Masked Vector Load and Store Intrinsics.

Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Elena Demikhovsky 2014-11-23 08:07:43 +00:00
parent 4f5aa5994e
commit ae1ae2c3a1
32 changed files with 4419 additions and 3155 deletions

View File

@ -270,6 +270,13 @@ public:
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const;
/// \brief Return true if the target works with masked instruction
/// AVX2 allows masks for consecutive load and store for i32 and i64 elements.
/// AVX-512 architecture will also allow masks for non-consecutive memory
/// accesses.
virtual bool isLegalPredicatedStore(Type *DataType, int Consecutive) const;
virtual bool isLegalPredicatedLoad (Type *DataType, int Consecutive) const;
/// \brief Return the cost of the scaling factor used in the addressing
/// mode represented by AM for this target, for a load/store
/// of the specified type.

View File

@ -675,6 +675,9 @@ namespace ISD {
ATOMIC_LOAD_UMIN,
ATOMIC_LOAD_UMAX,
// Masked load and store
MLOAD, MSTORE,
/// This corresponds to the llvm.lifetime.* intrinsics. The first operand
/// is the chain and the second operand is the alloca pointer.
LIFETIME_START, LIFETIME_END,

View File

@ -866,6 +866,10 @@ public:
SDValue getIndexedStore(SDValue OrigStoe, SDLoc dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr,
SDValue Mask, SDValue Src0, MachineMemOperand *MMO);
SDValue getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, SDValue Mask, MachineMemOperand *MMO);
/// getSrcValue - Construct a node to track a Value* through the backend.
SDValue getSrcValue(const Value *v);

View File

@ -1177,6 +1177,8 @@ public:
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
N->getOpcode() == ISD::ATOMIC_LOAD ||
N->getOpcode() == ISD::ATOMIC_STORE ||
N->getOpcode() == ISD::MLOAD ||
N->getOpcode() == ISD::MSTORE ||
N->isMemIntrinsic() ||
N->isTargetMemoryOpcode();
}
@ -1926,6 +1928,72 @@ public:
}
};
/// MaskedLoadStoreSDNode - This is a base class is used to represent MLOAD and
/// MSTORE nodes
///
class MaskedLoadStoreSDNode : public MemSDNode {
// Operands
SDUse Ops[4];
public:
friend class SelectionDAG;
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
SDValue *Operands, unsigned numOperands,
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
InitOperands(Ops, Operands, numOperands);
}
// In the both nodes address is Op1, mask is Op2:
// MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
// MaskedStoreSDNode (Chain, ptr, mask, data)
// Mask is a vector of i1 elements
const SDValue &getBasePtr() const { return getOperand(1); }
const SDValue &getMask() const { return getOperand(2); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MLOAD ||
N->getOpcode() == ISD::MSTORE;
}
};
/// MaskedLoadSDNode - This class is used to represent an MLOAD node
///
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
public:
friend class SelectionDAG;
MaskedLoadSDNode(unsigned Order, DebugLoc dl,
SDValue *Operands, unsigned numOperands,
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
: MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
VTs, MemVT, MMO)
{}
const SDValue &getSrc0() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MLOAD;
}
};
/// MaskedStoreSDNode - This class is used to represent an MSTORE node
///
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
public:
friend class SelectionDAG;
MaskedStoreSDNode(unsigned Order, DebugLoc dl,
SDValue *Operands, unsigned numOperands,
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
: MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
VTs, MemVT, MMO)
{}
const SDValue &getData() const { return getOperand(3); }
static bool classof(const SDNode *N) {
return N->getOpcode() == ISD::MSTORE;
}
};
/// MachineSDNode - An SDNode that represents everything that will be needed
/// to construct a MachineInstr. These nodes are created during the
/// instruction selection proper phase.

View File

@ -429,11 +429,22 @@ public:
/// If the pointer isn't i8* it will be converted.
CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
/// \brief Create a call to Masked Load intrinsic
CallInst *CreateMaskedLoad(ArrayRef<Value *> Ops);
/// \brief Create a call to Masked Store intrinsic
CallInst *CreateMaskedStore(ArrayRef<Value *> Ops);
/// \brief Create an assume intrinsic call that allows the optimizer to
/// assume that the provided condition will be true.
CallInst *CreateAssumption(Value *Cond);
private:
/// \brief Create a call to a masked intrinsic with given Id.
/// Masked intrinsic has only one overloaded type - data type.
CallInst *CreateMaskedIntrinsic(unsigned Id, ArrayRef<Value *> Ops,
Type *DataTy);
Value *getCastedInt8PtrValue(Value *Ptr);
};

View File

@ -76,7 +76,8 @@ namespace Intrinsic {
enum IITDescriptorKind {
Void, VarArg, MMX, Metadata, Half, Float, Double,
Integer, Vector, Pointer, Struct,
Argument, ExtendArgument, TruncArgument, HalfVecArgument
Argument, ExtendArgument, TruncArgument, HalfVecArgument,
SameVecWidthArgument
} Kind;
union {
@ -96,13 +97,15 @@ namespace Intrinsic {
};
unsigned getArgumentNumber() const {
assert(Kind == Argument || Kind == ExtendArgument ||
Kind == TruncArgument || Kind == HalfVecArgument);
Kind == TruncArgument || Kind == HalfVecArgument ||
Kind == SameVecWidthArgument);
return Argument_Info >> 2;
}
ArgKind getArgumentKind() const {
assert(Kind == Argument || Kind == ExtendArgument ||
Kind == TruncArgument || Kind == HalfVecArgument);
return (ArgKind)(Argument_Info&3);
Kind == TruncArgument || Kind == HalfVecArgument ||
Kind == SameVecWidthArgument);
return (ArgKind)(Argument_Info & 3);
}
static IITDescriptor get(IITDescriptorKind K, unsigned Field) {

View File

@ -112,6 +112,10 @@ class LLVMMatchType<int num>
// the intrinsic is overloaded, so the matched type should be declared as iAny.
class LLVMExtendedType<int num> : LLVMMatchType<num>;
class LLVMTruncatedType<int num> : LLVMMatchType<num>;
class LLVMVectorSameWidth<int num, LLVMType elty>
: LLVMMatchType<num> {
ValueType ElTy = elty.VT;
}
// Match the type of another intrinsic parameter that is expected to be a
// vector type, but change the element count to be half as many
@ -539,6 +543,17 @@ def int_convertuu : Intrinsic<[llvm_anyint_ty],
def int_clear_cache : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty],
[], "llvm.clear_cache">;
//===-------------------------- Masked Intrinsics -------------------------===//
//
def int_masked_store : Intrinsic<[], [llvm_ptr_ty, llvm_anyvector_ty,
llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>],
[IntrReadWriteArgMem]>;
def int_masked_load : Intrinsic<[llvm_anyvector_ty],
[llvm_ptr_ty, LLVMMatchType<0>, llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>],
[IntrReadArgMem]>;
//===----------------------------------------------------------------------===//
// Target-specific intrinsics
//===----------------------------------------------------------------------===//

