetLowering &TLI;
|
||||
|
||||
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
|
||||
/// the memory instruction that we're computing this address for.
|
||||
const Type *AccessTy;
|
||||
Instruction *MemoryInst;
|
||||
|
||||
/// AddrMode - This is the addressing mode that we're building up. This is
|
||||
/// part of the return value of this addressing mode matching stuff.
|
||||
ExtAddrMode &AddrMode;
|
||||
|
||||
/// IgnoreProfitability - This is set to true when we should not do
|
||||
/// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
|
||||
/// always returns true.
|
||||
bool IgnoreProfitability;
|
||||
|
||||
AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
|
||||
const TargetLowering &T, const Type *AT,
|
||||
Instruction *MI, ExtAddrMode &AM)
|
||||
: AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
|
||||
IgnoreProfitability = false;
|
||||
}
|
||||
public:
|
||||
|
||||
/// Match - Find the maximal addressing mode that a load/store of V can fold,
|
||||
/// give an access type of AccessTy. This returns a list of involved
|
||||
/// instructions in AddrModeInsts.
|
||||
static ExtAddrMode Match(Value *V, const Type *AccessTy,
|
||||
Instruction *MemoryInst,
|
||||
SmallVectorImpl<Instruction*> &AddrModeInsts,
|
||||
const TargetLowering &TLI) {
|
||||
ExtAddrMode Result;
|
||||
|
||||
bool Success =
|
||||
AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
|
||||
MemoryInst, Result).MatchAddr(V, 0);
|
||||
Success = Success; assert(Success && "Couldn't select *anything*?");
|
||||
return Result;
|
||||
}
|
||||
private:
|
||||
bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
|
||||
bool MatchAddr(Value *V, unsigned Depth);
|
||||
bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
|
||||
bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
|
||||
ExtAddrMode &AMBefore,
|
||||
ExtAddrMode &AMAfter);
|
||||
bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
|
||||
/// Return true and update AddrMode if this addr mode is legal for the target,
|
||||
/// false if not.
|
||||
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
|
||||
unsigned Depth) {
|
||||
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
|
||||
// mode. Just process that directly.
|
||||
if (Scale == 1)
|
||||
return MatchAddr(ScaleReg, Depth);
|
||||
|
||||
// If the scale is 0, it takes nothing to add this.
|
||||
if (Scale == 0)
|
||||
return true;
|
||||
|
||||
// If we already have a scale of this value, we can add to it, otherwise, we
|
||||
// need an available scale field.
|
||||
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
|
||||
return false;
|
||||
|
||||
ExtAddrMode TestAddrMode = AddrMode;
|
||||
|
||||
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
|
||||
// [A+B + A*7] -> [B+A*8].
|
||||
TestAddrMode.Scale += Scale;
|
||||
TestAddrMode.ScaledReg = ScaleReg;
|
||||
|
||||
// If the new address isn't legal, bail out.
|
||||
if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
|
||||
return false;
|
||||
|
||||
// It was legal, so commit it.
|
||||
AddrMode = TestAddrMode;
|
||||
|
||||
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
|
||||
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
|
||||
// X*Scale + C*Scale to addr mode.
|
||||
ConstantInt *CI; Value *AddLHS;
|
||||
if (isa<Instruction>(ScaleReg) && // not a constant expr.
|
||||
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
|
||||
TestAddrMode.ScaledReg = AddLHS;
|
||||
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
|
||||
|
||||
// If this addressing mode is legal, commit it and remember that we folded
|
||||
// this instruction.
|
||||
if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
|
||||
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
|
||||
AddrMode = TestAddrMode;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise, not (x+c)*scale, just return what we have.
|
||||
return true;
|
||||
}
|
||||
|
||||
/// MightBeFoldableInst - This is a little filter, which returns true if an
|
||||
/// addressing computation involving I might be folded into a load/store
|
||||
/// accessing it. This doesn't need to be perfect, but needs to accept at least
|
||||
/// the set of instructions that MatchOperationAddr can.
|
||||
static bool MightBeFoldableInst(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::BitCast:
|
||||
// Don't touch identity bitcasts.
|
||||
if (I->getType() == I->getOperand(0)->getType())
|
||||
return false;
|
||||
return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
|
||||
case Instruction::PtrToInt:
|
||||
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
||||
return true;
|
||||
case Instruction::IntToPtr:
|
||||
// We know the input is intptr_t, so this is foldable.
|
||||
return true;
|
||||
case Instruction::Add:
|
||||
return true;
|
||||
case Instruction::Mul:
|
||||
case Instruction::Shl:
|
||||
// Can only handle X*C and X << C.
|
||||
return isa<ConstantInt>(I->getOperand(1));
|
||||
case Instruction::GetElementPtr:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
|
||||
/// fold the operation into the addressing mode. If so, update the addressing
|
||||
/// mode and return true, otherwise return false without modifying AddrMode.
|
||||
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
|
||||
unsigned Depth) {
|
||||
// Avoid exponential behavior on extremely deep expression trees.
|
||||
if (Depth >= 5) return false;
|
||||
|
||||
switch (Opcode) {
|
||||
case Instruction::PtrToInt:
|
||||
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||
case Instruction::IntToPtr:
|
||||
// This inttoptr is a no-op if the integer type is pointer sized.
