[Hexagon] Enabling ASM parsing on Hexagon backend and adding instruction parsing tests. General updating of the code emission.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252443 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Colin LeMahieu 2015-11-09 04:07:48 +00:00
parent dd77c4496e
commit c0aef701cc
62 changed files with 8731 additions and 781 deletions

View File

@ -0,0 +1,7 @@
include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
add_llvm_library(LLVMHexagonAsmParser
HexagonAsmParser.cpp
)
add_dependencies( LLVMHexagonAsmParser HexagonCommonTableGen )

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,23 @@
;===- ./lib/Target/Hexagon/AsmParser/LLVMBuild.txt --------------*- Conf -*-===;
;
; The LLVM Compiler Infrastructure
;
; This file is distributed under the University of Illinois Open Source
; License. See LICENSE.TXT for details.
;
;===------------------------------------------------------------------------===;
;
; This is an LLVMBuild description file for the components in this subdirectory.
;
; For more information on the LLVMBuild system, please see:
;
; http://llvm.org/docs/LLVMBuild.html
;
;===------------------------------------------------------------------------===;
[component_0]
type = Library
name = HexagonAsmParser
parent = Hexagon
required_libraries = MC MCParser Support HexagonDesc HexagonInfo
add_to_library_groups = Hexagon

View File

@ -0,0 +1,15 @@
##===- lib/Target/Hexagon/AsmParser/Makefile ------------------*- Makefile -*-===##
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
##===----------------------------------------------------------------------===##
LEVEL = ../../../..
LIBRARYNAME = LLVMHexagonAsmParser
# Hack: we need to include 'main' Hexagon target directory to grab private headers
CPP.Flags += -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
include $(LEVEL)/Makefile.common

View File

@ -1,5 +1,6 @@
set(LLVM_TARGET_DEFINITIONS Hexagon.td)
tablegen(LLVM HexagonGenAsmMatcher.inc -gen-asm-matcher)
tablegen(LLVM HexagonGenAsmWriter.inc -gen-asm-writer)
tablegen(LLVM HexagonGenCallingConv.inc -gen-callingconv)
tablegen(LLVM HexagonGenDAGISel.inc -gen-dag-isel)
@ -50,6 +51,7 @@ add_llvm_target(HexagonCodeGen
HexagonVLIWPacketizer.cpp
)
add_subdirectory(AsmParser)
add_subdirectory(TargetInfo)
add_subdirectory(MCTargetDesc)
add_subdirectory(Disassembler)

File diff suppressed because it is too large Load Diff

View File

@ -19,5 +19,5 @@
type = Library
name = HexagonDisassembler
parent = Hexagon
required_libraries = HexagonDesc HexagonInfo MCDisassembler Support
required_libraries = HexagonDesc HexagonInfo MC MCDisassembler Support
add_to_library_groups = Hexagon

View File

@ -30,6 +30,9 @@ def ArchV60: SubtargetFeature<"v60", "HexagonArchVersion", "V60", "Hexagon V60">
// Hexagon ISA Extensions
def ExtensionHVX: SubtargetFeature<"hvx", "UseHVXOps",
"true", "Hexagon HVX instructions">;
def ExtensionHVXDbl: SubtargetFeature<"hvxDbl", "UseHVXDblOps",
"true", "Hexagon HVX Double instructions">;
//===----------------------------------------------------------------------===//
// Hexagon Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
@ -212,7 +215,13 @@ def : Proc<"hexagonv5", HexagonModelV4,
// Declare the target which we are implementing
//===----------------------------------------------------------------------===//
def HexagonAsmParserVariant : AsmParserVariant {
int Variant = 0;
string TokenizingCharacters = "#()=:.<>!+*";
}
def Hexagon : Target {
// Pull in Instruction Info:
let InstructionSet = HexagonInstrInfo;
let AssemblyParserVariants = [HexagonAsmParserVariant];
}

View File

@ -73,11 +73,14 @@ void llvm::HexagonLowerToMC(MachineInstr const* MI, MCInst& MCB,
APFloat Val = MO.getFPImm()->getValueAPF();
// FP immediates are used only when setting GPRs, so they may be dealt
// with like regular immediates from this point on.
MCO = MCOperand::createImm(*Val.bitcastToAPInt().getRawData());
MCO = MCOperand::createExpr(
MCConstantExpr::create(*Val.bitcastToAPInt().getRawData(),
AP.OutContext));
break;
}
case MachineOperand::MO_Immediate:
MCO = MCOperand::createImm(MO.getImm());
MCO = MCOperand::createExpr(
MCConstantExpr::create(MO.getImm(), AP.OutContext));
break;
case MachineOperand::MO_MachineBasicBlock:
MCO = MCOperand::createExpr