View File

@ -188,6 +188,14 @@ def SDTIStore : SDTypeProfile<1, 3, [ // indexed store
SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3>
]>;
def SDTMaskedStore: SDTypeProfile<0, 3, [ // masked store
SDTCisPtrTy<0>, SDTCisVec<1>, SDTCisVec<2>
]>;
def SDTMaskedLoad: SDTypeProfile<1, 3, [ // masked load
SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisVec<2>, SDTCisSameAs<0, 3>
]>;
def SDTVecShuffle : SDTypeProfile<1, 2, [
SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>
]>;
@ -454,6 +462,11 @@ def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad,
def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_store : SDNode<"ISD::MSTORE", SDTMaskedStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def masked_load : SDNode<"ISD::MLOAD", SDTMaskedLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
// Do not use ld, st directly. Use load, extload, sextload, zextload, store,
// and truncst (see below).
def ld : SDNode<"ISD::LOAD" , SDTLoad,

View File

@ -101,6 +101,17 @@ bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return PrevTTI->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalPredicatedLoad(Type *DataType,
int Consecutive) const {
return false;
}
bool TargetTransformInfo::isLegalPredicatedStore(Type *DataType,
int Consecutive) const {
return false;
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg,

View File

@ -303,6 +303,8 @@ namespace {
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
SDValue visitVECTOR_SHUFFLE(SDNode *N);
SDValue visitINSERT_SUBVECTOR(SDNode *N);
SDValue visitMLOAD(SDNode *N);
SDValue visitMSTORE(SDNode *N);
SDValue XformToShuffleWithZero(SDNode *N);
SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
@ -412,6 +414,7 @@ namespace {
EVT getSetCCResultType(EVT VT) const {
return TLI.getSetCCResultType(*DAG.getContext(), VT);
}
int& MLD();
};
}
@ -1351,6 +1354,8 @@ SDValue DAGCombiner::visit(SDNode *N) {
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
case ISD::MLOAD: return visitMLOAD(N);
case ISD::MSTORE: return visitMSTORE(N);
}
return SDValue();
}
@ -4771,6 +4776,162 @@ static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
}
SDValue DAGCombiner::visitMSTORE(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
SDValue Mask = MST->getMask();
SDValue Data = MST->getData();
SDLoc DL(N);
// If the MSTORE data type requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() == ISD::SETCC) {
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
SDValue Chain = MST->getChain();
SDValue Ptr = MST->getBasePtr();
EVT MemoryVT = MST->getMemoryVT();
unsigned Alignment = MST->getOriginalAlignment();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == Data->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
SDValue DataLo, DataHi;
std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MST->getPointerInfo(),
MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
Alignment, MST->getAAInfo(), MST->getRanges());
Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, MMO);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
MMO = DAG.getMachineFunction().
getMachineMemOperand(MST->getPointerInfo(),
MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
SecondHalfAlignment, MST->getAAInfo(),
MST->getRanges());
Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, MMO);
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
}
return SDValue();
}
SDValue DAGCombiner::visitMLOAD(SDNode *N) {
if (Level >= AfterLegalizeTypes)
return SDValue();
MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
SDValue Mask = MLD->getMask();
SDLoc DL(N);
// If the MLOAD result requires splitting and the mask is provided by a
// SETCC, then split both nodes and its operands before legalization. This
// prevents the type legalizer from unrolling SETCC into scalar comparisons
// and enables future optimizations (e.g. min/max pattern matching on X86).
if (Mask.getOpcode() == ISD::SETCC) {
EVT VT = N->getValueType(0);
// Check if any splitting is required.
if (TLI.getTypeAction(*DAG.getContext(), VT) !=
TargetLowering::TypeSplitVector)
return SDValue();
SDValue MaskLo, MaskHi, Lo, Hi;
std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
SDValue Src0 = MLD->getSrc0();
SDValue Src0Lo, Src0Hi;
std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
SDValue Chain = MLD->getChain();
SDValue Ptr = MLD->getBasePtr();
EVT MemoryVT = MLD->getMemoryVT();
unsigned Alignment = MLD->getOriginalAlignment();
// if Alignment is equal to the vector size,
// take the half of it for the second part
unsigned SecondHalfAlignment =
(Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
Alignment/2 : Alignment;
EVT LoMemVT, HiMemVT;
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
MachineMemOperand *MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
Alignment, MLD->getAAInfo(), MLD->getRanges());
Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, MMO);
unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, Ptr.getValueType()));
MMO = DAG.getMachineFunction().
getMachineMemOperand(MLD->getPointerInfo(),
MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, MMO);
AddToWorklist(Lo.getNode());
AddToWorklist(Hi.getNode());
// Build a factor node to remember that this load is independent of the
// other one.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
SDValue RetOps[] = { LoadRes, Chain };
return DAG.getMergeValues(RetOps, DL);
}
return SDValue();
}
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);

View File

@ -825,6 +825,10 @@ bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
OpNo); break;
case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
OpNo); break;
case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
case ISD::FP16_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
@ -1091,6 +1095,25 @@ SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
N->getMemoryVT(), N->getMemOperand());
}
SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo){
assert(OpNo == 2 && "Only know how to promote the mask!");
EVT DataVT = N->getOperand(3).getValueType();
SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
NewOps[OpNo] = Mask;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo){
assert(OpNo == 2 && "Only know how to promote the mask!");
EVT DataVT = N->getValueType(0);
SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT);
SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end());
NewOps[OpNo] = Mask;
return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op);

View File

@ -285,6 +285,8 @@ private:
SDValue PromoteIntOp_TRUNCATE(SDNode *N);
SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
@ -578,6 +580,7 @@ private:
void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi);
void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
@ -594,6 +597,7 @@ private:
SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
SDValue SplitVecOp_TRUNCATE(SDNode *N);
SDValue SplitVecOp_VSETCC(SDNode *N);