|
||||
if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
|
||||
TLI.getPointerTy())
|
||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||
return false;
|
||||
case Instruction::BitCast:
|
||||
// BitCast is always a noop, and we can handle it as long as it is
|
||||
// int->int or pointer->pointer (we don't want int<->fp or something).
|
||||
if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
|
||||
isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
|
||||
// Don't touch identity bitcasts. These were probably put here by LSR,
|
||||
// and we don't want to mess around with them. Assume it knows what it
|
||||
// is doing.
|
||||
AddrInst->getOperand(0)->getType() != AddrInst->getType())
|
||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||
return false;
|
||||
case Instruction::Add: {
|
||||
// Check to see if we can merge in the RHS then the LHS. If so, we win.
|
||||
ExtAddrMode BackupAddrMode = AddrMode;
|
||||
unsigned OldSize = AddrModeInsts.size();
|
||||
if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
|
||||
MatchAddr(AddrInst->getOperand(0), Depth+1))
|
||||
return true;
|
||||
|
||||
// Restore the old addr mode info.
|
||||
AddrMode = BackupAddrMode;
|
||||
AddrModeInsts.resize(OldSize);
|
||||
|
||||
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
|
||||
if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
|
||||
MatchAddr(AddrInst->getOperand(1), Depth+1))
|
||||
return true;
|
||||
|
||||
// Otherwise we definitely can't merge the ADD in.
|
||||
AddrMode = BackupAddrMode;
|
||||
AddrModeInsts.resize(OldSize);
|
||||
break;
|
||||
}
|
||||
//case Instruction::Or:
|
||||
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
|
||||
//break;
|
||||
case Instruction::Mul:
|
||||
case Instruction::Shl: {
|
||||
// Can only handle X*C and X << C.
|
||||
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
|
||||
if (!RHS) return false;
|
||||
int64_t Scale = RHS->getSExtValue();
|
||||
if (Opcode == Instruction::Shl)
|
||||
Scale = 1 << Scale;
|
||||
|
||||
return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
|
||||
}
|
||||
case Instruction::GetElementPtr: {
|
||||
// Scan the GEP. We check it if it contains constant offsets and at most
|
||||
// one variable offset.
|
||||
int VariableOperand = -1;
|
||||
unsigned VariableScale = 0;
|
||||
|
||||
int64_t ConstantOffset = 0;
|
||||
const TargetData *TD = TLI.getTargetData();
|
||||
gep_type_iterator GTI = gep_type_begin(AddrInst);
|
||||
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
|
||||
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
||||
const StructLayout *SL = TD->getStructLayout(STy);
|
||||
unsigned Idx =
|
||||
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
|
||||
ConstantOffset += SL->getElementOffset(Idx);
|
||||
} else {
|
||||
uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
|
||||
ConstantOffset += CI->getSExtValue()*TypeSize;
|
||||
} else if (TypeSize) { // Scales of zero don't do anything.
|
||||
// We only allow one variable index at the moment.
|
||||
if (VariableOperand != -1)
|
||||
return false;
|
||||
|
||||
// Remember the variable index.
|
||||
VariableOperand = i;
|
||||
VariableScale = TypeSize;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A common case is for the GEP to only do a constant offset. In this case,
|
||||
// just add it to the disp field and check validity.
|
||||
if (VariableOperand == -1) {
|
||||
AddrMode.BaseOffs += ConstantOffset;
|
||||
if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
|
||||
// Check to see if we can fold the base pointer in too.
|
||||
if (MatchAddr(AddrInst->getOperand(0), Depth+1))
|
||||
return true;
|
||||
}
|
||||
AddrMode.BaseOffs -= ConstantOffset;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Save the valid addressing mode in case we can't match.
|
||||
ExtAddrMode BackupAddrMode = AddrMode;
|
||||
|
||||
// Check that this has no base reg yet. If so, we won't have a place to
|
||||
// put the base of the GEP (assuming it is not a null ptr).
|
||||
bool SetBaseReg = true;
|
||||
if (isa<ConstantPointerNull>(AddrInst->getOperand(0)))
|
||||
SetBaseReg = false; // null pointer base doesn't need representation.
|
||||
else if (AddrMode.HasBaseReg)
|
||||
return false; // Base register already specified, can't match GEP.
|
||||
else {
|
||||
// Otherwise, we'll use the GEP base as the BaseReg.
|
||||
AddrMode.HasBaseReg = true;
|
||||
AddrMode.BaseReg = AddrInst->getOperand(0);
|
||||
}
|
||||
|
||||
// See if the scale and offset amount is valid for this target.
|
||||
AddrMode.BaseOffs += ConstantOffset;
|
||||
|
||||
if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
|
||||
Depth)) {
|
||||
AddrMode = BackupAddrMode;
|
||||
return false;
|
||||
}
|
||||
|
||||
// If we have a null as the base of the GEP, folding in the constant offset
|
||||
// plus variable scale is all we can do.
|
||||
if (!SetBaseReg) return true;
|
||||
|
||||
// If this match succeeded, we know that we can form an address with the
|
||||
// GepBase as the basereg. Match the base pointer of the GEP more
|
||||
// aggressively by zeroing out BaseReg and rematching. If the base is
|
||||
// (for example) another GEP, this allows merging in that other GEP into
|
||||
// the addressing mode we're forming.