View File

@ -1,4 +1,4 @@
//===- HexagonOperands.td - Hexagon immediate processing -*- tablegen -*-===//
//===- HexagonImmediates.td - Hexagon immediate processing -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
@ -7,57 +7,100 @@
//
//===----------------------------------------------------------------------===//
def s32ImmOperand : AsmOperandClass { let Name = "s32Imm"; }
def s8ImmOperand : AsmOperandClass { let Name = "s8Imm"; }
def s8Imm64Operand : AsmOperandClass { let Name = "s8Imm64"; }
def s6ImmOperand : AsmOperandClass { let Name = "s6Imm"; }
def s4ImmOperand : AsmOperandClass { let Name = "s4Imm"; }
def s4_0ImmOperand : AsmOperandClass { let Name = "s4_0Imm"; }
def s4_1ImmOperand : AsmOperandClass { let Name = "s4_1Imm"; }
def s4_2ImmOperand : AsmOperandClass { let Name = "s4_2Imm"; }
def s4_3ImmOperand : AsmOperandClass { let Name = "s4_3Imm"; }
def s4_6ImmOperand : AsmOperandClass { let Name = "s4_6Imm"; }
def s3_6ImmOperand : AsmOperandClass { let Name = "s3_6Imm"; }
def u64ImmOperand : AsmOperandClass { let Name = "u64Imm"; }
def u32ImmOperand : AsmOperandClass { let Name = "u32Imm"; }
def u26_6ImmOperand : AsmOperandClass { let Name = "u26_6Imm"; }
def u16ImmOperand : AsmOperandClass { let Name = "u16Imm"; }
def u16_0ImmOperand : AsmOperandClass { let Name = "u16_0Imm"; }
def u16_1ImmOperand : AsmOperandClass { let Name = "u16_1Imm"; }
def u16_2ImmOperand : AsmOperandClass { let Name = "u16_2Imm"; }
def u16_3ImmOperand : AsmOperandClass { let Name = "u16_3Imm"; }
def u11_3ImmOperand : AsmOperandClass { let Name = "u11_3Imm"; }
def u10ImmOperand : AsmOperandClass { let Name = "u10Imm"; }
def u9ImmOperand : AsmOperandClass { let Name = "u9Imm"; }
def u8ImmOperand : AsmOperandClass { let Name = "u8Imm"; }
def u7ImmOperand : AsmOperandClass { let Name = "u7Imm"; }
def u6ImmOperand : AsmOperandClass { let Name = "u6Imm"; }
def u6_0ImmOperand : AsmOperandClass { let Name = "u6_0Imm"; }
def u6_1ImmOperand : AsmOperandClass { let Name = "u6_1Imm"; }
def u6_2ImmOperand : AsmOperandClass { let Name = "u6_2Imm"; }
def u6_3ImmOperand : AsmOperandClass { let Name = "u6_3Imm"; }
def u5ImmOperand : AsmOperandClass { let Name = "u5Imm"; }
def u4ImmOperand : AsmOperandClass { let Name = "u4Imm"; }
def u3ImmOperand : AsmOperandClass { let Name = "u3Imm"; }
def u2ImmOperand : AsmOperandClass { let Name = "u2Imm"; }
def u1ImmOperand : AsmOperandClass { let Name = "u1Imm"; }
def n8ImmOperand : AsmOperandClass { let Name = "n8Imm"; }
// Immediate operands.
let PrintMethod = "printImmOperand" in {
def s32Imm : Operand<i32>;
def s8Imm : Operand<i32>;
def s8Imm64 : Operand<i64>;
def s6Imm : Operand<i32>;
let OperandType = "OPERAND_IMMEDIATE",
DecoderMethod = "unsignedImmDecoder" in {
def s32Imm : Operand<i32> { let ParserMatchClass = s32ImmOperand;
let DecoderMethod = "s32ImmDecoder"; }
def s8Imm : Operand<i32> { let ParserMatchClass = s8ImmOperand;
let DecoderMethod = "s8ImmDecoder"; }
def s8Imm64 : Operand<i64> { let ParserMatchClass = s8Imm64Operand;
let DecoderMethod = "s8ImmDecoder"; }
def s6Imm : Operand<i32> { let ParserMatchClass = s6ImmOperand;
let DecoderMethod = "s6_0ImmDecoder"; }
def s6_3Imm : Operand<i32>;
def s4Imm : Operand<i32>;
def s4_0Imm : Operand<i32> { let DecoderMethod = "s4_0ImmDecoder"; }
def s4_1Imm : Operand<i32> { let DecoderMethod = "s4_1ImmDecoder"; }
def s4_2Imm : Operand<i32> { let DecoderMethod = "s4_2ImmDecoder"; }
def s4_3Imm : Operand<i32> { let DecoderMethod = "s4_3ImmDecoder"; }
def u64Imm : Operand<i64>;
def u32Imm : Operand<i32>;
def u26_6Imm : Operand<i32>;
def u16Imm : Operand<i32>;
def u16_0Imm : Operand<i32>;
def u16_1Imm : Operand<i32>;
def u16_2Imm : Operand<i32>;
def u16_3Imm : Operand<i32>;
def u11_3Imm : Operand<i32>;
def u10Imm : Operand<i32>;
def u9Imm : Operand<i32>;
def u8Imm : Operand<i32>;
def u7Imm : Operand<i32>;
def u6Imm : Operand<i32>;
def u6_0Imm : Operand<i32>;
def u6_1Imm : Operand<i32>;
def u6_2Imm : Operand<i32>;
def u6_3Imm : Operand<i32>;
def u5Imm : Operand<i32>;
def s4Imm : Operand<i32> { let ParserMatchClass = s4ImmOperand;
let DecoderMethod = "s4_0ImmDecoder"; }
def s4_0Imm : Operand<i32> { let ParserMatchClass = s4_0ImmOperand;
let DecoderMethod = "s4_0ImmDecoder"; }
def s4_1Imm : Operand<i32> { let ParserMatchClass = s4_1ImmOperand;
let DecoderMethod = "s4_1ImmDecoder"; }
def s4_2Imm : Operand<i32> { let ParserMatchClass = s4_2ImmOperand;
let DecoderMethod = "s4_2ImmDecoder"; }
def s4_3Imm : Operand<i32> { let ParserMatchClass = s4_3ImmOperand;
let DecoderMethod = "s4_3ImmDecoder"; }
def u64Imm : Operand<i64> { let ParserMatchClass = u64ImmOperand; }
def u32Imm : Operand<i32> { let ParserMatchClass = u32ImmOperand; }
def u26_6Imm : Operand<i32> { let ParserMatchClass = u26_6ImmOperand; }
def u16Imm : Operand<i32> { let ParserMatchClass = u16ImmOperand; }
def u16_0Imm : Operand<i32> { let ParserMatchClass = u16_0ImmOperand; }
def u16_1Imm : Operand<i32> { let ParserMatchClass = u16_1ImmOperand; }
def u16_2Imm : Operand<i32> { let ParserMatchClass = u16_2ImmOperand; }
def u16_3Imm : Operand<i32> { let ParserMatchClass = u16_3ImmOperand; }
def u11_3Imm : Operand<i32> { let ParserMatchClass = u11_3ImmOperand; }
def u10Imm : Operand<i32> { let ParserMatchClass = u10ImmOperand; }
def u9Imm : Operand<i32> { let ParserMatchClass = u9ImmOperand; }
def u8Imm : Operand<i32> { let ParserMatchClass = u8ImmOperand; }
def u7Imm : Operand<i32> { let ParserMatchClass = u7ImmOperand; }
def u6Imm : Operand<i32> { let ParserMatchClass = u6ImmOperand; }
def u6_0Imm : Operand<i32> { let ParserMatchClass = u6_0ImmOperand; }
def u6_1Imm : Operand<i32> { let ParserMatchClass = u6_1ImmOperand; }
def u6_2Imm : Operand<i32> { let ParserMatchClass = u6_2ImmOperand; }
def u6_3Imm : Operand<i32> { let ParserMatchClass = u6_3ImmOperand; }
def u5Imm : Operand<i32> { let ParserMatchClass = u5ImmOperand; }
def u5_0Imm : Operand<i32>;
def u5_1Imm : Operand<i32>;
def u5_2Imm : Operand<i32>;
def u5_3Imm : Operand<i32>;
def u4Imm : Operand<i32>;
def u4Imm : Operand<i32> { let ParserMatchClass = u4ImmOperand; }
def u4_0Imm : Operand<i32>;
def u4_1Imm : Operand<i32>;
def u4_2Imm : Operand<i32>;
def u3Imm : Operand<i32>;
def u4_3Imm : Operand<i32>;
def u3Imm : Operand<i32> { let ParserMatchClass = u3ImmOperand; }
def u3_0Imm : Operand<i32>;
def u3_1Imm : Operand<i32>;
def u2Imm : Operand<i32>;
def u1Imm : Operand<i32>;
def n8Imm : Operand<i32>;
def m6Imm : Operand<i32>;
def u3_2Imm : Operand<i32>;
def u3_3Imm : Operand<i32>;
def u2Imm : Operand<i32> { let ParserMatchClass = u2ImmOperand; }
def u1Imm : Operand<i32> { let ParserMatchClass = u1ImmOperand; }