File diff suppressed because it is too large Load Diff

View File

@ -4917,6 +4917,60 @@ SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base,
return SDValue(N, 0);
}
SDValue
SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain,
SDValue Ptr, SDValue Mask, SDValue Src0,
MachineMemOperand *MMO) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, Src0 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED,
MMO->isVolatile(),
MMO->isNonTemporal(),
MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(),
dl.getDebugLoc(), Ops, 4, VTs,
VT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val,
SDValue Ptr, SDValue Mask, MachineMemOperand *MMO) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Ops[] = { Chain, Ptr, Mask, Val };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = nullptr;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(),
dl.getDebugLoc(), Ops, 4,
VTs, VT, MMO);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl,
SDValue Chain, SDValue Ptr,
SDValue SV,

View File

@ -3613,6 +3613,70 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
DAG.setRoot(StoreNode);
}
void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
SDLoc sdl = getCurSDLoc();
Value *PtrOperand = I.getArgOperand(0);
SDValue Ptr = getValue(PtrOperand);
SDValue Src0 = getValue(I.getArgOperand(1));
SDValue Mask = getValue(I.getArgOperand(3));
EVT VT = Src0.getValueType();
unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
if (!Alignment)
Alignment = DAG.getEVTAlignment(VT);
AAMDNodes AAInfo;
I.getAAMetadata(AAInfo);
MachineMemOperand *MMO =
DAG.getMachineFunction().
getMachineMemOperand(MachinePointerInfo(PtrOperand),
MachineMemOperand::MOStore, VT.getStoreSize(),
Alignment, AAInfo);
SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO);
DAG.setRoot(StoreNode);
setValue(&I, StoreNode);
}
void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
SDLoc sdl = getCurSDLoc();
Value *PtrOperand = I.getArgOperand(0);
SDValue Ptr = getValue(PtrOperand);
SDValue Src0 = getValue(I.getArgOperand(1));
SDValue Mask = getValue(I.getArgOperand(3));
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = TLI.getValueType(I.getType());
unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
if (!Alignment)
Alignment = DAG.getEVTAlignment(VT);
AAMDNodes AAInfo;
I.getAAMetadata(AAInfo);
const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
SDValue InChain = DAG.getRoot();
if (AA->pointsToConstantMemory(
AliasAnalysis::Location(PtrOperand,
AA->getTypeStoreSize(I.getType()),
AAInfo))) {
// Do not serialize (non-volatile) loads of constant memory with anything.
InChain = DAG.getEntryNode();
}
MachineMemOperand *MMO =
DAG.getMachineFunction().
getMachineMemOperand(MachinePointerInfo(PtrOperand),
MachineMemOperand::MOLoad, VT.getStoreSize(),
Alignment, AAInfo, Ranges);
SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO);
SDValue OutChain = Load.getValue(1);
DAG.setRoot(OutChain);
setValue(&I, Load);
}
void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
SDLoc dl = getCurSDLoc();
AtomicOrdering SuccessOrder = I.getSuccessOrdering();
@ -4914,6 +4978,12 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
}
case Intrinsic::masked_load:
visitMaskedLoad(I);
return nullptr;
case Intrinsic::masked_store:
visitMaskedStore(I);
return nullptr;
case Intrinsic::x86_mmx_pslli_w:
case Intrinsic::x86_mmx_pslli_d:
case Intrinsic::x86_mmx_pslli_q:

View File

@ -756,6 +756,8 @@ private:
void visitAlloca(const AllocaInst &I);
void visitLoad(const LoadInst &I);
void visitStore(const StoreInst &I);
void visitMaskedLoad(const CallInst &I);
void visitMaskedStore(const CallInst &I);
void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
void visitAtomicRMW(const AtomicRMWInst &I);
void visitFence(const FenceInst &I);

View File

@ -269,6 +269,8 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const {
// Other operators
case ISD::LOAD: return "load";
case ISD::STORE: return "store";
case ISD::MLOAD: return "masked_load";
case ISD::MSTORE: return "masked_store";
case ISD::VAARG: return "vaarg";
case ISD::VACOPY: return "vacopy";
case ISD::VAEND: return "vaend";

View File

@ -537,7 +537,8 @@ enum IIT_Info {
IIT_ANYPTR = 26,
IIT_V1 = 27,
IIT_VARARG = 28,
IIT_HALF_VEC_ARG = 29
IIT_HALF_VEC_ARG = 29,
IIT_SAME_VEC_WIDTH_ARG = 30
};
@ -645,6 +646,12 @@ static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
ArgInfo));
return;
}
case IIT_SAME_VEC_WIDTH_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
ArgInfo));
return;
}
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
@ -752,7 +759,14 @@ static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(cast<VectorType>(
Tys[D.getArgumentNumber()]));
}
case IITDescriptor::SameVecWidthArgument:
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
return VectorType::get(EltTy, VTy->getNumElements());
}
llvm_unreachable("unhandled");
}
llvm_unreachable("unhandled");
}

View File

@ -183,3 +183,29 @@ CallInst *IRBuilderBase::CreateAssumption(Value *Cond) {
return createCallHelper(FnAssume, Ops, this);
}
/// Create a call to a Masked Load intrinsic.
/// Ops - an array of operands.
CallInst *IRBuilderBase::CreateMaskedLoad(ArrayRef<Value *> Ops) {
// The only one overloaded type - the type of passthru value in this case
Type *DataTy = Ops[1]->getType();
return CreateMaskedIntrinsic(Intrinsic::masked_load, Ops, DataTy);
}
/// Create a call to a Masked Store intrinsic.
/// Ops - an array of operands.
CallInst *IRBuilderBase::CreateMaskedStore(ArrayRef<Value *> Ops) {
// DataTy - type of the data to be stored - the only one overloaded type
Type *DataTy = Ops[1]->getType();
return CreateMaskedIntrinsic(Intrinsic::masked_store, Ops, DataTy);
}
/// Create a call to a Masked intrinsic, with given intrinsic Id,
/// an array of operands - Ops, and one overloaded type - DataTy
CallInst *IRBuilderBase::CreateMaskedIntrinsic(unsigned Id,
ArrayRef<Value *> Ops,
Type *DataTy) {
Module *M = BB->getParent()->getParent();
Type *OverloadedTypes[] = { DataTy };
Value *TheFn = Intrinsic::getDeclaration(M, (Intrinsic::ID)Id, OverloadedTypes);
return createCallHelper(TheFn, Ops, this);
}

View File

@ -2405,6 +2405,19 @@ bool Verifier::VerifyIntrinsicType(Type *Ty,
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
case IITDescriptor::SameVecWidthArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return true;
VectorType * ReferenceType =
dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
if (!ThisArgType || !ReferenceType ||
(ReferenceType->getVectorNumElements() !=
ThisArgType->getVectorNumElements()))
return true;
return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
Infos, ArgTys);
}
}
llvm_unreachable("unhandled");
}