|
||||
AddrMode.HasBaseReg = false;
|
||||
AddrMode.BaseReg = 0;
|
||||
bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1);
|
||||
assert(Success && "MatchAddr should be able to fill in BaseReg!");
|
||||
Success=Success;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
|
||||
/// addressing mode. If Addr can't be added to AddrMode this returns false and
|
||||
/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
|
||||
/// or intptr_t for the target.
|
||||
///
|
||||
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
|
||||
// Fold in immediates if legal for the target.
|
||||
AddrMode.BaseOffs += CI->getSExtValue();
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.BaseOffs -= CI->getSExtValue();
|
||||
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
|
||||
// If this is a global variable, try to fold it into the addressing mode.
|
||||
if (AddrMode.BaseGV == 0) {
|
||||
AddrMode.BaseGV = GV;
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.BaseGV = 0;
|
||||
}
|
||||
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
|
||||
ExtAddrMode BackupAddrMode = AddrMode;
|
||||
unsigned OldSize = AddrModeInsts.size();
|
||||
|
||||
// Check to see if it is possible to fold this operation.
|
||||
if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
|
||||
// Okay, it's possible to fold this. Check to see if it is actually
|
||||
// *profitable* to do so. We use a simple cost model to avoid increasing
|
||||
// register pressure too much.
|
||||
if (I->hasOneUse() ||
|
||||
IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
|
||||
AddrModeInsts.push_back(I);
|
||||
return true;
|
||||
}
|
||||
|
||||
// It isn't profitable to do this, roll back.
|
||||
//cerr << "NOT FOLDING: " << *I;
|
||||
AddrMode = BackupAddrMode;
|
||||
AddrModeInsts.resize(OldSize);
|
||||
}
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
||||
if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
|
||||
return true;
|
||||
} else if (isa<ConstantPointerNull>(Addr)) {
|
||||
// Null pointer gets folded without affecting the addressing mode.
|
||||
return true;
|
||||
}
|
||||
|
||||
// Worse case, the target should support [reg] addressing modes. :)
|
||||
if (!AddrMode.HasBaseReg) {
|
||||
AddrMode.HasBaseReg = true;
|
||||
AddrMode.BaseReg = Addr;
|
||||
// Still check for legality in case the target supports [imm] but not [i+r].
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.HasBaseReg = false;
|
||||
AddrMode.BaseReg = 0;
|
||||
}
|
||||
|
||||
// If the base register is already taken, see if we can do [r+r].
|
||||
if (AddrMode.Scale == 0) {
|
||||
AddrMode.Scale = 1;
|
||||
AddrMode.ScaledReg = Addr;
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.Scale = 0;
|
||||
AddrMode.ScaledReg = 0;
|
||||
}
|
||||
// Couldn't match.
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
|
||||
/// inline asm call are due to memory operands. If so, return true, otherwise
|
||||
/// return false.
|
||||
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
|
||||
const TargetLowering &TLI) {
|
||||
std::vector<InlineAsm::ConstraintInfo>
|
||||
Constraints = IA->ParseConstraints();
|
||||
|
||||
unsigned ArgNo = 1; // ArgNo - The operand of the CallInst.
|
||||
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
||||
TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
|
||||
|
||||
// Compute the value type for each operand.
|
||||
switch (OpInfo.Type) {
|
||||
case InlineAsm::isOutput:
|
||||
if (OpInfo.isIndirect)
|
||||
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
||||
break;
|
||||
case InlineAsm::isInput:
|
||||
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
||||
break;
|
||||
case InlineAsm::isClobber:
|
||||
// Nothing to do.
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute the constraint code and ConstraintType to use.
|
||||
TLI.ComputeConstraintToUse(OpInfo, SDValue(),
|
||||
OpInfo.ConstraintType == TargetLowering::C_Memory);
|
||||
|
||||
// If this asm operand is our Value*, and if it isn't an indirect memory
|
||||
// operand, we can't fold it!
|
||||
if (OpInfo.CallOperandVal == OpVal &&
|
||||
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
|
||||
!OpInfo.isIndirect))
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
|
||||
/// memory use. If we find an obviously non-foldable instruction, return true.
|
||||
/// Add the ultimately found memory instructions to MemoryUses.
|
||||
static bool FindAllMemoryUses(Instruction *I,
|
||||
SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
|
||||
SmallPtrSet<Instruction*, 16> &ConsideredInsts,
|
||||
const TargetLowering &TLI) {
|
||||
// If we already considered this instruction, we're done.
|
||||
if (!ConsideredInsts.insert(I))
|
||||
return false;
|
||||
|
||||
// If this is an obviously unfoldable instruction, bail out.
|
||||
if (!MightBeFoldableInst(I))
|
||||
return true;
|
||||
|
||||
// Loop over all the uses, recursively processing them.
|
||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
||||
UI != E; ++UI) {
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
||||
MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
|
||||
continue;
|
||||
}
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
||||
if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
|
||||
MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
|
||||
continue;
|
||||
}
|
||||
|
||||
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
||||
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
|
||||
if (IA == 0) return true;
|
||||
|
||||
// If this is a memory operand, we're cool, otherwise bail out.