def n8Imm : Operand<i32> { let ParserMatchClass = n8ImmOperand; }
}
let OperandType = "OPERAND_IMMEDIATE" in {
@ -73,9 +116,6 @@ let OperandType = "OPERAND_IMMEDIATE" in {
let DecoderMethod = "s3_6ImmDecoder";}
}
let PrintMethod = "printNOneImmOperand" in
def nOneImm : Operand<i32>;
//
// Immediate predicates
//
@ -169,7 +209,6 @@ def s4_3ImmPred : PatLeaf<(i32 imm), [{
return isShiftedInt<4,3>(v);
}]>;
def u64ImmPred : PatLeaf<(i64 imm), [{
// Adding "N ||" to suppress gcc unused warning.
return (N || true);
@ -225,6 +264,11 @@ def u11_3ImmPred : PatLeaf<(i32 imm), [{
return isShiftedUInt<11,3>(v);
}]>;
def u10ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<10>(v);
}]>;
def u9ImmPred : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<9>(v);
@ -296,6 +340,11 @@ def u1ImmPred : PatLeaf<(i1 imm), [{
return isUInt<1>(v);
}]>;
def u1ImmPred32 : PatLeaf<(i32 imm), [{
int64_t v = (int64_t)N->getSExtValue();
return isUInt<1>(v);
}]>;
def m5BImmPred : PatLeaf<(i32 imm), [{
// m5BImmPred predicate - True if the (char) number is in range -1 .. -31
// and will fit in a 5 bit field when made positive, for use in memops.
@ -408,29 +457,65 @@ def SetClr3ImmPred : PatLeaf<(i32 imm), [{
// Extendable immediate operands.
def f32ExtOperand : AsmOperandClass { let Name = "f32Ext"; }
def s16ExtOperand : AsmOperandClass { let Name = "s16Ext"; }
def s12ExtOperand : AsmOperandClass { let Name = "s12Ext"; }
def s10ExtOperand : AsmOperandClass { let Name = "s10Ext"; }
def s9ExtOperand : AsmOperandClass { let Name = "s9Ext"; }
def s8ExtOperand : AsmOperandClass { let Name = "s8Ext"; }
def s7ExtOperand : AsmOperandClass { let Name = "s7Ext"; }
def s6ExtOperand : AsmOperandClass { let Name = "s6Ext"; }
def s11_0ExtOperand : AsmOperandClass { let Name = "s11_0Ext"; }
def s11_1ExtOperand : AsmOperandClass { let Name = "s11_1Ext"; }
def s11_2ExtOperand : AsmOperandClass { let Name = "s11_2Ext"; }
def s11_3ExtOperand : AsmOperandClass { let Name = "s11_3Ext"; }
def u6ExtOperand : AsmOperandClass { let Name = "u6Ext"; }
def u7ExtOperand : AsmOperandClass { let Name = "u7Ext"; }
def u8ExtOperand : AsmOperandClass { let Name = "u8Ext"; }
def u9ExtOperand : AsmOperandClass { let Name = "u9Ext"; }
def u10ExtOperand : AsmOperandClass { let Name = "u10Ext"; }
def u6_0ExtOperand : AsmOperandClass { let Name = "u6_0Ext"; }
def u6_1ExtOperand : AsmOperandClass { let Name = "u6_1Ext"; }
def u6_2ExtOperand : AsmOperandClass { let Name = "u6_2Ext"; }
def u6_3ExtOperand : AsmOperandClass { let Name = "u6_3Ext"; }
def u32MustExtOperand : AsmOperandClass { let Name = "u32MustExt"; }
let PrintMethod = "printExtOperand" in {
def f32Ext : Operand<f32>;
def s16Ext : Operand<i32> { let DecoderMethod = "s16ImmDecoder"; }
def s12Ext : Operand<i32> { let DecoderMethod = "s12ImmDecoder"; }
def s11_0Ext : Operand<i32> { let DecoderMethod = "s11_0ImmDecoder"; }
def s11_1Ext : Operand<i32> { let DecoderMethod = "s11_1ImmDecoder"; }
def s11_2Ext : Operand<i32> { let DecoderMethod = "s11_2ImmDecoder"; }
def s11_3Ext : Operand<i32> { let DecoderMethod = "s11_3ImmDecoder"; }
def s10Ext : Operand<i32> { let DecoderMethod = "s10ImmDecoder"; }
def s9Ext : Operand<i32> { let DecoderMethod = "s90ImmDecoder"; }
def s8Ext : Operand<i32> { let DecoderMethod = "s8ImmDecoder"; }
def s7Ext : Operand<i32>;
def s6Ext : Operand<i32> { let DecoderMethod = "s6_0ImmDecoder"; }
def u6Ext : Operand<i32>;
def u7Ext : Operand<i32>;
def u8Ext : Operand<i32>;
def u9Ext : Operand<i32>;
def u10Ext : Operand<i32>;
def u6_0Ext : Operand<i32>;
def u6_1Ext : Operand<i32>;
def u6_2Ext : Operand<i32>;
def u6_3Ext : Operand<i32>;
let OperandType = "OPERAND_IMMEDIATE", PrintMethod = "printExtOperand",
DecoderMethod = "unsignedImmDecoder" in {
def f32Ext : Operand<f32> { let ParserMatchClass = f32ExtOperand; }
def s16Ext : Operand<i32> { let ParserMatchClass = s16ExtOperand;
let DecoderMethod = "s16ImmDecoder"; }
def s12Ext : Operand<i32> { let ParserMatchClass = s12ExtOperand;
let DecoderMethod = "s12ImmDecoder"; }
def s11_0Ext : Operand<i32> { let ParserMatchClass = s11_0ExtOperand;
let DecoderMethod = "s11_0ImmDecoder"; }
def s11_1Ext : Operand<i32> { let ParserMatchClass = s11_1ExtOperand;
let DecoderMethod = "s11_1ImmDecoder"; }
def s11_2Ext : Operand<i32> { let ParserMatchClass = s11_2ExtOperand;
let DecoderMethod = "s11_2ImmDecoder"; }
def s11_3Ext : Operand<i32> { let ParserMatchClass = s11_3ExtOperand;
let DecoderMethod = "s11_3ImmDecoder"; }
def s10Ext : Operand<i32> { let ParserMatchClass = s10ExtOperand;
let DecoderMethod = "s10ImmDecoder"; }
def s9Ext : Operand<i32> { let ParserMatchClass = s9ExtOperand;
let DecoderMethod = "s90ImmDecoder"; }
def s8Ext : Operand<i32> { let ParserMatchClass = s8ExtOperand;
let DecoderMethod = "s8ImmDecoder"; }
def s7Ext : Operand<i32> { let ParserMatchClass = s7ExtOperand; }
def s6Ext : Operand<i32> { let ParserMatchClass = s6ExtOperand;
let DecoderMethod = "s6_0ImmDecoder"; }
def u6Ext : Operand<i32> { let ParserMatchClass = u6ExtOperand; }
def u7Ext : Operand<i32> { let ParserMatchClass = u7ExtOperand; }
def u8Ext : Operand<i32> { let ParserMatchClass = u8ExtOperand; }
def u9Ext : Operand<i32> { let ParserMatchClass = u9ExtOperand; }
def u10Ext : Operand<i32> { let ParserMatchClass = u10ExtOperand; }
def u6_0Ext : Operand<i32> { let ParserMatchClass = u6_0ExtOperand; }
def u6_1Ext : Operand<i32> { let ParserMatchClass = u6_1ExtOperand; }
def u6_2Ext : Operand<i32> { let ParserMatchClass = u6_2ExtOperand; }
def u6_3Ext : Operand<i32> { let ParserMatchClass = u6_3ExtOperand; }
def u32MustExt : Operand<i32> { let ParserMatchClass = u32MustExtOperand; }
}
@ -492,21 +577,21 @@ let PrintMethod = "printGlobalOperand" in {
let PrintMethod = "printJumpTable" in
def jumptablebase : Operand<i32>;
def brtarget : Operand<OtherVT>;
def brtargetExt : Operand<OtherVT> {
let PrintMethod = "printExtBrtarget";
def brtarget : Operand<OtherVT> {
let DecoderMethod = "brtargetDecoder";
let PrintMethod = "printBrtarget";
}
def brtargetExt : Operand<OtherVT> {
let DecoderMethod = "brtargetDecoder";
let PrintMethod = "printBrtarget";
}
def calltarget : Operand<i32> {
let DecoderMethod = "brtargetDecoder";
let PrintMethod = "printBrtarget";
}
def calltarget : Operand<i32>;
def bblabel : Operand<i32>;
def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">;
def symbolHi32 : Operand<i32> {
let PrintMethod = "printSymbolHi";
}
def symbolLo32 : Operand<i32> {
let PrintMethod = "printSymbolLo";
}
def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf, [], "BasicBlockSDNode">;
// Return true if for a 32 to 64-bit sign-extended load.
def is_sext_i32 : PatLeaf<(i64 DoubleRegs:$src1), [{