View File

@ -1321,13 +1321,21 @@ void X86TargetLowering::resetOperationActions() {
// Extract subvector is special because the value type
// (result) is 128-bit but the source is 256-bit wide.
if (VT.is128BitVector())
if (VT.is128BitVector()) {
if (VT.getScalarSizeInBits() >= 32) {
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Custom);
}
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
}
// Do not attempt to custom lower other non-256-bit vectors
if (!VT.is256BitVector())
continue;
if (VT.getScalarSizeInBits() >= 32) {
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
}
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
@ -1494,9 +1502,13 @@ void X86TargetLowering::resetOperationActions() {
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
// Extract subvector is special because the value type
// (result) is 256/128-bit but the source is 512-bit wide.
if (VT.is128BitVector() || VT.is256BitVector())
if (VT.is128BitVector() || VT.is256BitVector()) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
if ( EltSize >= 32) {
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
}
}
if (VT.getVectorElementType() == MVT::i1)
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
@ -1512,6 +1524,8 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
}
}
for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {

View File

@ -2097,6 +2097,41 @@ def: Pat<(int_x86_avx512_mask_storeu_pd_512 addr:$ptr, (v8f64 VR512:$src),
(VMOVUPDZmrk addr:$ptr, (v8i1 (COPY_TO_REGCLASS GR8:$mask, VK8WM)),
VR512:$src)>;
def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8f32 VR256:$src)),
(VMOVUPSZmrk addr:$ptr,
(v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)),
(INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256:$src, sub_ymm))>;
def: Pat<(v8f32 (masked_load addr:$ptr, VK8WM:$mask, undef)),
(v8f32 (EXTRACT_SUBREG (v16f32 (VMOVUPSZrmkz
(v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)), addr:$ptr)), sub_ymm))>;
def: Pat<(masked_store addr:$ptr, VK16WM:$mask, (v16f32 VR512:$src)),
(VMOVUPSZmrk addr:$ptr, VK16WM:$mask, VR512:$src)>;
def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8f64 VR512:$src)),
(VMOVUPDZmrk addr:$ptr, VK8WM:$mask, VR512:$src)>;
def: Pat<(v16f32 (masked_load addr:$ptr, VK16WM:$mask, undef)),
(VMOVUPSZrmkz VK16WM:$mask, addr:$ptr)>;
def: Pat<(v16f32 (masked_load addr:$ptr, VK16WM:$mask,
(bc_v16f32 (v16i32 immAllZerosV)))),
(VMOVUPSZrmkz VK16WM:$mask, addr:$ptr)>;
def: Pat<(v16f32 (masked_load addr:$ptr, VK16WM:$mask, (v16f32 VR512:$src0))),
(VMOVUPSZrmk VR512:$src0, VK16WM:$mask, addr:$ptr)>;
def: Pat<(v8f64 (masked_load addr:$ptr, VK8WM:$mask, undef)),
(VMOVUPDZrmkz VK8WM:$mask, addr:$ptr)>;
def: Pat<(v8f64 (masked_load addr:$ptr, VK8WM:$mask,
(bc_v8f64 (v16i32 immAllZerosV)))),
(VMOVUPDZrmkz VK8WM:$mask, addr:$ptr)>;
def: Pat<(v8f64 (masked_load addr:$ptr, VK8WM:$mask, (v8f64 VR512:$src0))),
(VMOVUPDZrmk VR512:$src0, VK8WM:$mask, addr:$ptr)>;
defm VMOVDQA32 : avx512_load_vl<0x6F, "vmovdqa32", "alignedload", "i", "32",
"16", "8", "4", SSEPackedInt, HasAVX512>,
avx512_store_vl<0x7F, "vmovdqa32", "alignedstore",
@ -2171,6 +2206,46 @@ def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 immAllZerosV),
(VMOVDQU32Zrrkz (KNOTWrr VK16WM:$mask), VR512:$src)>;
}
def: Pat<(v16i32 (masked_load addr:$ptr, VK16WM:$mask, (v16i32 immAllZerosV))),
(VMOVDQU32Zrmkz VK16WM:$mask, addr:$ptr)>;
def: Pat<(v16i32 (masked_load addr:$ptr, VK16WM:$mask, undef)),
(VMOVDQU32Zrmkz VK16WM:$mask, addr:$ptr)>;
def: Pat<(v16i32 (masked_load addr:$ptr, VK16WM:$mask, (v16i32 VR512:$src0))),
(VMOVDQU32Zrmk VR512:$src0, VK16WM:$mask, addr:$ptr)>;
def: Pat<(v8i64 (masked_load addr:$ptr, VK8WM:$mask,
(bc_v8i64 (v16i32 immAllZerosV)))),
(VMOVDQU64Zrmkz VK8WM:$mask, addr:$ptr)>;
def: Pat<(v8i64 (masked_load addr:$ptr, VK8WM:$mask, undef)),
(VMOVDQU64Zrmkz VK8WM:$mask, addr:$ptr)>;
def: Pat<(v8i64 (masked_load addr:$ptr, VK8WM:$mask, (v8i64 VR512:$src0))),
(VMOVDQU64Zrmk VR512:$src0, VK8WM:$mask, addr:$ptr)>;
def: Pat<(masked_store addr:$ptr, VK16WM:$mask, (v16i32 VR512:$src)),
(VMOVDQU32Zmrk addr:$ptr, VK16WM:$mask, VR512:$src)>;
def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8i64 VR512:$src)),
(VMOVDQU64Zmrk addr:$ptr, VK8WM:$mask, VR512:$src)>;
// SKX replacement
def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8i32 VR256:$src)),
(VMOVDQU32Z256mrk addr:$ptr, VK8WM:$mask, VR256:$src)>;
// KNL replacement
def: Pat<(masked_store addr:$ptr, VK8WM:$mask, (v8i32 VR256:$src)),
(VMOVDQU32Zmrk addr:$ptr,
(v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)),
(INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR256:$src, sub_ymm))>;
def: Pat<(v8i32 (masked_load addr:$ptr, VK8WM:$mask, undef)),
(v8i32 (EXTRACT_SUBREG (v16i32 (VMOVDQU32Zrmkz
(v16i1 (COPY_TO_REGCLASS VK8WM:$mask, VK16WM)), addr:$ptr)), sub_ymm))>;
// Move Int Doubleword to Packed Double Int
//
def VMOVDI2PDIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR32:$src),