|
||||
if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
|
||||
return true;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts,
|
||||
TLI))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
|
||||
/// the use site that we're folding it into. If so, there is no cost to
|
||||
/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
|
||||
/// that we know are live at the instruction already.
|
||||
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
|
||||
Value *KnownLive2) {
|
||||
// If Val is either of the known-live values, we know it is live!
|
||||
if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
|
||||
return true;
|
||||
|
||||
// All values other than instructions and arguments (e.g. constants) are live.
|
||||
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
|
||||
|
||||
// If Val is a constant sized alloca in the entry block, it is live, this is
|
||||
// true because it is just a reference to the stack/frame pointer, which is
|
||||
// live for the whole function.
|
||||
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
|
||||
if (AI->isStaticAlloca())
|
||||
return true;
|
||||
|
||||
// Check to see if this value is already used in the memory instruction's
|
||||
// block. If so, it's already live into the block at the very least, so we
|
||||
// can reasonably fold it.
|
||||
BasicBlock *MemBB = MemoryInst->getParent();
|
||||
for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
|
||||
UI != E; ++UI)
|
||||
// We know that uses of arguments and instructions have to be instructions.
|
||||
if (cast<Instruction>(*UI)->getParent() == MemBB)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
|
||||
/// mode of the machine to fold the specified instruction into a load or store
|
||||
/// that ultimately uses it. However, the specified instruction has multiple
|
||||
/// uses. Given this, it may actually increase register pressure to fold it
|
||||
/// into the load. For example, consider this code:
|
||||
///
|
||||
/// X = ...
|
||||
/// Y = X+1
|
||||
/// use(Y) -> nonload/store
|
||||
/// Z = Y+1
|
||||
/// load Z
|
||||
///
|
||||
/// In this case, Y has multiple uses, and can be folded into the load of Z
|
||||
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
|
||||
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
|
||||
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
|
||||
/// number of computations either.
|
||||
///
|
||||
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
|
||||
/// X was live across 'load Z' for other reasons, we actually *would* want to
|
||||
/// fold the addressing mode in the Z case. This would make Y die earlier.
|
||||
bool AddressingModeMatcher::
|
||||
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
|
||||
ExtAddrMode &AMAfter) {
|
||||
if (IgnoreProfitability) return true;
|
||||
|
||||
// AMBefore is the addressing mode before this instruction was folded into it,
|
||||
// and AMAfter is the addressing mode after the instruction was folded. Get
|
||||
// the set of registers referenced by AMAfter and subtract out those
|
||||
// referenced by AMBefore: this is the set of values which folding in this
|
||||
// address extends the lifetime of.
|
||||
//
|
||||
// Note that there are only two potential values being referenced here,
|
||||
// BaseReg and ScaleReg (global addresses are always available, as are any
|
||||
// folded immediates).
|
||||
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
|
||||
|
||||
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
|
||||
// lifetime wasn't extended by adding this instruction.
|
||||
if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
||||
BaseReg = 0;
|
||||
if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
||||
ScaledReg = 0;
|
||||
|
||||
// If folding this instruction (and it's subexprs) didn't extend any live
|
||||
// ranges, we're ok with it.
|
||||
if (BaseReg == 0 && ScaledReg == 0)
|
||||
return true;
|
||||
|
||||
// If all uses of this instruction are ultimately load/store/inlineasm's,
|
||||
// check to see if their addressing modes will include this instruction. If
|
||||
// so, we can fold it into all uses, so it doesn't matter if it has multiple
|
||||
// uses.
|
||||
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
|
||||
SmallPtrSet<Instruction*, 16> ConsideredInsts;
|
||||
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
|
||||
return false; // Has a non-memory, non-foldable use!
|
||||
|
||||
// Now that we know that all uses of this instruction are part of a chain of
|
||||
// computation involving only operations that could theoretically be folded
|
||||
// into a memory use, loop over each of these uses and see if they could
|
||||
// *actually* fold the instruction.
|
||||
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
|
||||
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
|
||||
Instruction *User = MemoryUses[i].first;
|
||||
unsigned OpNo = MemoryUses[i].second;
|
||||
|
||||
// Get the access type of this use. If the use isn't a pointer, we don't
|
||||
// know what it accesses.
|
||||
Value *Address = User->getOperand(OpNo);
|
||||
if (!isa<PointerType>(Address->getType()))
|
||||
return false;
|
||||
const Type *AddressAccessTy =
|
||||
cast<PointerType>(Address->getType())->getElementType();
|
||||
|
||||
// Do a match against the root of this address, ignoring profitability. This
|
||||
// will tell us if the addressing mode for the memory operation will
|
||||
// *actually* cover the shared instruction.
|
||||
ExtAddrMode Result;
|
||||
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
|
||||
MemoryInst, Result);
|
||||
Matcher.IgnoreProfitability = true;
|
||||
bool Success = Matcher.MatchAddr(Address, 0);
|
||||
Success = Success; assert(Success && "Couldn't select *anything*?");
|
||||
|
||||
// If the match didn't cover I, then it won't be shared by it.
