Switch the loop vectorizer from VTTI to just use TTI directly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171620 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chandler Carruth 2013-01-05 10:16:02 +00:00
parent 194bd71b06
commit be73c7b903
2 changed files with 54 additions and 58 deletions

View File

@ -90,12 +90,8 @@ struct LoopVectorize : public LoopPass {
return false;
}
// Select the preffered vectorization factor.
const VectorTargetTransformInfo *VTTI = 0;
if (TTI)
VTTI = TTI->getVectorTargetTransformInfo();
// Use the cost model.
LoopVectorizationCostModel CM(L, SE, LI, &LVL, VTTI);
LoopVectorizationCostModel CM(L, SE, LI, &LVL, TTI);
// Check the function attribues to find out if this function should be
// optimized for size.
@ -2134,7 +2130,7 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
return UserVF;
}
if (!VTTI) {
if (!TTI) {
DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
return 1;
}
@ -2170,7 +2166,7 @@ LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
if (OptForSize)
return 1;
unsigned TargetVectorRegisters = VTTI->getNumberOfRegisters(true);
unsigned TargetVectorRegisters = TTI->getNumberOfRegisters(true);
DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
" vector registers\n");
@ -2345,7 +2341,7 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
assert(VTTI && "Invalid vector target transformation info");
assert(TTI && "Invalid vector target transformation info");
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
@ -2363,7 +2359,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// generate vector geps.
return 0;
case Instruction::Br: {
return VTTI->getCFInstrCost(I->getOpcode());
return TTI->getCFInstrCost(I->getOpcode());
}
case Instruction::PHI:
//TODO: IF-converted IFs become selects.
@ -2386,7 +2382,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
return TTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
@ -2395,13 +2391,13 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
if (ScalarCond)
CondTy = VectorType::get(CondTy, VF);
return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
return TTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
VectorTy = ToVectorTy(ValTy, VF);
return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
return TTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
}
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(I);
@ -2409,7 +2405,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
VectorTy = ToVectorTy(ValTy, VF);
if (VF == 1)
return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy,
return TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
@ -2422,36 +2418,36 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// The cost of extracting from the value vector and pointer vector.
Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
for (unsigned i = 0; i < VF; ++i) {
Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement,
VectorTy, i);
Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement,
PtrTy, i);
Cost += TTI->getVectorInstrCost(Instruction::ExtractElement,
VectorTy, i);
Cost += TTI->getVectorInstrCost(Instruction::ExtractElement,
PtrTy, i);
}
// The cost of the scalar stores.
Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
ValTy->getScalarType(),
Cost += VF * TTI->getMemoryOpCost(I->getOpcode(),
ValTy->getScalarType(),
SI->getAlignment(),
SI->getPointerAddressSpace());
return Cost;
}
// Wide stores.
unsigned Cost = VTTI->getMemoryOpCost(I->getOpcode(), VectorTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
unsigned Cost = TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
if (Reverse)
Cost += VTTI->getShuffleCost(VectorTargetTransformInfo::Reverse,
VectorTy, 0);
Cost += TTI->getShuffleCost(TargetTransformInfo::Reverse,
VectorTy, 0);
return Cost;
}
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
if (VF == 1)
return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy,
LI->getAlignment(),
LI->getPointerAddressSpace());
return TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
LI->getAlignment(),
LI->getPointerAddressSpace());
// Scalarized loads.
int Stride = Legal->isConsecutivePtr(LI->getPointerOperand());
@ -2462,29 +2458,29 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// The cost of extracting from the pointer vector.