View File

@ -9260,6 +9260,61 @@ defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq",
int_x86_avx2_maskstore_q,
int_x86_avx2_maskstore_q_256>, VEX_W;
def: Pat<(masked_store addr:$ptr, (v8i32 VR256:$mask), (v8f32 VR256:$src)),
(VPMASKMOVDYmr addr:$ptr, VR256:$mask, VR256:$src)>;
def: Pat<(masked_store addr:$ptr, (v8i32 VR256:$mask), (v8i32 VR256:$src)),
(VPMASKMOVDYmr addr:$ptr, VR256:$mask, VR256:$src)>;
def: Pat<(v8f32 (masked_load addr:$ptr, (v8i32 VR256:$mask), undef)),
(VPMASKMOVDYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v8f32 (masked_load addr:$ptr, (v8i32 VR256:$mask),
(bc_v8f32 (v8i32 immAllZerosV)))),
(VPMASKMOVDYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v8f32 (masked_load addr:$ptr, (v8i32 VR256:$mask), (v8f32 VR256:$src0))),
(VBLENDVPSYrr VR256:$src0, (VPMASKMOVDYrm VR256:$mask, addr:$ptr),
VR256:$mask)>;
def: Pat<(v8i32 (masked_load addr:$ptr, (v8i32 VR256:$mask), undef)),
(VPMASKMOVDYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v8i32 (masked_load addr:$ptr, (v8i32 VR256:$mask), (v8i32 immAllZerosV))),
(VPMASKMOVDYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v8i32 (masked_load addr:$ptr, (v8i32 VR256:$mask), (v8i32 VR256:$src0))),
(VBLENDVPSYrr VR256:$src0, (VPMASKMOVDYrm VR256:$mask, addr:$ptr),
VR256:$mask)>;
def: Pat<(masked_store addr:$ptr, (v4i64 VR256:$mask), (v4f64 VR256:$src)),
(VPMASKMOVQYmr addr:$ptr, VR256:$mask, VR256:$src)>;
def: Pat<(masked_store addr:$ptr, (v4i64 VR256:$mask), (v4i64 VR256:$src)),
(VPMASKMOVQYmr addr:$ptr, VR256:$mask, VR256:$src)>;
def: Pat<(v4f64 (masked_load addr:$ptr, (v4i64 VR256:$mask), undef)),
(VPMASKMOVQYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v4f64 (masked_load addr:$ptr, (v4i64 VR256:$mask),
(v4f64 immAllZerosV))),
(VPMASKMOVQYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v4f64 (masked_load addr:$ptr, (v4i64 VR256:$mask), (v4f64 VR256:$src0))),
(VBLENDVPDYrr VR256:$src0, (VPMASKMOVQYrm VR256:$mask, addr:$ptr),
VR256:$mask)>;
def: Pat<(v4i64 (masked_load addr:$ptr, (v4i64 VR256:$mask), undef)),
(VPMASKMOVQYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v4i64 (masked_load addr:$ptr, (v4i64 VR256:$mask),
(bc_v4i64 (v8i32 immAllZerosV)))),
(VPMASKMOVQYrm VR256:$mask, addr:$ptr)>;
def: Pat<(v4i64 (masked_load addr:$ptr, (v4i64 VR256:$mask), (v4i64 VR256:$src0))),
(VBLENDVPDYrr VR256:$src0, (VPMASKMOVQYrm VR256:$mask, addr:$ptr),
VR256:$mask)>;
//===----------------------------------------------------------------------===//
// Variable Bit Shifts

View File

@ -111,6 +111,8 @@ public:
Type *Ty) const override;
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
bool isLegalPredicatedLoad (Type *DataType, int Consecutive) const;
bool isLegalPredicatedStore(Type *DataType, int Consecutive) const;
/// @}
};
@ -1156,3 +1158,19 @@ unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
}
return X86TTI::getIntImmCost(Imm, Ty);
}
bool X86TTI::isLegalPredicatedLoad(Type *DataType, int Consecutive) const {
int ScalarWidth = DataType->getScalarSizeInBits();
// Todo: AVX512 allows gather/scatter, works with strided and random as well
if ((ScalarWidth < 32) || (Consecutive == 0))
return false;
if (ST->hasAVX512() || ST->hasAVX2())
return true;
return false;
}
bool X86TTI::isLegalPredicatedStore(Type *DataType, int Consecutive) const {
return isLegalPredicatedLoad(DataType, Consecutive);
}

