From bf48d8ae51e9eff282c2b26226aa11e577ea76a2 Mon Sep 17 00:00:00 2001 From: Sebastian Pop Date: Tue, 27 May 2014 22:41:56 +0000 Subject: [PATCH] do not use the GCD to compute the delinearization strides We do not need to compute the GCD anymore after we removed the constant coefficients from the terms: the terms are now all parametric expressions and there is no need to recognize constant terms that divide only a subset of the terms. We only rely on the size of the terms, i.e., the number of operands in the multiply expressions, to sort the terms and recognize the parametric dimensions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209693 91177308-0d34-0410-b5e6-96231b3b80d8 --- lib/Analysis/ScalarEvolution.cpp | 67 ++++---------------------------- 1 file changed, 8 insertions(+), 59 deletions(-) diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp index 35a825ad056..4d85948489d 100644 --- a/lib/Analysis/ScalarEvolution.cpp +++ b/lib/Analysis/ScalarEvolution.cpp @@ -7211,82 +7211,31 @@ private: }; } -// Find the Greatest Common Divisor of A and B. -static const SCEV * -findGCD(ScalarEvolution &SE, const SCEV *A, const SCEV *B) { - - if (const SCEVConstant *CA = dyn_cast(A)) - if (const SCEVConstant *CB = dyn_cast(B)) - return SE.getConstant(gcd(CA, CB)); - - const SCEV *One = SE.getConstant(A->getType(), 1); - if (isa(A) && isa(B)) - return One; - if (isa(A) && isa(B)) - return One; - - const SCEV *Q, *R; - if (const SCEVMulExpr *M = dyn_cast(A)) { - SmallVector Qs; - for (const SCEV *Op : M->operands()) - Qs.push_back(findGCD(SE, Op, B)); - return SE.getMulExpr(Qs); - } - if (const SCEVMulExpr *M = dyn_cast(B)) { - SmallVector Qs; - for (const SCEV *Op : M->operands()) - Qs.push_back(findGCD(SE, A, Op)); - return SE.getMulExpr(Qs); - } - - SCEVDivision::divide(SE, A, B, &Q, &R); - if (R->isZero()) - return B; - - SCEVDivision::divide(SE, B, A, &Q, &R); - if (R->isZero()) - return A; - - return One; -} - -// Find the Greatest Common Divisor of all the SCEVs in Terms. -static const SCEV * -findGCD(ScalarEvolution &SE, SmallVectorImpl &Terms) { - assert(Terms.size() > 0 && "Terms vector is empty"); - - const SCEV *GCD = Terms[0]; - for (const SCEV *T : Terms) - GCD = findGCD(SE, GCD, T); - - return GCD; -} - static bool findArrayDimensionsRec(ScalarEvolution &SE, SmallVectorImpl &Terms, SmallVectorImpl &Sizes) { - // The GCD of all Terms is the dimension of the innermost dimension. - const SCEV *GCD = findGCD(SE, Terms); + int Last = Terms.size() - 1; + const SCEV *Step = Terms[Last]; // End of recursion. - if (Terms.size() == 1) { - if (const SCEVMulExpr *M = dyn_cast(GCD)) { + if (Last == 0) { + if (const SCEVMulExpr *M = dyn_cast(Step)) { SmallVector Qs; for (const SCEV *Op : M->operands()) if (!isa(Op)) Qs.push_back(Op); - GCD = SE.getMulExpr(Qs); + Step = SE.getMulExpr(Qs); } - Sizes.push_back(GCD); + Sizes.push_back(Step); return true; } for (const SCEV *&Term : Terms) { // Normalize the terms before the next call to findArrayDimensionsRec. const SCEV *Q, *R; - SCEVDivision::divide(SE, Term, GCD, &Q, &R); + SCEVDivision::divide(SE, Term, Step, &Q, &R); // Bail out when GCD does not evenly divide one of the terms. if (!R->isZero()) @@ -7305,7 +7254,7 @@ static bool findArrayDimensionsRec(ScalarEvolution &SE, if (!findArrayDimensionsRec(SE, Terms, Sizes)) return false; - Sizes.push_back(GCD); + Sizes.push_back(Step); return true; }