for (unsigned i = 0; i < VF; ++i)
Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement,
PtrTy, i);
Cost += TTI->getVectorInstrCost(Instruction::ExtractElement,
PtrTy, i);
// The cost of inserting data to the result vector.
for (unsigned i = 0; i < VF; ++i)
Cost += VTTI->getVectorInstrCost(Instruction::InsertElement,
VectorTy, i);
Cost += TTI->getVectorInstrCost(Instruction::InsertElement,
VectorTy, i);
// The cost of the scalar stores.
Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
RetTy->getScalarType(),
LI->getAlignment(),
LI->getPointerAddressSpace());
Cost += VF * TTI->getMemoryOpCost(I->getOpcode(),
RetTy->getScalarType(),
LI->getAlignment(),
LI->getPointerAddressSpace());
return Cost;
}
// Wide loads.
unsigned Cost = VTTI->getMemoryOpCost(I->getOpcode(), VectorTy,
LI->getAlignment(),
LI->getPointerAddressSpace());
unsigned Cost = TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
LI->getAlignment(),
LI->getPointerAddressSpace());
if (Reverse)
Cost += VTTI->getShuffleCost(VectorTargetTransformInfo::Reverse,
VectorTy, 0);
Cost += TTI->getShuffleCost(TargetTransformInfo::Reverse,
VectorTy, 0);
return Cost;
}
case Instruction::ZExt:
@ -2503,11 +2499,11 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// The cost of these is the same as the scalar operation.
if (I->getOpcode() == Instruction::Trunc &&
Legal->isInductionVariable(I->getOperand(0)))
return VTTI->getCastInstrCost(I->getOpcode(), I->getType(),
I->getOperand(0)->getType());
return TTI->getCastInstrCost(I->getOpcode(), I->getType(),
I->getOperand(0)->getType());
Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
return TTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
}
case Instruction::Call: {
assert(isTriviallyVectorizableIntrinsic(I));
@ -2516,7 +2512,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
SmallVector<Type*, 4> Tys;
for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
return VTTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
}
default: {
// We are scalarizing the instruction. Return the cost of the scalar
@ -2525,10 +2521,10 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
unsigned Cost = 0;
if (!RetTy->isVoidTy() && VF != 1) {
unsigned InsCost = VTTI->getVectorInstrCost(Instruction::InsertElement,
VectorTy);
unsigned ExtCost = VTTI->getVectorInstrCost(Instruction::ExtractElement,
VectorTy);
unsigned InsCost = TTI->getVectorInstrCost(Instruction::InsertElement,
VectorTy);
unsigned ExtCost = TTI->getVectorInstrCost(Instruction::ExtractElement,
VectorTy);
// The cost of inserting the results plus extracting each one of the
// operands.
@ -2537,7 +2533,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// The cost of executing VF copies of the scalar instruction. This opcode
// is unknown. Assume that it is the same as 'mul'.
Cost += VF * VTTI->getArithmeticInstrCost(Instruction::Mul, VectorTy);
Cost += VF * TTI->getArithmeticInstrCost(Instruction::Mul, VectorTy);
return Cost;
}
}// end of switch.

View File

@ -76,7 +76,7 @@ namespace llvm {
// Forward declarations.
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class VectorTargetTransformInfo;
class TargetTransformInfo;
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
@ -468,18 +468,18 @@ private:
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because
/// of a number of reasons. In this class we mainly attempt to predict
/// the expected speedup/slowdowns due to the supported instruction set.
/// We use the VectorTargetTransformInfo to query the different backends
/// for the cost of different operations.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
/// C'tor.
LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se, LoopInfo *Li,
LoopVectorizationLegality *Leg,
const VectorTargetTransformInfo *Vtti):
TheLoop(Lp), SE(Se), LI(Li), Legal(Leg), VTTI(Vtti) { }
const TargetTransformInfo *Tti):
TheLoop(Lp), SE(Se), LI(Li), Legal(Leg), TTI(Tti) { }
/// \return The most profitable vectorization factor.
/// This method checks every power of two up to VF. If UserVF is not ZERO
@ -532,7 +532,7 @@ private:
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const VectorTargetTransformInfo *VTTI;
const TargetTransformInfo *TTI;
};
}// namespace llvm