View File

@ -137,20 +137,21 @@ let Namespace = "Hexagon" in {
def LC1 : Rc<3, "lc1", ["c3"]>, DwarfRegNum<[70]>;
def P3_0 : Rc<4, "p3:0", ["c4"], [P0, P1, P2, P3]>,
DwarfRegNum<[71]>;
def C6 : Rc<6, "c6", [], [M0]>, DwarfRegNum<[72]>;
def C7 : Rc<7, "c7", [], [M1]>, DwarfRegNum<[73]>;
def C5 : Rc<5, "c5", ["c5"]>, DwarfRegNum<[72]>; // future use
def C6 : Rc<6, "c6", [], [M0]>, DwarfRegNum<[73]>;
def C7 : Rc<7, "c7", [], [M1]>, DwarfRegNum<[74]>;
def USR : Rc<8, "usr", ["c8"]>, DwarfRegNum<[74]> {
def USR : Rc<8, "usr", ["c8"]>, DwarfRegNum<[75]> {
let SubRegIndices = [subreg_overflow];
let SubRegs = [USR_OVF];
}
def PC : Rc<9, "pc">, DwarfRegNum<[75]>;
def UGP : Rc<10, "ugp", ["c10"]>, DwarfRegNum<[76]>;
def GP : Rc<11, "gp">, DwarfRegNum<[77]>;
def CS0 : Rc<12, "cs0", ["c12"]>, DwarfRegNum<[78]>;
def CS1 : Rc<13, "cs1", ["c13"]>, DwarfRegNum<[79]>;
def UPCL : Rc<14, "upcyclelo", ["c14"]>, DwarfRegNum<[80]>;
def UPCH : Rc<15, "upcyclehi", ["c15"]>, DwarfRegNum<[81]>;
def PC : Rc<9, "pc">, DwarfRegNum<[76]>;
def UGP : Rc<10, "ugp", ["c10"]>, DwarfRegNum<[77]>;
def GP : Rc<11, "gp">, DwarfRegNum<[78]>;
def CS0 : Rc<12, "cs0", ["c12"]>, DwarfRegNum<[79]>;
def CS1 : Rc<13, "cs1", ["c13"]>, DwarfRegNum<[80]>;
def UPCL : Rc<14, "upcyclelo", ["c14"]>, DwarfRegNum<[81]>;
def UPCH : Rc<15, "upcyclehi", ["c15"]>, DwarfRegNum<[82]>;
}
// Control registers pairs.

