[RewriteStatepointsForGC] Make base pointer inference deterministic

Previously, the base pointer algorithm wasn't deterministic. The core fixed point was (of course), but we were inserting new nodes and optimizing them in an order which was unspecified and variable. We'd somewhat hacked around this for testing by sorting by value name, but that doesn't solve the general determinism problem.

Instead, we can use the order of traversal over the def/use graph to give us a single consistent ordering. Today, this is a DFS order, but the exact order doesn't mater provided it's deterministic for a given input.

(Q: It is safe to rely on a deterministic order of operands right?)

Note that this only fixes the determinism within a single inference step. The inference step is currently invoked many times in a non-deterministic order. That's a future change in the sequence. :)

Differential Revision: http://reviews.llvm.org/D12640



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247208 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Philip Reames 2015-09-09 23:26:08 +00:00
parent d77a329d71
commit b4f6a50926

View File

@ -21,6 +21,7 @@
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
@ -661,7 +662,6 @@ static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
#endif
namespace {
typedef DenseMap<Value *, BDVState> ConflictStateMapTy;
// Values of type BDVState form a lattice, and this is a helper
// class that implementes the meet operation. The meat of the meet
// operation is implemented in MeetBDVStates::pureMeet
@ -761,14 +761,17 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
// Once populated, will contain a mapping from each potentially non-base BDV
// to a lattice value (described above) which corresponds to that BDV.
ConflictStateMapTy states;
// Recursively fill in all phis & selects reachable from the initial one
// for which we don't already know a definite base value for
// We use the order of insertion (DFS over the def/use graph) to provide a
// stable deterministic ordering for visiting DenseMaps (which are unordered)
// below. This is important for deterministic compilation.
MapVector<Value *, BDVState> states;
// Recursively fill in all base defining values reachable from the initial
// one for which we don't already know a definite base value for
/* scope */ {
DenseSet<Value *> Visited;
SmallVector<Value*, 16> Worklist;
Worklist.push_back(def);
Visited.insert(def);
states.insert(std::make_pair(def, BDVState()));
while (!Worklist.empty()) {
Value *Current = Worklist.pop_back_val();
assert(!isKnownBaseResult(Current) && "why did it get added?");
@ -781,7 +784,7 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
return;
assert(isExpectedBDVType(Base) && "the only non-base values "
"we see should be base defining values");
if (Visited.insert(Base).second)
if (states.insert(std::make_pair(Base, BDVState())).second)
Worklist.push_back(Base);
};
if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
@ -799,12 +802,6 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
llvm_unreachable("unimplemented instruction case");
}
}
// The frontier of visited instructions are the ones we might need to
// duplicate, so fill in the starting state for the optimistic algorithm
// that follows.
for (Value *BDV : Visited) {
states[BDV] = BDVState();
}
}
#ifndef NDEBUG
@ -830,7 +827,10 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
size_t oldSize = states.size();
#endif
progress = false;
// We're only changing keys in this loop, thus safe to keep iterators
// We're only changing values in this loop, thus safe to keep iterators.
// Since this is computing a fixed point, the order of visit does not
// effect the result. TODO: We could use a worklist here and make this run
// much faster.
for (auto Pair : states) {
Value *v = Pair.first;
assert(!isKnownBaseResult(v) && "why did it get added?");
@ -856,7 +856,6 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
}
BDVState oldState = states[v];
BDVState newState = calculateMeet.getResult();
if (oldState != newState) {
@ -877,20 +876,10 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
#endif
// Insert Phis for all conflicts
// We want to keep naming deterministic in the loop that follows, so
// sort the keys before iteration. This is useful in allowing us to
// write stable tests. Note that there is no invalidation issue here.
SmallVector<Value *, 16> Keys;
Keys.reserve(states.size());
for (auto Pair : states) {
Value *V = Pair.first;
Keys.push_back(V);
}
std::sort(Keys.begin(), Keys.end(), order_by_name);
// TODO: adjust naming patterns to avoid this order of iteration dependency
for (Value *V : Keys) {
Instruction *I = cast<Instruction>(V);
BDVState State = states[I];
for (auto Pair : states) {
Instruction *I = cast<Instruction>(Pair.first);
BDVState State = Pair.second;
assert(!isKnownBaseResult(I) && "why did it get added?");
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
@ -974,7 +963,9 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
return Base;
};
// Fixup all the inputs of the new PHIs
// Fixup all the inputs of the new PHIs. Visit order needs to be
// deterministic and predictable because we're naming newly created
// instructions.
for (auto Pair : states) {
Instruction *v = cast<Instruction>(Pair.first);
BDVState state = Pair.second;
@ -1059,18 +1050,18 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
// Keys we sorted above for this purpose. Note that we are papering over a
// bigger problem with the algorithm above - it's visit order is not
// deterministic. A larger change is needed to fix this.
for (auto Key : Keys) {
Value *V = Key;
auto State = states[Key];
for (auto Pair : states) {
auto *BDV = Pair.first;
auto State = Pair.second;
Value *Base = State.getBase();
assert(V && Base);
assert(!isKnownBaseResult(V) && "why did it get added?");
assert(BDV && Base);
assert(!isKnownBaseResult(BDV) && "why did it get added?");
assert(isKnownBaseResult(Base) &&
"must be something we 'know' is a base pointer");
if (!State.isConflict())
continue;
ReverseMap[Base] = V;
ReverseMap[Base] = BDV;
if (auto *BaseI = dyn_cast<Instruction>(Base)) {
NewInsts.insert(BaseI);
Worklist.insert(BaseI);
@ -1113,26 +1104,26 @@ static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
// Cache all of our results so we can cheaply reuse them
// NOTE: This is actually two caches: one of the base defining value
// relation and one of the base pointer relation! FIXME
for (auto item : states) {
Value *v = item.first;
Value *base = item.second.getBase();
assert(v && base);
for (auto Pair : states) {
auto *BDV = Pair.first;
Value *base = Pair.second.getBase();
assert(BDV && base);
std::string fromstr =
cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
cache.count(BDV) ? (cache[BDV]->hasName() ? cache[BDV]->getName() : "")
: "none";
DEBUG(dbgs() << "Updating base value cache"
<< " for: " << (v->hasName() ? v->getName() : "")
<< " for: " << (BDV->hasName() ? BDV->getName() : "")
<< " from: " << fromstr
<< " to: " << (base->hasName() ? base->getName() : "") << "\n");
if (cache.count(v)) {
if (cache.count(BDV)) {
// Once we transition from the BDV relation being store in the cache to
// the base relation being stored, it must be stable
assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
"base relation should be stable");
}
cache[v] = base;
cache[BDV] = base;
}
assert(cache.find(def) != cache.end());
return cache[def];