|
||||
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
|
||||
I) == MatchedAddrModeInsts.end())
|
||||
return false;
|
||||
|
||||
MatchedAddrModeInsts.clear();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Memory Optimization
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
593
lib/Transforms/Utils/AddrModeMatcher.cpp
Normal file
593
lib/Transforms/Utils/AddrModeMatcher.cpp
Normal file
@ -0,0 +1,593 @@
|
||||
//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements target addressing mode matcher class.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/GlobalValue.h"
|
||||
#include "llvm/Instruction.h"
|
||||
#include "llvm/Assembly/Writer.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Support/PatternMatch.h"
|
||||
|
||||
using namespace llvm;
|
||||
using namespace llvm::PatternMatch;
|
||||
|
||||
void ExtAddrMode::print(OStream &OS) const {
|
||||
bool NeedPlus = false;
|
||||
OS << "[";
|
||||
if (BaseGV) {
|
||||
OS << (NeedPlus ? " + " : "")
|
||||
<< "GV:";
|
||||
WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false);
|
||||
NeedPlus = true;
|
||||
}
|
||||
|
||||
if (BaseOffs)
|
||||
OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
|
||||
|
||||
if (BaseReg) {
|
||||
OS << (NeedPlus ? " + " : "")
|
||||
<< "Base:";
|
||||
WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false);
|
||||
NeedPlus = true;
|
||||
}
|
||||
if (Scale) {
|
||||
OS << (NeedPlus ? " + " : "")
|
||||
<< Scale << "*";
|
||||
WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false);
|
||||
NeedPlus = true;
|
||||
}
|
||||
|
||||
OS << ']';
|
||||
}
|
||||
|
||||
void ExtAddrMode::dump() const {
|
||||
print(cerr);
|
||||
cerr << '\n';
|
||||
}
|
||||
|
||||
|
||||
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
|
||||
/// Return true and update AddrMode if this addr mode is legal for the target,
|
||||
/// false if not.
|
||||
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
|
||||
unsigned Depth) {
|
||||
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
|
||||
// mode. Just process that directly.
|
||||
if (Scale == 1)
|
||||
return MatchAddr(ScaleReg, Depth);
|
||||
|
||||
// If the scale is 0, it takes nothing to add this.
|
||||
if (Scale == 0)
|
||||
return true;
|
||||
|
||||
// If we already have a scale of this value, we can add to it, otherwise, we
|
||||
// need an available scale field.
|
||||
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
|
||||
return false;
|
||||
|
||||
ExtAddrMode TestAddrMode = AddrMode;
|
||||
|
||||
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
|
||||
// [A+B + A*7] -> [B+A*8].
|
||||
TestAddrMode.Scale += Scale;
|
||||
TestAddrMode.ScaledReg = ScaleReg;
|
||||
|
||||
// If the new address isn't legal, bail out.
|
||||
if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
|
||||
return false;
|
||||
|
||||
// It was legal, so commit it.
|
||||
AddrMode = TestAddrMode;
|
||||
|
||||
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
|
||||
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
|
||||
// X*Scale + C*Scale to addr mode.
|
||||
ConstantInt *CI; Value *AddLHS;
|
||||
if (isa<Instruction>(ScaleReg) && // not a constant expr.
|
||||
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
|
||||
TestAddrMode.ScaledReg = AddLHS;
|
||||
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
|
||||
|
||||
// If this addressing mode is legal, commit it and remember that we folded
|
||||
// this instruction.
|
||||
if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
|
||||
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
|
||||
AddrMode = TestAddrMode;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise, not (x+c)*scale, just return what we have.
|
||||
return true;
|
||||
}
|
||||
|
||||
/// MightBeFoldableInst - This is a little filter, which returns true if an
|
||||
/// addressing computation involving I might be folded into a load/store
|
||||
/// accessing it. This doesn't need to be perfect, but needs to accept at least
|
||||
/// the set of instructions that MatchOperationAddr can.
|
||||
static bool MightBeFoldableInst(Instruction *I) {
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::BitCast:
|
||||
// Don't touch identity bitcasts.
|
||||
if (I->getType() == I->getOperand(0)->getType())
|
||||
return false;
|
||||
return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
|
||||
case Instruction::PtrToInt:
|
||||
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
||||
return true;
|
||||
case Instruction::IntToPtr:
|
||||
// We know the input is intptr_t, so this is foldable.
|
||||
return true;
|
||||
case Instruction::Add:
|
||||
return true;
|
||||
case Instruction::Mul:
|
||||
case Instruction::Shl:
|
||||
// Can only handle X*C and X << C.
|
||||
return isa<ConstantInt>(I->getOperand(1));
|
||||
case Instruction::GetElementPtr:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
|
||||
/// fold the operation into the addressing mode. If so, update the addressing
|
||||
/// mode and return true, otherwise return false without modifying AddrMode.
|
||||
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
|
||||
unsigned Depth) {
|
||||
// Avoid exponential behavior on extremely deep expression trees.
|
||||
if (Depth >= 5) return false;
|
||||
|
||||
switch (Opcode) {
|
||||
case Instruction::PtrToInt:
|
||||
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||
case Instruction::IntToPtr:
|
||||
// This inttoptr is a no-op if the integer type is pointer sized.
|
||||
if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
|
||||
TLI.getPointerTy())
|
||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||
return false;
|
||||
case Instruction::BitCast:
|
||||
// BitCast is always a noop, and we can handle it as long as it is
|
||||
// int->int or pointer->pointer (we don't want int<->fp or something).