View File

@ -16,7 +16,7 @@
;===------------------------------------------------------------------------===;
[common]
subdirectories = Disassembler MCTargetDesc TargetInfo
subdirectories = AsmParser Disassembler MCTargetDesc TargetInfo
[component_0]
type = TargetGroup

View File

@ -3,10 +3,12 @@ add_llvm_library(LLVMHexagonDesc
HexagonELFObjectWriter.cpp
HexagonInstPrinter.cpp
HexagonMCAsmInfo.cpp
HexagonMCChecker.cpp
HexagonMCCodeEmitter.cpp
HexagonMCCompound.cpp
HexagonMCDuplexInfo.cpp
HexagonMCELFStreamer.cpp
HexagonMCExpr.cpp
HexagonMCInstrInfo.cpp
HexagonMCShuffler.cpp
HexagonMCTargetDesc.cpp

View File

@ -44,6 +44,25 @@ namespace HexagonII {
TypeMEMOP = 9,
TypeNV = 10,
TypeDUPLEX = 11,
TypeCOMPOUND = 12,
TypeCVI_FIRST = 13,
TypeCVI_VA = TypeCVI_FIRST,
TypeCVI_VA_DV = 14,
TypeCVI_VX = 15,
TypeCVI_VX_DV = 16,
TypeCVI_VP = 17,
TypeCVI_VP_VS = 18,
TypeCVI_VS = 19,
TypeCVI_VINLANESAT= 20,
TypeCVI_VM_LD = 21,
TypeCVI_VM_TMP_LD = 22,
TypeCVI_VM_CUR_LD = 23,
TypeCVI_VM_VP_LDU = 24,
TypeCVI_VM_ST = 25,
TypeCVI_VM_NEW_ST = 26,
TypeCVI_VM_STU = 27,
TypeCVI_HIST = 28,
TypeCVI_LAST = TypeCVI_HIST,
TypePREFIX = 30, // Such as extenders.
TypeENDLOOP = 31 // Such as end of a HW loop.
};
@ -164,7 +183,15 @@ namespace HexagonII {
// Floating-point instructions.
FPPos = 48,
FPMask = 0x1
FPMask = 0x1,
// New-Value producer-2 instructions.
hasNewValuePos2 = 50,
hasNewValueMask2 = 0x1,
// Which operand consumes or produces a new value.
NewValueOpPos2 = 51,
NewValueOpMask2 = 0x7
};
// *** The code above must match HexagonInstrFormat*.td *** //
@ -219,6 +246,26 @@ namespace HexagonII {
INST_PARSE_EXTENDER = 0x00000000
};
enum InstIClassBits {
INST_ICLASS_MASK = 0xf0000000,
INST_ICLASS_EXTENDER = 0x00000000,
INST_ICLASS_J_1 = 0x10000000,
INST_ICLASS_J_2 = 0x20000000,
INST_ICLASS_LD_ST_1 = 0x30000000,
INST_ICLASS_LD_ST_2 = 0x40000000,
INST_ICLASS_J_3 = 0x50000000,
INST_ICLASS_CR = 0x60000000,
INST_ICLASS_ALU32_1 = 0x70000000,
INST_ICLASS_XTYPE_1 = 0x80000000,
INST_ICLASS_LD = 0x90000000,
INST_ICLASS_ST = 0xa0000000,
INST_ICLASS_ALU32_2 = 0xb0000000,
INST_ICLASS_XTYPE_2 = 0xc0000000,
INST_ICLASS_XTYPE_3 = 0xd0000000,
INST_ICLASS_XTYPE_4 = 0xe0000000,
INST_ICLASS_ALU32_3 = 0xf0000000
};
} // End namespace HexagonII.
} // End namespace llvm.

View File

@ -12,13 +12,13 @@
//===----------------------------------------------------------------------===//
#include "HexagonAsmPrinter.h"
#include "Hexagon.h"
#include "HexagonInstPrinter.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
@ -28,63 +28,33 @@ using namespace llvm;
#define GET_INSTRUCTION_NAME
#include "HexagonGenAsmWriter.inc"
// Return the minimum value that a constant extendable operand can have
// without being extended.
static int getMinValue(uint64_t TSFlags) {
unsigned isSigned =
(TSFlags >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
unsigned bits =
(TSFlags >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned)
return -1U << (bits - 1);
return 0;
}
// Return the maximum value that a constant extendable operand can have
// without being extended.
static int getMaxValue(uint64_t TSFlags) {
unsigned isSigned =
(TSFlags >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
unsigned bits =
(TSFlags >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned)
return ~(-1U << (bits - 1));
return ~(-1U << bits);
}
// Return true if the instruction must be extended.
static bool isExtended(uint64_t TSFlags) {
return (TSFlags >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
// Currently just used in an assert statement
static bool isExtendable(uint64_t TSFlags) LLVM_ATTRIBUTE_UNUSED;
// Return true if the instruction may be extended based on the operand value.
static bool isExtendable(uint64_t TSFlags) {
return (TSFlags >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
HexagonInstPrinter::HexagonInstPrinter(MCAsmInfo const &MAI,
MCInstrInfo const &MII,
MCRegisterInfo const &MRI)
: MCInstPrinter(MAI, MII, MRI), MII(MII), HasExtender(false) {
}
StringRef HexagonInstPrinter::getOpcodeName(unsigned Opcode) const {
return MII.getName(Opcode);
}
void HexagonInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
OS << getRegisterName(RegNo);
void HexagonInstPrinter::printRegName(raw_ostream &O, unsigned RegNo) const {
O << getRegName(RegNo);
}
StringRef HexagonInstPrinter::getRegName(unsigned RegNo) const {
return getRegisterName(RegNo);
}
void HexagonInstPrinter::setExtender(MCInst const &MCI) {
HasExtender = HexagonMCInstrInfo::isImmext(MCI);
}
void HexagonInstPrinter::printInst(MCInst const *MI, raw_ostream &OS,
StringRef Annot,
MCSubtargetInfo const &STI) {
void HexagonInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
StringRef Annot, const MCSubtargetInfo &STI) {
assert(HexagonMCInstrInfo::isBundle(*MI));
assert(HexagonMCInstrInfo::bundleSize(*MI) <= HEXAGON_PACKET_SIZE);
assert(HexagonMCInstrInfo::bundleSize(*MI) > 0);
HasExtender = false;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(*MI)) {
MCInst const &MCI = *I.getInst();
@ -116,173 +86,148 @@ void HexagonInstPrinter::printInst(MCInst const *MI, raw_ostream &OS,
}
}
void HexagonInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
const MCOperand& MO = MI->getOperand(OpNo);
if (MO.isReg()) {
printRegName(O, MO.getReg());
} else if(MO.isExpr()) {
MO.getExpr()->print(O, &MAI);
} else if(MO.isImm()) {
printImmOperand(MI, OpNo, O);
} else {
llvm_unreachable("Unknown operand");
}
}
void HexagonInstPrinter::printImmOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
const MCOperand& MO = MI->getOperand(OpNo);
if(MO.isExpr()) {
MO.getExpr()->print(O, &MAI);
} else if(MO.isImm()) {
O << MI->getOperand(OpNo).getImm();
} else {
llvm_unreachable("Unknown operand");
}
}
void HexagonInstPrinter::printExtOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
const MCOperand &MO = MI->getOperand(OpNo);
const MCInstrDesc &MII = getMII().get(MI->getOpcode());
assert((isExtendable(MII.TSFlags) || isExtended(MII.TSFlags)) &&
"Expecting an extendable operand");
if (MO.isExpr() || isExtended(MII.TSFlags)) {
if (HexagonMCInstrInfo::getExtendableOp(MII, *MI) == OpNo &&
(HasExtender || HexagonMCInstrInfo::isConstExtended(MII, *MI)))
O << "#";
} else if (MO.isImm()) {
int ImmValue = MO.getImm();
if (ImmValue < getMinValue(MII.TSFlags) ||
ImmValue > getMaxValue(MII.TSFlags))
O << "#";
MCOperand const &MO = MI->getOperand(OpNo);
if (MO.isReg()) {
O << getRegisterName(MO.getReg());
} else if (MO.isExpr()) {
int64_t Value;
if (MO.getExpr()->evaluateAsAbsolute(Value))
O << formatImm(Value);
else
O << *MO.getExpr();
} else {
llvm_unreachable("Unknown operand");
}
}
void HexagonInstPrinter::printExtOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
printOperand(MI, OpNo, O);
}
void HexagonInstPrinter::printUnsignedImmOperand(const MCInst *MI,
unsigned OpNo, raw_ostream &O) const {
void HexagonInstPrinter::printUnsignedImmOperand(MCInst const *MI,
unsigned OpNo,
raw_ostream &O) const {
O << MI->getOperand(OpNo).getImm();
}
void HexagonInstPrinter::printNegImmOperand(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printNegImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
O << -MI->getOperand(OpNo).getImm();
}
void HexagonInstPrinter::printNOneImmOperand(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printNOneImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
O << -1;
}
void HexagonInstPrinter::prints3_6ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
int64_t Imm = MI->getOperand(OpNo).getImm();
int64_t Imm;
bool Success = MI->getOperand(OpNo).getExpr()->evaluateAsAbsolute(Imm);
Imm = SignExtend64<9>(Imm);
assert(Success); (void)Success;
assert(((Imm & 0x3f) == 0) && "Lower 6 bits must be ZERO.");
O << formatImm(Imm/64);
}
void HexagonInstPrinter::prints3_7ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
int64_t Imm = MI->getOperand(OpNo).getImm();
int64_t Imm;
bool Success = MI->getOperand(OpNo).getExpr()->evaluateAsAbsolute(Imm);
Imm = SignExtend64<10>(Imm);
assert(Success); (void)Success;
assert(((Imm & 0x7f) == 0) && "Lower 7 bits must be ZERO.");
O << formatImm(Imm/128);
}
void HexagonInstPrinter::prints4_6ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
int64_t Imm = MI->getOperand(OpNo).getImm();
int64_t Imm;
bool Success = MI->getOperand(OpNo).getExpr()->evaluateAsAbsolute(Imm);
Imm = SignExtend64<10>(Imm);
assert(Success); (void)Success;
assert(((Imm & 0x3f) == 0) && "Lower 6 bits must be ZERO.");
O << formatImm(Imm/64);
}
void HexagonInstPrinter::prints4_7ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
int64_t Imm = MI->getOperand(OpNo).getImm();
int64_t Imm;
bool Success = MI->getOperand(OpNo).getExpr()->evaluateAsAbsolute(Imm);
Imm = SignExtend64<11>(Imm);
assert(Success); (void)Success;
assert(((Imm & 0x7f) == 0) && "Lower 7 bits must be ZERO.");
O << formatImm(Imm/128);
}
void HexagonInstPrinter::printMEMriOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
const MCOperand& MO0 = MI->getOperand(OpNo);
const MCOperand& MO1 = MI->getOperand(OpNo + 1);
printRegName(O, MO0.getReg());
O << " + #" << MO1.getImm();
}
void HexagonInstPrinter::printFrameIndexOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
const MCOperand& MO0 = MI->getOperand(OpNo);
const MCOperand& MO1 = MI->getOperand(OpNo + 1);
printRegName(O, MO0.getReg());
O << ", #" << MO1.getImm();
}
void HexagonInstPrinter::printGlobalOperand(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printGlobalOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
assert(MI->getOperand(OpNo).isExpr() && "Expecting expression");
printOperand(MI, OpNo, O);
}
void HexagonInstPrinter::printJumpTable(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printJumpTable(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
assert(MI->getOperand(OpNo).isExpr() && "Expecting expression");
printOperand(MI, OpNo, O);
}
void HexagonInstPrinter::printConstantPool(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printConstantPool(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
assert(MI->getOperand(OpNo).isExpr() && "Expecting expression");
printOperand(MI, OpNo, O);
}
void HexagonInstPrinter::printBranchOperand(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printBranchOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
// Branches can take an immediate operand. This is used by the branch
// selection pass to print $+8, an eight byte displacement from the PC.
llvm_unreachable("Unknown branch operand.");
}
void HexagonInstPrinter::printCallOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
}
void HexagonInstPrinter::printCallOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {}
void HexagonInstPrinter::printAbsAddrOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
}
void HexagonInstPrinter::printAbsAddrOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {}
void HexagonInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
}
void HexagonInstPrinter::printPredicateOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {}
void HexagonInstPrinter::printSymbol(const MCInst *MI, unsigned OpNo,
void HexagonInstPrinter::printSymbol(MCInst const *MI, unsigned OpNo,
raw_ostream &O, bool hi) const {
assert(MI->getOperand(OpNo).isImm() && "Unknown symbol operand");
MCOperand const &MO = MI->getOperand(OpNo);
O << '#' << (hi ? "HI" : "LO") << "(#";
printOperand(MI, OpNo, O);
O << '#' << (hi ? "HI" : "LO") << '(';
if (MO.isImm()) {
O << '#';
printOperand(MI, OpNo, O);
} else {
printOperand(MI, OpNo, O);
assert("Unknown symbol operand");
}
O << ')';
}
void HexagonInstPrinter::printExtBrtarget(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const {
const MCOperand &MO = MI->getOperand(OpNo);
const MCInstrDesc &MII = getMII().get(MI->getOpcode());
assert((isExtendable(MII.TSFlags) || isExtended(MII.TSFlags)) &&
"Expecting an extendable operand");
if (MO.isExpr() || isExtended(MII.TSFlags)) {
O << "##";
void HexagonInstPrinter::printBrtarget(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const {
MCOperand const &MO = MI->getOperand(OpNo);
assert (MO.isExpr());
MCExpr const &Expr = *MO.getExpr();
int64_t Value;
if (Expr.evaluateAsAbsolute(Value))
O << format("0x%" PRIx64, Value);
else {
if (HasExtender || HexagonMCInstrInfo::isConstExtended(MII, *MI))
if (HexagonMCInstrInfo::getExtendableOp(MII, *MI) == OpNo)
O << "##";
O << Expr;
}
printOperand(MI, OpNo, O);
}