View File

@ -580,9 +580,10 @@ public:
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
DominatorTree *DT, TargetLibraryInfo *TLI,
AliasAnalysis *AA, Function *F)
AliasAnalysis *AA, Function *F,
const TargetTransformInfo *TTI)
: NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr),
DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr),
WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
}
@ -768,6 +769,15 @@ public:
}
SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
bool canPredicateStore(Type *DataType, Value *Ptr) {
return TTI->isLegalPredicatedStore(DataType, isConsecutivePtr(Ptr));
}
bool canPredicateLoad(Type *DataType, Value *Ptr) {
return TTI->isLegalPredicatedLoad(DataType, isConsecutivePtr(Ptr));
}
bool setMaskedOp(const Instruction* I) {
return (MaskedOp.find(I) != MaskedOp.end());
}
private:
/// Check if a single basic block loop is vectorizable.
/// At this point we know that this is a loop with a constant trip count
@ -840,6 +850,8 @@ private:
AliasAnalysis *AA;
/// Parent function
Function *TheFunction;
/// Target Transform Info
const TargetTransformInfo *TTI;
// --- vectorization state --- //
@ -871,6 +883,10 @@ private:
ValueToValueMap Strides;
SmallPtrSet<Value *, 8> StrideSet;
/// While vectorizing these instructions we have to generate a
/// call to an appropriate masked intrinsic
std::set<const Instruction*> MaskedOp;
};
/// LoopVectorizationCostModel - estimates the expected speedups due to
@ -1375,7 +1391,7 @@ struct LoopVectorize : public FunctionPass {
}
// Check if it is legal to vectorize the loop.
LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F);
LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
@ -1763,7 +1779,8 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
if (SI && Legal->blockNeedsPredication(SI->getParent()))
if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
!Legal->setMaskedOp(SI))
return scalarizeInstruction(Instr, true);
if (ScalarAllocatedSize != VectorElementSize)
@ -1857,8 +1874,25 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
StoreInst *NewSI =
Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
Instruction *NewSI;
if (Legal->setMaskedOp(SI)) {
Type *I8PtrTy =
Builder.getInt8PtrTy(PartPtr->getType()->getPointerAddressSpace());
Value *I8Ptr = Builder.CreateBitCast(PartPtr, I8PtrTy);
VectorParts Cond = createEdgeMask(SI->getParent()->getSinglePredecessor(),
SI->getParent());
SmallVector <Value *, 8> Ops;
Ops.push_back(I8Ptr);
Ops.push_back(StoredVal[Part]);
Ops.push_back(Builder.getInt32(Alignment));
Ops.push_back(Cond[Part]);
NewSI = Builder.CreateMaskedStore(Ops);
}
else
NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
propagateMetadata(NewSI, SI);
}
return;
@ -1873,14 +1907,31 @@ void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
if (Reverse) {
// If the address is consecutive but reversed, then the
// wide store needs to start at the last vector element.
// wide load needs to start at the last vector element.
PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
}
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
Instruction* NewLI;
if (Legal->setMaskedOp(LI)) {
Type *I8PtrTy =
Builder.getInt8PtrTy(PartPtr->getType()->getPointerAddressSpace());
Value *I8Ptr = Builder.CreateBitCast(PartPtr, I8PtrTy);
VectorParts SrcMask = createBlockInMask(LI->getParent());
SmallVector <Value *, 8> Ops;
Ops.push_back(I8Ptr);
Ops.push_back(UndefValue::get(DataTy));
Ops.push_back(Builder.getInt32(Alignment));
Ops.push_back(SrcMask[Part]);
NewLI = Builder.CreateMaskedLoad(Ops);
}
else {
Value *VecPtr = Builder.CreateBitCast(PartPtr,
DataTy->getPointerTo(AddressSpace));
NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
}
propagateMetadata(NewLI, LI);
Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
}
@ -5304,8 +5355,15 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
// We might be able to hoist the load.
if (it->mayReadFromMemory()) {
LoadInst *LI = dyn_cast<LoadInst>(it);
if (!LI || !SafePtrs.count(LI->getPointerOperand()))
if (!LI)
return false;
if (!SafePtrs.count(LI->getPointerOperand())) {
if (canPredicateLoad(LI->getType(), LI->getPointerOperand())) {
MaskedOp.insert(LI);
continue;
}
return false;
}
}
// We don't predicate stores at the moment.
@ -5313,10 +5371,20 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
StoreInst *SI = dyn_cast<StoreInst>(it);
// We only support predication of stores in basic blocks with one
// predecessor.
if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
!SafePtrs.count(SI->getPointerOperand()) ||
!SI->getParent()->getSinglePredecessor())
if (!SI)
return false;
if (++NumPredStores > NumberOfStoresToPredicate ||
!SafePtrs.count(SI->getPointerOperand()) ||
!SI->getParent()->getSinglePredecessor()) {
if (canPredicateStore(SI->getValueOperand()->getType(),
SI->getPointerOperand())) {
MaskedOp.insert(SI);
--NumPredStores;
continue;
}
return false;
}
}
if (it->mayThrow())
return false;
@ -5380,7 +5448,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
MaxVectorSize = 1;
}
assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!");
unsigned VF = MaxVectorSize;
@ -5441,7 +5509,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
// the vector elements.
float VectorCost = expectedCost(i) / (float)i;
DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
(int)VectorCost << ".\n");
VectorCost << ".\n");
if (VectorCost < Cost) {
Cost = VectorCost;
Width = i;

View File

@ -0,0 +1,73 @@
; RUN: llc -mtriple=x86_64-apple-darwin -mcpu=knl < %s | FileCheck %s -check-prefix=AVX512
; RUN: llc -mtriple=x86_64-apple-darwin -mcpu=core-avx2 < %s | FileCheck %s -check-prefix=AVX2
; AVX512-LABEL: test1
; AVX512: vmovdqu32 (%rdi), %zmm0 {%k1} {z}
; AVX2-LABEL: test1
; AVX2: vpmaskmovd 32(%rdi)
; AVX2: vpmaskmovd (%rdi)
; AVX2-NOT: blend
define <16 x i32> @test1(<16 x i32> %trigger, i8* %addr) {
%mask = icmp eq <16 x i32> %trigger, zeroinitializer
%res = call <16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32>undef, i32 4, <16 x i1>%mask)
ret <16 x i32> %res
}
; AVX512-LABEL: test2
; AVX512: vmovdqu32 (%rdi), %zmm0 {%k1} {z}
; AVX2-LABEL: test2
; AVX2: vpmaskmovd {{.*}}(%rdi)
; AVX2: vpmaskmovd {{.*}}(%rdi)
; AVX2-NOT: blend
define <16 x i32> @test2(<16 x i32> %trigger, i8* %addr) {
%mask = icmp eq <16 x i32> %trigger, zeroinitializer
%res = call <16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32>zeroinitializer, i32 4, <16 x i1>%mask)
ret <16 x i32> %res
}
; AVX512-LABEL: test3
; AVX512: vmovdqu32 %zmm1, (%rdi) {%k1}
define void @test3(<16 x i32> %trigger, i8* %addr, <16 x i32> %val) {
%mask = icmp eq <16 x i32> %trigger, zeroinitializer
call void @llvm.masked.store.v16i32(i8* %addr, <16 x i32>%val, i32 4, <16 x i1>%mask)
ret void
}
; AVX512-LABEL: test4
; AVX512: vmovups (%rdi), %zmm{{.*{%k[1-7]}}}
; AVX2-LABEL: test4
; AVX2: vpmaskmovd {{.*}}(%rdi)
; AVX2: vpmaskmovd {{.*}}(%rdi)
; AVX2: blend
define <16 x float> @test4(<16 x i32> %trigger, i8* %addr, <16 x float> %dst) {
%mask = icmp eq <16 x i32> %trigger, zeroinitializer
%res = call <16 x float> @llvm.masked.load.v16f32(i8* %addr, <16 x float>%dst, i32 4, <16 x i1>%mask)
ret <16 x float> %res
}
; AVX512-LABEL: test5
; AVX512: vmovupd (%rdi), %zmm1 {%k1}
; AVX2-LABEL: test5
; AVX2: vpmaskmovq
; AVX2: vblendvpd
; AVX2: vpmaskmovq
; AVX2: vblendvpd
define <8 x double> @test5(<8 x i32> %trigger, i8* %addr, <8 x double> %dst) {
%mask = icmp eq <8 x i32> %trigger, zeroinitializer
%res = call <8 x double> @llvm.masked.load.v8f64(i8* %addr, <8 x double>%dst, i32 4, <8 x i1>%mask)
ret <8 x double> %res
}
declare <16 x i32> @llvm.masked.load.v16i32(i8*, <16 x i32>, i32, <16 x i1>)
declare void @llvm.masked.store.v16i32(i8*, <16 x i32>, i32, <16 x i1>)
declare <16 x float> @llvm.masked.load.v16f32(i8*, <16 x float>, i32, <16 x i1>)
declare void @llvm.masked.store.v16f32(i8*, <16 x float>, i32, <16 x i1>)
declare <8 x double> @llvm.masked.load.v8f64(i8*, <8 x double>, i32, <8 x i1>)
declare void @llvm.masked.store.v8f64(i8*, <8 x double>, i32, <8 x i1>)