|
||||
if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
|
||||
isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
|
||||
// Don't touch identity bitcasts. These were probably put here by LSR,
|
||||
// and we don't want to mess around with them. Assume it knows what it
|
||||
// is doing.
|
||||
AddrInst->getOperand(0)->getType() != AddrInst->getType())
|
||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||
return false;
|
||||
case Instruction::Add: {
|
||||
// Check to see if we can merge in the RHS then the LHS. If so, we win.
|
||||
ExtAddrMode BackupAddrMode = AddrMode;
|
||||
unsigned OldSize = AddrModeInsts.size();
|
||||
if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
|
||||
MatchAddr(AddrInst->getOperand(0), Depth+1))
|
||||
return true;
|
||||
|
||||
// Restore the old addr mode info.
|
||||
AddrMode = BackupAddrMode;
|
||||
AddrModeInsts.resize(OldSize);
|
||||
|
||||
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
|
||||
if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
|
||||
MatchAddr(AddrInst->getOperand(1), Depth+1))
|
||||
return true;
|
||||
|
||||
// Otherwise we definitely can't merge the ADD in.
|
||||
AddrMode = BackupAddrMode;
|
||||
AddrModeInsts.resize(OldSize);
|
||||
break;
|
||||
}
|
||||
//case Instruction::Or:
|
||||
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
|
||||
//break;
|
||||
case Instruction::Mul:
|
||||
case Instruction::Shl: {
|
||||
// Can only handle X*C and X << C.
|
||||
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
|
||||
if (!RHS) return false;
|
||||
int64_t Scale = RHS->getSExtValue();
|
||||
if (Opcode == Instruction::Shl)
|
||||
Scale = 1 << Scale;
|
||||
|
||||
return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
|
||||
}
|
||||
case Instruction::GetElementPtr: {
|
||||
// Scan the GEP. We check it if it contains constant offsets and at most
|
||||
// one variable offset.
|
||||
int VariableOperand = -1;
|
||||
unsigned VariableScale = 0;
|
||||
|
||||
int64_t ConstantOffset = 0;
|
||||
const TargetData *TD = TLI.getTargetData();
|
||||
gep_type_iterator GTI = gep_type_begin(AddrInst);
|
||||
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
|
||||
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
||||
const StructLayout *SL = TD->getStructLayout(STy);
|
||||
unsigned Idx =
|
||||
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
|
||||
ConstantOffset += SL->getElementOffset(Idx);
|
||||
} else {
|
||||
uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
|
||||
ConstantOffset += CI->getSExtValue()*TypeSize;
|
||||
} else if (TypeSize) { // Scales of zero don't do anything.
|
||||
// We only allow one variable index at the moment.
|
||||
if (VariableOperand != -1)
|
||||
return false;
|
||||
|
||||
// Remember the variable index.
|
||||
VariableOperand = i;
|
||||
VariableScale = TypeSize;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A common case is for the GEP to only do a constant offset. In this case,
|
||||
// just add it to the disp field and check validity.
|
||||
if (VariableOperand == -1) {
|
||||
AddrMode.BaseOffs += ConstantOffset;
|
||||
if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
|
||||
// Check to see if we can fold the base pointer in too.
|
||||
if (MatchAddr(AddrInst->getOperand(0), Depth+1))
|
||||
return true;
|
||||
}
|
||||
AddrMode.BaseOffs -= ConstantOffset;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Save the valid addressing mode in case we can't match.
|
||||
ExtAddrMode BackupAddrMode = AddrMode;
|
||||
|
||||
// Check that this has no base reg yet. If so, we won't have a place to
|
||||
// put the base of the GEP (assuming it is not a null ptr).
|
||||
bool SetBaseReg = true;
|
||||
if (isa<ConstantPointerNull>(AddrInst->getOperand(0)))
|
||||
SetBaseReg = false; // null pointer base doesn't need representation.
|
||||
else if (AddrMode.HasBaseReg)
|
||||
return false; // Base register already specified, can't match GEP.
|
||||
else {
|
||||
// Otherwise, we'll use the GEP base as the BaseReg.
|
||||
AddrMode.HasBaseReg = true;
|
||||
AddrMode.BaseReg = AddrInst->getOperand(0);
|
||||
}
|
||||
|
||||
// See if the scale and offset amount is valid for this target.
|
||||
AddrMode.BaseOffs += ConstantOffset;
|
||||
|
||||
if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
|
||||
Depth)) {
|
||||
AddrMode = BackupAddrMode;
|
||||
return false;
|
||||
}
|
||||
|
||||
// If we have a null as the base of the GEP, folding in the constant offset
|
||||
// plus variable scale is all we can do.
|
||||
if (!SetBaseReg) return true;
|
||||
|
||||
// If this match succeeded, we know that we can form an address with the
|
||||
// GepBase as the basereg. Match the base pointer of the GEP more
|
||||
// aggressively by zeroing out BaseReg and rematching. If the base is
|
||||
// (for example) another GEP, this allows merging in that other GEP into
|
||||
// the addressing mode we're forming.