View File

@ -7,7 +7,6 @@
//
//===----------------------------------------------------------------------===//
//
// This class prints an Hexagon MCInst to a .s file.
//
//===----------------------------------------------------------------------===//
@ -15,7 +14,6 @@
#define LLVM_LIB_TARGET_HEXAGON_INSTPRINTER_HEXAGONINSTPRINTER_H
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
namespace llvm {
/// Prints bundles as a newline separated list of individual instructions
@ -25,76 +23,69 @@ namespace llvm {
/// r0 = add(r1, r2)
/// r0 = #0 \v jump 0x0
/// :endloop0 :endloop1
class HexagonInstPrinter : public MCInstPrinter {
public:
explicit HexagonInstPrinter(MCAsmInfo const &MAI,
MCInstrInfo const &MII,
MCRegisterInfo const &MRI)
: MCInstPrinter(MAI, MII, MRI), MII(MII) {}
class HexagonInstPrinter : public MCInstPrinter {
public:
explicit HexagonInstPrinter(MCAsmInfo const &MAI, MCInstrInfo const &MII,
MCRegisterInfo const &MRI);
void printInst(MCInst const *MI, raw_ostream &O, StringRef Annot,
const MCSubtargetInfo &STI) override;
virtual StringRef getOpcodeName(unsigned Opcode) const;
void printInstruction(MCInst const *MI, raw_ostream &O);
void printInst(MCInst const *MI, raw_ostream &O, StringRef Annot,
const MCSubtargetInfo &STI) override;
virtual StringRef getOpcodeName(unsigned Opcode) const;
void printInstruction(const MCInst *MI, raw_ostream &O);
void printRegName(raw_ostream &OS, unsigned RegNo) const override;
static const char *getRegisterName(unsigned RegNo);
StringRef getRegName(unsigned RegNo) const;
static char const *getRegisterName(unsigned RegNo);
void printRegName(raw_ostream &O, unsigned RegNo) const override;
void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
void printImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
void printExtOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
void printUnsignedImmOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const;
void printNegImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printNOneImmOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void prints3_6ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints3_7ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints4_6ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints4_7ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printMEMriOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printFrameIndexOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) const;
void printBranchOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printCallOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printAbsAddrOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printPredicateOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printGlobalOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)
const;
void printJumpTable(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
void printExtBrtarget(const MCInst *MI, unsigned OpNo, raw_ostream &O) const;
void printConstantPool(const MCInst *MI, unsigned OpNo,
void printOperand(MCInst const *MI, unsigned OpNo, raw_ostream &O) const;
void printExtOperand(MCInst const *MI, unsigned OpNo, raw_ostream &O) const;
void printUnsignedImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printNegImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printNOneImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints3_6ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints3_7ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints4_6ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void prints4_7ImmOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printBranchOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printCallOperand(MCInst const *MI, unsigned OpNo, raw_ostream &O) const;
void printAbsAddrOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printPredicateOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printGlobalOperand(MCInst const *MI, unsigned OpNo,
raw_ostream &O) const;
void printJumpTable(MCInst const *MI, unsigned OpNo, raw_ostream &O) const;
void printBrtarget(MCInst const *MI, unsigned OpNo, raw_ostream &O) const;
void printSymbolHi(const MCInst *MI, unsigned OpNo, raw_ostream &O) const
{ printSymbol(MI, OpNo, O, true); }
void printSymbolLo(const MCInst *MI, unsigned OpNo, raw_ostream &O) const
{ printSymbol(MI, OpNo, O, false); }
void printConstantPool(MCInst const *MI, unsigned OpNo, raw_ostream &O) const;
const MCInstrInfo &getMII() const {
return MII;
}
void printSymbolHi(MCInst const *MI, unsigned OpNo, raw_ostream &O) const {
printSymbol(MI, OpNo, O, true);
}
void printSymbolLo(MCInst const *MI, unsigned OpNo, raw_ostream &O) const {
printSymbol(MI, OpNo, O, false);
}
protected:
void printSymbol(const MCInst *MI, unsigned OpNo, raw_ostream &O, bool hi)
const;
MCAsmInfo const &getMAI() const { return MAI; }
MCInstrInfo const &getMII() const { return MII; }
private:
const MCInstrInfo &MII;
protected:
void printSymbol(MCInst const *MI, unsigned OpNo, raw_ostream &O,
bool hi) const;
bool HasExtender;
void setExtender(MCInst const &MCI);
};
private:
MCInstrInfo const &MII;
bool HasExtender;
void setExtender(MCInst const &MCI);
};
} // end namespace llvm