View File

@ -0,0 +1,83 @@
; RUN: opt < %s -O3 -mcpu=corei7-avx -S | FileCheck %s -check-prefix=AVX1
; RUN: opt < %s -O3 -mcpu=core-avx2 -S | FileCheck %s -check-prefix=AVX2
; RUN: opt < %s -O3 -mcpu=knl -S | FileCheck %s -check-prefix=AVX512
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc_linux"
; The source code:
;
;void foo(int *A, int *B, int *trigger) {
;
; for (int i=0; i<10000; i++) {
; if (trigger[i] < 100) {
; A[i] = B[i] + trigger[i];
; }
; }
;}
;AVX2: llvm.masked.load.v8i32
;AVX2: llvm.masked.store.v8i32
;AVX512: llvm.masked.load.v16i32
;AVX512: llvm.masked.store.v16i32
;AVX1-NOT: llvm.masked
; Function Attrs: nounwind uwtable
define void @foo(i32* %A, i32* %B, i32* %trigger) {
entry:
%A.addr = alloca i32*, align 8
%B.addr = alloca i32*, align 8
%trigger.addr = alloca i32*, align 8
%i = alloca i32, align 4
store i32* %A, i32** %A.addr, align 8
store i32* %B, i32** %B.addr, align 8
store i32* %trigger, i32** %trigger.addr, align 8
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%0 = load i32* %i, align 4
%cmp = icmp slt i32 %0, 10000
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%1 = load i32* %i, align 4
%idxprom = sext i32 %1 to i64
%2 = load i32** %trigger.addr, align 8
%arrayidx = getelementptr inbounds i32* %2, i64 %idxprom
%3 = load i32* %arrayidx, align 4
%cmp1 = icmp slt i32 %3, 100
br i1 %cmp1, label %if.then, label %if.end
if.then: ; preds = %for.body
%4 = load i32* %i, align 4
%idxprom2 = sext i32 %4 to i64
%5 = load i32** %B.addr, align 8
%arrayidx3 = getelementptr inbounds i32* %5, i64 %idxprom2
%6 = load i32* %arrayidx3, align 4
%7 = load i32* %i, align 4
%idxprom4 = sext i32 %7 to i64
%8 = load i32** %trigger.addr, align 8
%arrayidx5 = getelementptr inbounds i32* %8, i64 %idxprom4
%9 = load i32* %arrayidx5, align 4
%add = add nsw i32 %6, %9
%10 = load i32* %i, align 4
%idxprom6 = sext i32 %10 to i64
%11 = load i32** %A.addr, align 8
%arrayidx7 = getelementptr inbounds i32* %11, i64 %idxprom6
store i32 %add, i32* %arrayidx7, align 4
br label %if.end
if.end: ; preds = %if.then, %for.body
br label %for.inc
for.inc: ; preds = %if.end
%12 = load i32* %i, align 4
%inc = add nsw i32 %12, 1
store i32 %inc, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
ret void
}

View File

@ -0,0 +1,84 @@
; RUN: opt < %s -O3 -mcpu=corei7-avx -S | FileCheck %s -check-prefix=AVX1
; RUN: opt < %s -O3 -mcpu=core-avx2 -S | FileCheck %s -check-prefix=AVX2
; RUN: opt < %s -O3 -mcpu=knl -S | FileCheck %s -check-prefix=AVX512
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc_linux"
; The source code:
;
;void foo(float *A, float *B, int *trigger) {
;
; for (int i=0; i<10000; i++) {
; if (trigger[i] < 100) {
; A[i] = B[i] + trigger[i];
; }
; }
;}
;AVX2: llvm.masked.load.v8f32
;AVX2: llvm.masked.store.v8f32
;AVX512: llvm.masked.load.v16f32
;AVX512: llvm.masked.store.v16f32
;AVX1-NOT: llvm.masked
; Function Attrs: nounwind uwtable
define void @foo(float* %A, float* %B, i32* %trigger) {
entry:
%A.addr = alloca float*, align 8
%B.addr = alloca float*, align 8
%trigger.addr = alloca i32*, align 8
%i = alloca i32, align 4
store float* %A, float** %A.addr, align 8
store float* %B, float** %B.addr, align 8
store i32* %trigger, i32** %trigger.addr, align 8
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%0 = load i32* %i, align 4
%cmp = icmp slt i32 %0, 10000
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%1 = load i32* %i, align 4
%idxprom = sext i32 %1 to i64
%2 = load i32** %trigger.addr, align 8
%arrayidx = getelementptr inbounds i32* %2, i64 %idxprom
%3 = load i32* %arrayidx, align 4
%cmp1 = icmp slt i32 %3, 100
br i1 %cmp1, label %if.then, label %if.end
if.then: ; preds = %for.body
%4 = load i32* %i, align 4
%idxprom2 = sext i32 %4 to i64
%5 = load float** %B.addr, align 8
%arrayidx3 = getelementptr inbounds float* %5, i64 %idxprom2
%6 = load float* %arrayidx3, align 4
%7 = load i32* %i, align 4
%idxprom4 = sext i32 %7 to i64
%8 = load i32** %trigger.addr, align 8
%arrayidx5 = getelementptr inbounds i32* %8, i64 %idxprom4
%9 = load i32* %arrayidx5, align 4
%conv = sitofp i32 %9 to float
%add = fadd float %6, %conv
%10 = load i32* %i, align 4
%idxprom6 = sext i32 %10 to i64
%11 = load float** %A.addr, align 8
%arrayidx7 = getelementptr inbounds float* %11, i64 %idxprom6
store float %add, float* %arrayidx7, align 4
br label %if.end
if.end: ; preds = %if.then, %for.body
br label %for.inc
for.inc: ; preds = %if.end
%12 = load i32* %i, align 4
%inc = add nsw i32 %12, 1
store i32 %inc, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
ret void
}