|
||||
AddrMode.HasBaseReg = false;
|
||||
AddrMode.BaseReg = 0;
|
||||
bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1);
|
||||
assert(Success && "MatchAddr should be able to fill in BaseReg!");
|
||||
Success=Success;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
|
||||
/// addressing mode. If Addr can't be added to AddrMode this returns false and
|
||||
/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
|
||||
/// or intptr_t for the target.
|
||||
///
|
||||
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
|
||||
// Fold in immediates if legal for the target.
|
||||
AddrMode.BaseOffs += CI->getSExtValue();
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.BaseOffs -= CI->getSExtValue();
|
||||
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
|
||||
// If this is a global variable, try to fold it into the addressing mode.
|
||||
if (AddrMode.BaseGV == 0) {
|
||||
AddrMode.BaseGV = GV;
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.BaseGV = 0;
|
||||
}
|
||||
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
|
||||
ExtAddrMode BackupAddrMode = AddrMode;
|
||||
unsigned OldSize = AddrModeInsts.size();
|
||||
|
||||
// Check to see if it is possible to fold this operation.
|
||||
if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
|
||||
// Okay, it's possible to fold this. Check to see if it is actually
|
||||
// *profitable* to do so. We use a simple cost model to avoid increasing
|
||||
// register pressure too much.
|
||||
if (I->hasOneUse() ||
|
||||
IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
|
||||
AddrModeInsts.push_back(I);
|
||||
return true;
|
||||
}
|
||||
|
||||
// It isn't profitable to do this, roll back.
|
||||
//cerr << "NOT FOLDING: " << *I;
|
||||
AddrMode = BackupAddrMode;
|
||||
AddrModeInsts.resize(OldSize);
|
||||
}
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
||||
if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
|
||||
return true;
|
||||
} else if (isa<ConstantPointerNull>(Addr)) {
|
||||
// Null pointer gets folded without affecting the addressing mode.
|
||||
return true;
|
||||
}
|
||||
|
||||
// Worse case, the target should support [reg] addressing modes. :)
|
||||
if (!AddrMode.HasBaseReg) {
|
||||
AddrMode.HasBaseReg = true;
|
||||
AddrMode.BaseReg = Addr;
|
||||
// Still check for legality in case the target supports [imm] but not [i+r].
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.HasBaseReg = false;
|
||||
AddrMode.BaseReg = 0;
|
||||
}
|
||||
|
||||
// If the base register is already taken, see if we can do [r+r].
|
||||
if (AddrMode.Scale == 0) {
|
||||
AddrMode.Scale = 1;
|
||||
AddrMode.ScaledReg = Addr;
|
||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||
return true;
|
||||
AddrMode.Scale = 0;
|
||||
AddrMode.ScaledReg = 0;
|
||||
}
|
||||
// Couldn't match.
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
|
||||
/// inline asm call are due to memory operands. If so, return true, otherwise
|
||||
/// return false.
|
||||
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
|
||||
const TargetLowering &TLI) {
|
||||
std::vector<InlineAsm::ConstraintInfo>
|
||||
Constraints = IA->ParseConstraints();
|
||||
|
||||
unsigned ArgNo = 1; // ArgNo - The operand of the CallInst.
|
||||
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
||||
TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
|
||||
|
||||
// Compute the value type for each operand.
|
||||
switch (OpInfo.Type) {
|
||||
case InlineAsm::isOutput:
|
||||
if (OpInfo.isIndirect)
|
||||
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
||||
break;
|
||||
case InlineAsm::isInput:
|
||||
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
||||
break;
|
||||
case InlineAsm::isClobber:
|
||||
// Nothing to do.
|
||||
break;
|
||||
}
|
||||
|
||||
// Compute the constraint code and ConstraintType to use.
|
||||
TLI.ComputeConstraintToUse(OpInfo, SDValue(),
|
||||
OpInfo.ConstraintType == TargetLowering::C_Memory);
|
||||
|
||||
// If this asm operand is our Value*, and if it isn't an indirect memory
|
||||
// operand, we can't fold it!
|
||||
if (OpInfo.CallOperandVal == OpVal &&
|
||||
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
|
||||
!OpInfo.isIndirect))
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
|
||||
/// memory use. If we find an obviously non-foldable instruction, return true.
|
||||
/// Add the ultimately found memory instructions to MemoryUses.
|
||||
static bool FindAllMemoryUses(Instruction *I,
|
||||
SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
|
||||
SmallPtrSet<Instruction*, 16> &ConsideredInsts,
|
||||
const TargetLowering &TLI) {
|
||||
// If we already considered this instruction, we're done.
|
||||
if (!ConsideredInsts.insert(I))
|
||||
return false;
|
||||
|
||||
// If this is an obviously unfoldable instruction, bail out.
|
||||
if (!MightBeFoldableInst(I))
|
||||
return true;
|
||||
|
||||
// Loop over all the uses, recursively processing them.
|
||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
||||
UI != E; ++UI) {
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
||||
MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
|
||||
continue;
|
||||
}
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
||||
if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
|
||||
MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
|
||||
continue;
|
||||
}
|
||||
|
||||
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
||||
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
|
||||
if (IA == 0) return true;
|
||||
|
||||
// If this is a memory operand, we're cool, otherwise bail out.