View File

@ -0,0 +1,580 @@
//===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the checking of insns inside a bundle according to the
// packet constraint rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//
#include "HexagonMCChecker.h"
#include "HexagonBaseInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static cl::opt<bool> RelaxNVChecks("relax-nv-checks", cl::init(false),
cl::ZeroOrMore, cl::Hidden, cl::desc("Relax checks of new-value validity"));
const HexagonMCChecker::PredSense
HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
void HexagonMCChecker::init() {
// Initialize read-only registers set.
ReadOnly.insert(Hexagon::PC);
// Figure out the loop-registers definitions.
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
Defs[Hexagon::LC0].insert(Unconditional);
}
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
Defs[Hexagon::LC1].insert(Unconditional);
}
if (HexagonMCInstrInfo::isBundle(MCB))
// Unfurl a bundle.
for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
init(*I.getInst());
}
else
init(MCB);
}
void HexagonMCChecker::init(MCInst const& MCI) {
const MCInstrDesc& MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
unsigned PredReg = Hexagon::NoRegister;
bool isTrue = false;
// Get used registers.
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
if (MCI.getOperand(i).isReg()) {
unsigned R = MCI.getOperand(i).getReg();
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
// Note an used predicate register.
PredReg = R;
isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
// Note use of new predicate register.
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
NewPreds.insert(PredReg);
}
else
// Note register use. Super-registers are not tracked directly,
// but their components.
for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid();
++SRI)
if (!MCSubRegIterator(*SRI, &RI).isValid())
// Skip super-registers used indirectly.
Uses.insert(*SRI);
}
// Get implicit register definitions.
const uint16_t* ImpDefs = MCID.getImplicitDefs();
for (unsigned i = 0; i < MCID.getNumImplicitDefs(); ++i) {
unsigned R = ImpDefs[i];
if (Hexagon::R31 != R && MCID.isCall())
// Any register other than the LR and the PC are actually volatile ones
// as defined by the ABI, not modified implicitly by the call insn.
continue;
if (Hexagon::PC == R)
// Branches are the only insns that can change the PC,
// otherwise a read-only register.
continue;
if (Hexagon::USR_OVF == R)
// Many insns change the USR implicitly, but only one or another flag.
// The instruction table models the USR.OVF flag, which can be implicitly
// modified more than once, but cannot be modified in the same packet
// with an instruction that modifies is explicitly. Deal with such situ-
// ations individually.
SoftDefs.insert(R);
else if (isPredicateRegister(R) && HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
// Include implicit late predicates.
LatePreds.insert(R);
else
Defs[R].insert(PredSense(PredReg, isTrue));
}
// Figure out explicit register definitions.
for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
unsigned R = MCI.getOperand(i).getReg(),
S = Hexagon::NoRegister;
// Note register definitions, direct ones as well as indirect side-effects.
// Super-registers are not tracked directly, but their components.
for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid();
++SRI) {
if (MCSubRegIterator(*SRI, &RI).isValid())
// Skip super-registers defined indirectly.
continue;
if (R == *SRI) {
if (S == R)
// Avoid scoring the defined register multiple times.
continue;
else
// Note that the defined register has already been scored.
S = R;
}
if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
// P3:0 is a special case, since multiple predicate register definitions
// in a packet is allowed as the equivalent of their logical "and".
// Only an explicit definition of P3:0 is noted as such; if a
// side-effect, then note as a soft definition.
SoftDefs.insert(*SRI);
else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && isPredicateRegister(*SRI))
// Some insns produce predicates too late to be used in the same packet.
LatePreds.insert(*SRI);
else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_CUR_LD)
// Current loads should be used in the same packet.
// TODO: relies on the impossibility of a current and a temporary loads
// in the same packet.
CurDefs.insert(*SRI), Defs[*SRI].insert(PredSense(PredReg, isTrue));
else if (i == 0 && llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_TMP_LD)
// Temporary loads should be used in the same packet, but don't commit
// results, so it should be disregarded if another insn changes the same
// register.
// TODO: relies on the impossibility of a current and a temporary loads
// in the same packet.
TmpDefs.insert(*SRI);
else if (i <= 1 && llvm::HexagonMCInstrInfo::hasNewValue2(MCII, MCI) )
// vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
// destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
Uses.insert(*SRI);
else
Defs[*SRI].insert(PredSense(PredReg, isTrue));
}
}
// Figure out register definitions that produce new values.
if (HexagonMCInstrInfo::hasNewValue(MCII, MCI)) {
unsigned R = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
if (HexagonMCInstrInfo::isCompound(MCII, MCI))
compoundRegisterMap(R); // Compound insns have a limited register range.
for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid();
++SRI)
if (!MCSubRegIterator(*SRI, &RI).isValid())
// No super-registers defined indirectly.
NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
HexagonMCInstrInfo::isFloat(MCII, MCI)));
// For fairly unique 2-dot-new producers, example:
// vdeal(V1, V9, R0) V1.new and V9.new can be used by consumers.
if (HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) {
unsigned R2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, MCI).getReg();
for(MCRegAliasIterator SRI(R2, &RI, !MCSubRegIterator(R2, &RI).isValid());
SRI.isValid();
++SRI)
if (!MCSubRegIterator(*SRI, &RI).isValid())
NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
HexagonMCInstrInfo::isFloat(MCII, MCI)));
}
}
// Figure out definitions of new predicate registers.
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
if (MCI.getOperand(i).isReg()) {
unsigned P = MCI.getOperand(i).getReg();
if (isPredicateRegister(P))
NewPreds.insert(P);
}
// Figure out uses of new values.
if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) {
unsigned N = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
if (!MCSubRegIterator(N, &RI).isValid()) {
// Super-registers cannot use new values.
if (MCID.isBranch())
NewUses[N] = NewSense::Jmp(llvm::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV);
else
NewUses[N] = NewSense::Use(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI));
}
}
}
HexagonMCChecker::HexagonMCChecker(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst &mcb, MCInst &mcbdx,
MCRegisterInfo const &ri)
: MCB(mcb), MCBDX(mcbdx), RI(ri), MCII(MCII), STI(STI),
bLoadErrInfo(false) {
init();
}
bool HexagonMCChecker::check() {
bool chkB = checkBranches();
bool chkP = checkPredicates();
bool chkNV = checkNewValues();
bool chkR = checkRegisters();
bool chkS = checkSolo();
bool chkSh = checkShuffle();
bool chkSl = checkSlots();
bool chk = chkB && chkP && chkNV && chkR && chkS && chkSh && chkSl;
return chk;
}
bool HexagonMCChecker::checkSlots()
{
unsigned slotsUsed = 0;
for (auto HMI: HexagonMCInstrInfo::bundleInstructions(MCBDX)) {
MCInst const& MCI = *HMI.getInst();
if (HexagonMCInstrInfo::isImmext(MCI))
continue;
if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
slotsUsed += 2;
else
++slotsUsed;
}
if (slotsUsed > HEXAGON_PACKET_SIZE) {
HexagonMCErrInfo errInfo;
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NOSLOTS);
addErrInfo(errInfo);
return false;
}
return true;
}
// Check legal use of branches.
bool HexagonMCChecker::checkBranches() {
HexagonMCErrInfo errInfo;
if (HexagonMCInstrInfo::isBundle(MCB)) {
bool hasConditional = false;
unsigned Branches = 0, Returns = 0, NewIndirectBranches = 0,
NewValueBranches = 0, Conditional = HEXAGON_PRESHUFFLE_PACKET_SIZE,
Unconditional = HEXAGON_PRESHUFFLE_PACKET_SIZE;
for (unsigned i = HexagonMCInstrInfo::bundleInstructionsOffset;
i < MCB.size(); ++i) {
MCInst const &MCI = *MCB.begin()[i].getInst();
if (HexagonMCInstrInfo::isImmext(MCI))
continue;
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch() ||
HexagonMCInstrInfo::getDesc(MCII, MCI).isCall()) {
++Branches;
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isIndirectBranch() &&
HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
++NewIndirectBranches;
if (HexagonMCInstrInfo::isNewValue(MCII, MCI))
++NewValueBranches;
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) ||
HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) {
hasConditional = true;
Conditional = i; // Record the position of the conditional branch.
} else {
Unconditional = i; // Record the position of the unconditional branch.
}
}
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isReturn() &&
HexagonMCInstrInfo::getDesc(MCII, MCI).mayLoad())
++Returns;
}
if (Branches) // FIXME: should "Defs.count(Hexagon::PC)" be here too?
if (HexagonMCInstrInfo::isInnerLoop(MCB) ||
HexagonMCInstrInfo::isOuterLoop(MCB)) {
// Error out if there's any branch in a loop-end packet.
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_ENDLOOP, Hexagon::PC);
addErrInfo(errInfo);
return false;
}
if (Branches > 1)
if (!hasConditional || Conditional > Unconditional) {
// Error out if more than one unconditional branch or
// the conditional branch appears after the unconditional one.
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_BRANCHES);
addErrInfo(errInfo);
return false;
}
}
return true;
}
// Check legal use of predicate registers.
bool HexagonMCChecker::checkPredicates() {
HexagonMCErrInfo errInfo;
// Check for proper use of new predicate registers.
for (const auto& I : NewPreds) {
unsigned P = I;
if (!Defs.count(P) || LatePreds.count(P)) {
// Error out if the new predicate register is not defined,
// or defined "late"
// (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWP, P);
addErrInfo(errInfo);
return false;
}
}
// Check for proper use of auto-anded of predicate registers.
for (const auto& I : LatePreds) {
unsigned P = I;
if (LatePreds.count(P) > 1 || Defs.count(P)) {
// Error out if predicate register defined "late" multiple times or
// defined late and regularly defined
// (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, P);
addErrInfo(errInfo);
return false;
}
}
return true;
}
// Check legal use of new values.
bool HexagonMCChecker::checkNewValues() {
HexagonMCErrInfo errInfo;
memset(&errInfo, 0, sizeof(errInfo));
for (auto& I : NewUses) {
unsigned R = I.first;
NewSense &US = I.second;
if (!hasValidNewValueDef(US, NewDefs[R])) {
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWV, R);
addErrInfo(errInfo);
return false;
}
}
return true;
}
// Check for legal register uses and definitions.
bool HexagonMCChecker::checkRegisters() {
HexagonMCErrInfo errInfo;
// Check for proper register definitions.
for (const auto& I : Defs) {
unsigned R = I.first;
if (ReadOnly.count(R)) {
// Error out for definitions of read-only registers.
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_READONLY, R);
addErrInfo(errInfo);
return false;
}
if (isLoopRegister(R) && Defs.count(R) > 1 &&
(HexagonMCInstrInfo::isInnerLoop(MCB) ||
HexagonMCInstrInfo::isOuterLoop(MCB))) {
// Error out for definitions of loop registers at the end of a loop.
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_LOOP, R);
addErrInfo(errInfo);
return false;
}
if (SoftDefs.count(R)) {
// Error out for explicit changes to registers also weakly defined
// (e.g., "{ usr = r0; r0 = sfadd(...) }").
unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR);
addErrInfo(errInfo);
return false;
}
if (!isPredicateRegister(R) && Defs[R].size() > 1) {
// Check for multiple register definitions.
PredSet &PM = Defs[R];
// Check for multiple unconditional register definitions.
if (PM.count(Unconditional)) {
// Error out on an unconditional change when there are any other
// changes, conditional or not.
unsigned UsrR = Hexagon::USR;
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR);
addErrInfo(errInfo);
return false;
}
// Check for multiple conditional register definitions.
for (const auto& J : PM) {
PredSense P = J;
// Check for multiple uses of the same condition.
if (PM.count(P) > 1) {
// Error out on conditional changes based on the same predicate
// (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R);
addErrInfo(errInfo);
return false;
}
// Check for the use of the complementary condition.
P.second = !P.second;
if (PM.count(P) && PM.size() > 2) {
// Error out on conditional changes based on the same predicate
// multiple times
// (e.g., "{ if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =... }").
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R);
addErrInfo(errInfo);
return false;
}
}
}
}
// Check for use of current definitions.
for (const auto& I : CurDefs) {
unsigned R = I;
if (!Uses.count(R)) {
// Warn on an unused current definition.
errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_CURRENT, R);
addErrInfo(errInfo);
return true;
}
}
// Check for use of temporary definitions.
for (const auto& I : TmpDefs) {
unsigned R = I;
if (!Uses.count(R)) {
// special case for vhist
bool vHistFound = false;
for (auto const&HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
if(llvm::HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == HexagonII::TypeCVI_HIST) {
vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
break;
}
}
// Warn on an unused temporary definition.
if (vHistFound == false) {
errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_TEMPORARY, R);
addErrInfo(errInfo);
return true;
}
}
}
return true;
}
// Check for legal use of solo insns.
bool HexagonMCChecker::checkSolo() {
HexagonMCErrInfo errInfo;
if (HexagonMCInstrInfo::isBundle(MCB) &&
HexagonMCInstrInfo::bundleSize(MCB) > 1) {
for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
if (llvm::HexagonMCInstrInfo::isSolo(MCII, *I.getInst())) {
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SOLO);
addErrInfo(errInfo);
return false;
}
}
}
return true;
}
bool HexagonMCChecker::checkShuffle() {
HexagonMCErrInfo errInfo;
// Branch info is lost when duplexing. The unduplexed insns must be
// checked and only branch errors matter for this case.
HexagonMCShuffler MCS(MCII, STI, MCB);
if (!MCS.check()) {
if (MCS.getError() == HexagonShuffler::SHUFFLE_ERROR_BRANCHES) {
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE);
errInfo.setShuffleError(MCS.getError());
addErrInfo(errInfo);
return false;
}
}
HexagonMCShuffler MCSDX(MCII, STI, MCBDX);
if (!MCSDX.check()) {
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE);
errInfo.setShuffleError(MCSDX.getError());
addErrInfo(errInfo);
return false;
}
return true;
}
void HexagonMCChecker::compoundRegisterMap(unsigned& Register) {
switch (Register) {
default:
break;
case Hexagon::R15:
Register = Hexagon::R23;
break;
case Hexagon::R14:
Register = Hexagon::R22;
break;
case Hexagon::R13:
Register = Hexagon::R21;
break;
case Hexagon::R12:
Register = Hexagon::R20;
break;
case Hexagon::R11:
Register = Hexagon::R19;
break;
case Hexagon::R10:
Register = Hexagon::R18;
break;
case Hexagon::R9:
Register = Hexagon::R17;
break;
case Hexagon::R8:
Register = Hexagon::R16;
break;
}
}
bool HexagonMCChecker::hasValidNewValueDef(const NewSense &Use,
const NewSenseList &Defs) const {
bool Strict = !RelaxNVChecks;
for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
const NewSense &Def = Defs[i];
// NVJ cannot use a new FP value [7.6.1]
if (Use.IsNVJ && (Def.IsFloat || Def.PredReg != 0))
continue;
// If the definition was not predicated, then it does not matter if
// the use is.
if (Def.PredReg == 0)
return true;
// With the strict checks, both the definition and the use must be
// predicated on the same register and condition.
if (Strict) {
if (Def.PredReg == Use.PredReg && Def.Cond == Use.Cond)
return true;
} else {
// With the relaxed checks, if the definition was predicated, the only
// detectable violation is if the use is predicated on the opposing
// condition, otherwise, it's ok.
if (Def.PredReg != Use.PredReg || Def.Cond == Use.Cond)
return true;
}
}
return false;
}