View File

@ -0,0 +1,84 @@
; RUN: opt < %s -O3 -mcpu=corei7-avx -S | FileCheck %s -check-prefix=AVX1
; RUN: opt < %s -O3 -mcpu=core-avx2 -S | FileCheck %s -check-prefix=AVX2
; RUN: opt < %s -O3 -mcpu=knl -S | FileCheck %s -check-prefix=AVX512
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc_linux"
; The source code:
;
;void foo(double *A, double *B, int *trigger) {
;
; for (int i=0; i<10000; i++) {
; if (trigger[i] < 100) {
; A[i] = B[i] + trigger[i];
; }
; }
;}
;AVX2: llvm.masked.load.v4f64
;AVX2: llvm.masked.store.v4f64
;AVX512: llvm.masked.load.v8f64
;AVX512: llvm.masked.store.v8f64
;AVX1-NOT: llvm.masked
; Function Attrs: nounwind uwtable
define void @foo(double* %A, double* %B, i32* %trigger) #0 {
entry:
%A.addr = alloca double*, align 8
%B.addr = alloca double*, align 8
%trigger.addr = alloca i32*, align 8
%i = alloca i32, align 4
store double* %A, double** %A.addr, align 8
store double* %B, double** %B.addr, align 8
store i32* %trigger, i32** %trigger.addr, align 8
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%0 = load i32* %i, align 4
%cmp = icmp slt i32 %0, 10000
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%1 = load i32* %i, align 4
%idxprom = sext i32 %1 to i64
%2 = load i32** %trigger.addr, align 8
%arrayidx = getelementptr inbounds i32* %2, i64 %idxprom
%3 = load i32* %arrayidx, align 4
%cmp1 = icmp slt i32 %3, 100
br i1 %cmp1, label %if.then, label %if.end
if.then: ; preds = %for.body
%4 = load i32* %i, align 4
%idxprom2 = sext i32 %4 to i64
%5 = load double** %B.addr, align 8
%arrayidx3 = getelementptr inbounds double* %5, i64 %idxprom2
%6 = load double* %arrayidx3, align 8
%7 = load i32* %i, align 4
%idxprom4 = sext i32 %7 to i64
%8 = load i32** %trigger.addr, align 8
%arrayidx5 = getelementptr inbounds i32* %8, i64 %idxprom4
%9 = load i32* %arrayidx5, align 4
%conv = sitofp i32 %9 to double
%add = fadd double %6, %conv
%10 = load i32* %i, align 4
%idxprom6 = sext i32 %10 to i64
%11 = load double** %A.addr, align 8
%arrayidx7 = getelementptr inbounds double* %11, i64 %idxprom6
store double %add, double* %arrayidx7, align 8
br label %if.end
if.end: ; preds = %if.then, %for.body
br label %for.inc
for.inc: ; preds = %if.end
%12 = load i32* %i, align 4
%inc = add nsw i32 %12, 1
store i32 %inc, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
ret void
}

View File

@ -0,0 +1,83 @@
; RUN: opt < %s -O3 -mcpu=corei7-avx -S | FileCheck %s -check-prefix=AVX1
; RUN: opt < %s -O3 -mcpu=core-avx2 -S | FileCheck %s -check-prefix=AVX2
; RUN: opt < %s -O3 -mcpu=knl -S | FileCheck %s -check-prefix=AVX512
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc_linux"
; The source code:
;
;void foo(double *A, double *B, int *trigger) {
;
; for (int i=0; i<10000; i++) {
; if (trigger[i] < 100) {
; A[i] = B[i*2] + trigger[i]; << non-cosecutive access
; }
; }
;}
;AVX2-NOT: llvm.masked
;AVX512-NOT: llvm.masked
;AVX1-NOT: llvm.masked
; Function Attrs: nounwind uwtable
define void @foo(double* %A, double* %B, i32* %trigger) {
entry:
%A.addr = alloca double*, align 8
%B.addr = alloca double*, align 8
%trigger.addr = alloca i32*, align 8
%i = alloca i32, align 4
store double* %A, double** %A.addr, align 8
store double* %B, double** %B.addr, align 8
store i32* %trigger, i32** %trigger.addr, align 8
store i32 0, i32* %i, align 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%0 = load i32* %i, align 4
%cmp = icmp slt i32 %0, 10000
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%1 = load i32* %i, align 4
%idxprom = sext i32 %1 to i64
%2 = load i32** %trigger.addr, align 8
%arrayidx = getelementptr inbounds i32* %2, i64 %idxprom
%3 = load i32* %arrayidx, align 4
%cmp1 = icmp slt i32 %3, 100
br i1 %cmp1, label %if.then, label %if.end
if.then: ; preds = %for.body
%4 = load i32* %i, align 4
%mul = mul nsw i32 %4, 2
%idxprom2 = sext i32 %mul to i64
%5 = load double** %B.addr, align 8
%arrayidx3 = getelementptr inbounds double* %5, i64 %idxprom2
%6 = load double* %arrayidx3, align 8
%7 = load i32* %i, align 4
%idxprom4 = sext i32 %7 to i64
%8 = load i32** %trigger.addr, align 8
%arrayidx5 = getelementptr inbounds i32* %8, i64 %idxprom4
%9 = load i32* %arrayidx5, align 4
%conv = sitofp i32 %9 to double
%add = fadd double %6, %conv
%10 = load i32* %i, align 4
%idxprom6 = sext i32 %10 to i64
%11 = load double** %A.addr, align 8
%arrayidx7 = getelementptr inbounds double* %11, i64 %idxprom6
store double %add, double* %arrayidx7, align 8
br label %if.end
if.end: ; preds = %if.then, %for.body
br label %for.inc
for.inc: ; preds = %if.end
%12 = load i32* %i, align 4
%inc = add nsw i32 %12, 1
store i32 %inc, i32* %i, align 4
br label %for.cond
for.end: ; preds = %for.cond
ret void
}

View File

@ -539,7 +539,8 @@ CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
!TyEl->isSubClassOf("LLVMTruncatedType")) ||
!TyEl->isSubClassOf("LLVMTruncatedType") &&
!TyEl->isSubClassOf("LLVMVectorSameWidth")) ||
VT == MVT::iAny || VT == MVT::vAny) &&
"Expected iAny or vAny type");
} else

View File

@ -257,7 +257,8 @@ enum IIT_Info {
IIT_ANYPTR = 26,
IIT_V1 = 27,
IIT_VARARG = 28,
IIT_HALF_VEC_ARG = 29
IIT_HALF_VEC_ARG = 29,
IIT_SAME_VEC_WIDTH_ARG = 30
};
@ -305,6 +306,13 @@ static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
Sig.push_back(IIT_TRUNC_ARG);
else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
Sig.push_back(IIT_HALF_VEC_ARG);
else if (R->isSubClassOf("LLVMVectorSameWidth")) {
Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
Sig.push_back((Number << 2) | ArgCodes[Number]);
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
EncodeFixedValueType(VT, Sig);
return;
}
else
Sig.push_back(IIT_ARG);
return Sig.push_back((Number << 2) | ArgCodes[Number]);