|
||||
if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
|
||||
return true;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts,
|
||||
TLI))
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
|
||||
/// the use site that we're folding it into. If so, there is no cost to
|
||||
/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
|
||||
/// that we know are live at the instruction already.
|
||||
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
|
||||
Value *KnownLive2) {
|
||||
// If Val is either of the known-live values, we know it is live!
|
||||
if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
|
||||
return true;
|
||||
|
||||
// All values other than instructions and arguments (e.g. constants) are live.
|
||||
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
|
||||
|
||||
// If Val is a constant sized alloca in the entry block, it is live, this is
|
||||
// true because it is just a reference to the stack/frame pointer, which is
|
||||
// live for the whole function.
|
||||
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
|
||||
if (AI->isStaticAlloca())
|
||||
return true;
|
||||
|
||||
// Check to see if this value is already used in the memory instruction's
|
||||
// block. If so, it's already live into the block at the very least, so we
|
||||
// can reasonably fold it.
|
||||
BasicBlock *MemBB = MemoryInst->getParent();
|
||||
for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
|
||||
UI != E; ++UI)
|
||||
// We know that uses of arguments and instructions have to be instructions.
|
||||
if (cast<Instruction>(*UI)->getParent() == MemBB)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
|
||||
/// mode of the machine to fold the specified instruction into a load or store
|
||||
/// that ultimately uses it. However, the specified instruction has multiple
|
||||
/// uses. Given this, it may actually increase register pressure to fold it
|
||||
/// into the load. For example, consider this code:
|
||||
///
|
||||
/// X = ...
|
||||
/// Y = X+1
|
||||
/// use(Y) -> nonload/store
|
||||
/// Z = Y+1
|
||||
/// load Z
|
||||
///
|
||||
/// In this case, Y has multiple uses, and can be folded into the load of Z
|
||||
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
|
||||
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
|
||||
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
|
||||
/// number of computations either.
|
||||
///
|
||||
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
|
||||
/// X was live across 'load Z' for other reasons, we actually *would* want to
|
||||
/// fold the addressing mode in the Z case. This would make Y die earlier.
|
||||
bool AddressingModeMatcher::
|
||||
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
|
||||
ExtAddrMode &AMAfter) {
|
||||
if (IgnoreProfitability) return true;
|
||||
|
||||
// AMBefore is the addressing mode before this instruction was folded into it,
|
||||
// and AMAfter is the addressing mode after the instruction was folded. Get
|
||||
// the set of registers referenced by AMAfter and subtract out those
|
||||
// referenced by AMBefore: this is the set of values which folding in this
|
||||
// address extends the lifetime of.
|
||||
//
|
||||
// Note that there are only two potential values being referenced here,
|
||||
// BaseReg and ScaleReg (global addresses are always available, as are any
|
||||
// folded immediates).
|
||||
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
|
||||
|
||||
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
|
||||
// lifetime wasn't extended by adding this instruction.
|
||||
if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
||||
BaseReg = 0;
|
||||
if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
||||
ScaledReg = 0;
|
||||
|
||||
// If folding this instruction (and it's subexprs) didn't extend any live
|
||||
// ranges, we're ok with it.
|
||||
if (BaseReg == 0 && ScaledReg == 0)
|
||||
return true;
|
||||
|
||||
// If all uses of this instruction are ultimately load/store/inlineasm's,
|
||||
// check to see if their addressing modes will include this instruction. If
|
||||
// so, we can fold it into all uses, so it doesn't matter if it has multiple
|
||||
// uses.
|
||||
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
|
||||
SmallPtrSet<Instruction*, 16> ConsideredInsts;
|
||||
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
|
||||
return false; // Has a non-memory, non-foldable use!
|
||||
|
||||
// Now that we know that all uses of this instruction are part of a chain of
|
||||
// computation involving only operations that could theoretically be folded
|
||||
// into a memory use, loop over each of these uses and see if they could
|
||||
// *actually* fold the instruction.
|
||||
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
|
||||
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
|
||||
Instruction *User = MemoryUses[i].first;
|
||||
unsigned OpNo = MemoryUses[i].second;
|
||||
|
||||
// Get the access type of this use. If the use isn't a pointer, we don't
|
||||
// know what it accesses.
|
||||
Value *Address = User->getOperand(OpNo);
|
||||
if (!isa<PointerType>(Address->getType()))
|
||||
return false;
|
||||
const Type *AddressAccessTy =
|
||||
cast<PointerType>(Address->getType())->getElementType();
|
||||
|
||||
// Do a match against the root of this address, ignoring profitability. This
|
||||
// will tell us if the addressing mode for the memory operation will
|
||||
// *actually* cover the shared instruction.
|
||||
ExtAddrMode Result;
|
||||
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
|
||||
MemoryInst, Result);
|
||||
Matcher.IgnoreProfitability = true;
|
||||
bool Success = Matcher.MatchAddr(Address, 0);
|
||||
Success = Success; assert(Success && "Couldn't select *anything*?");
|
||||
|
||||
// If the match didn't cover I, then it won't be shared by it.
|
||||
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
|
||||
I) == MatchedAddrModeInsts.end())
|
||||
return false;
|
||||
|
||||
MatchedAddrModeInsts.clear();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
Loading…
Reference in New Issue
Block a user