View File

@ -0,0 +1,218 @@
//===----- HexagonMCChecker.h - Instruction bundle checking ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the checking of insns inside a bundle according to the
// packet constraint rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//
#ifndef HEXAGONMCCHECKER_H
#define HEXAGONMCCHECKER_H
#include <map>
#include <set>
#include <queue>
#include "MCTargetDesc/HexagonMCShuffler.h"
using namespace llvm;
namespace llvm {
class MCOperandInfo;
typedef struct {
unsigned Error, Warning, ShuffleError;
unsigned Register;
} ErrInfo_T;
class HexagonMCErrInfo {
public:
enum {
CHECK_SUCCESS = 0,
// Errors.
CHECK_ERROR_BRANCHES = 0x00001,
CHECK_ERROR_NEWP = 0x00002,
CHECK_ERROR_NEWV = 0x00004,
CHECK_ERROR_REGISTERS = 0x00008,
CHECK_ERROR_READONLY = 0x00010,
CHECK_ERROR_LOOP = 0x00020,
CHECK_ERROR_ENDLOOP = 0x00040,
CHECK_ERROR_SOLO = 0x00080,
CHECK_ERROR_SHUFFLE = 0x00100,
CHECK_ERROR_NOSLOTS = 0x00200,
CHECK_ERROR_UNKNOWN = 0x00400,
// Warnings.
CHECK_WARN_CURRENT = 0x10000,
CHECK_WARN_TEMPORARY = 0x20000
};
ErrInfo_T s;
void reset() {
s.Error = CHECK_SUCCESS;
s.Warning = CHECK_SUCCESS;
s.ShuffleError = HexagonShuffler::SHUFFLE_SUCCESS;
s.Register = Hexagon::NoRegister;
};
HexagonMCErrInfo() {
reset();
};
void setError(unsigned e, unsigned r = Hexagon::NoRegister)
{ s.Error = e; s.Register = r; };
void setWarning(unsigned w, unsigned r = Hexagon::NoRegister)
{ s.Warning = w; s.Register = r; };
void setShuffleError(unsigned e) { s.ShuffleError = e; };
};
/// Check for a valid bundle.
class HexagonMCChecker {
/// Insn bundle.
MCInst& MCB;
MCInst& MCBDX;
const MCRegisterInfo& RI;
MCInstrInfo const &MCII;
MCSubtargetInfo const &STI;
bool bLoadErrInfo;
/// Set of definitions: register #, if predicated, if predicated true.
typedef std::pair<unsigned, bool> PredSense;
static const PredSense Unconditional;
typedef std::multiset<PredSense> PredSet;
typedef std::multiset<PredSense>::iterator PredSetIterator;
typedef llvm::DenseMap<unsigned, PredSet>::iterator DefsIterator;
llvm::DenseMap<unsigned, PredSet> Defs;
/// Information about how a new-value register is defined or used:
/// PredReg = predicate register, 0 if use/def not predicated,
/// Cond = true/false for if(PredReg)/if(!PredReg) respectively,
/// IsFloat = true if definition produces a floating point value
/// (not valid for uses),
/// IsNVJ = true if the use is a new-value branch (not valid for
/// definitions).
struct NewSense {
unsigned PredReg;
bool IsFloat, IsNVJ, Cond;
// The special-case "constructors":
static NewSense Jmp(bool isNVJ) {
NewSense NS = { /*PredReg=*/ 0, /*IsFloat=*/ false, /*IsNVJ=*/ isNVJ,
/*Cond=*/ false };
return NS;
}
static NewSense Use(unsigned PR, bool True) {
NewSense NS = { /*PredReg=*/ PR, /*IsFloat=*/ false, /*IsNVJ=*/ false,
/*Cond=*/ True };
return NS;
}
static NewSense Def(unsigned PR, bool True, bool Float) {
NewSense NS = { /*PredReg=*/ PR, /*IsFloat=*/ Float, /*IsNVJ=*/ false,
/*Cond=*/ True };
return NS;
}
};
/// Set of definitions that produce new register:
typedef llvm::SmallVector<NewSense,2> NewSenseList;
typedef llvm::DenseMap<unsigned, NewSenseList>::iterator NewDefsIterator;
llvm::DenseMap<unsigned, NewSenseList> NewDefs;
/// Set of weak definitions whose clashes should be enforced selectively.
typedef std::set<unsigned>::iterator SoftDefsIterator;
std::set<unsigned> SoftDefs;
/// Set of current definitions committed to the register file.
typedef std::set<unsigned>::iterator CurDefsIterator;
std::set<unsigned> CurDefs;
/// Set of temporary definitions not committed to the register file.
typedef std::set<unsigned>::iterator TmpDefsIterator;
std::set<unsigned> TmpDefs;
/// Set of new predicates used.
typedef std::set<unsigned>::iterator NewPredsIterator;
std::set<unsigned> NewPreds;
/// Set of predicates defined late.
typedef std::multiset<unsigned>::iterator LatePredsIterator;
std::multiset<unsigned> LatePreds;
/// Set of uses.
typedef std::set<unsigned>::iterator UsesIterator;
std::set<unsigned> Uses;
/// Set of new values used: new register, if new-value jump.
typedef llvm::DenseMap<unsigned, NewSense>::iterator NewUsesIterator;
llvm::DenseMap<unsigned, NewSense> NewUses;
/// Pre-defined set of read-only registers.
typedef std::set<unsigned>::iterator ReadOnlyIterator;
std::set<unsigned> ReadOnly;
std::queue<ErrInfo_T> ErrInfoQ;
HexagonMCErrInfo CrntErrInfo;
void getErrInfo() {
if (bLoadErrInfo == true) {
if (ErrInfoQ.empty()) {
CrntErrInfo.reset();
} else {
CrntErrInfo.s = ErrInfoQ.front();
ErrInfoQ.pop();
}
}
bLoadErrInfo = false;
}
void init();
void init(MCInst const&);
// Checks performed.
bool checkBranches();
bool checkPredicates();
bool checkNewValues();
bool checkRegisters();
bool checkSolo();
bool checkShuffle();
bool checkSlots();
static void compoundRegisterMap(unsigned&);
bool isPredicateRegister(unsigned R) const {
return (Hexagon::P0 == R || Hexagon::P1 == R ||
Hexagon::P2 == R || Hexagon::P3 == R);
};
bool isLoopRegister(unsigned R) const {
return (Hexagon::SA0 == R || Hexagon::LC0 == R ||
Hexagon::SA1 == R || Hexagon::LC1 == R);
};
bool hasValidNewValueDef(const NewSense &Use,
const NewSenseList &Defs) const;
public:
explicit HexagonMCChecker(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst& mcb, MCInst &mcbdx,
const MCRegisterInfo& ri);
bool check();
/// add a new error/warning
void addErrInfo(HexagonMCErrInfo &err) { ErrInfoQ.push(err.s); };
/// Return the error code for the last operation in the insn bundle.
unsigned getError() { getErrInfo(); return CrntErrInfo.s.Error; };
unsigned getWarning() { getErrInfo(); return CrntErrInfo.s.Warning; };
unsigned getShuffleError() { getErrInfo(); return CrntErrInfo.s.ShuffleError; };
unsigned getErrRegister() { getErrInfo(); return CrntErrInfo.s.Register; };
bool getNextErrInfo() {
bLoadErrInfo = true;
return (ErrInfoQ.empty()) ? false : (getErrInfo(), true);
}
};
}
#endif // HEXAGONMCCHECKER_H

View File

@ -195,15 +195,13 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
// Special case this one from Group L2.
// Rd = memw(r29+#u5:2)
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
MCI.getOperand(2).isImm() &&
isShiftedUInt<5, 2>(MCI.getOperand(2).getImm())) {
if (HexagonMCInstrInfo::isIntReg(SrcReg) &&
Hexagon::R29 == SrcReg && inRange<5, 2>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
// Rd = memw(Rs+#u4:2)
if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
(MCI.getOperand(2).isImm() &&
isShiftedUInt<4, 2>(MCI.getOperand(2).getImm()))) {
inRange<4, 2>(MCI, 2)) {
return HexagonII::HSIG_L1;
}
}
@ -214,7 +212,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
MCI.getOperand(2).isImm() && isUInt<4>(MCI.getOperand(2).getImm())) {
inRange<4>(MCI, 2)) {
return HexagonII::HSIG_L1;
}
break;
@ -235,8 +233,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
MCI.getOperand(2).isImm() &&
isShiftedUInt<3, 1>(MCI.getOperand(2).getImm())) {
inRange<3, 1>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
break;
@ -246,7 +243,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
MCI.getOperand(2).isImm() && isUInt<3>(MCI.getOperand(2).getImm())) {
inRange<3>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
break;
@ -256,8 +253,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
MCI.getOperand(2).isImm() &&
isShiftedUInt<5, 3>(MCI.getOperand(2).getImm())) {
inRange<5, 3>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
break;
@ -326,15 +322,13 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntReg(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
Hexagon::R29 == Src1Reg && MCI.getOperand(1).isImm() &&
isShiftedUInt<5, 2>(MCI.getOperand(1).getImm())) {
Hexagon::R29 == Src1Reg && inRange<5, 2>(MCI, 1)) {
return HexagonII::HSIG_S2;
}
// memw(Rs+#u4:2) = Rt
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
MCI.getOperand(1).isImm() &&
isShiftedUInt<4, 2>(MCI.getOperand(1).getImm())) {
inRange<4, 2>(MCI, 1)) {
return HexagonII::HSIG_S1;
}
break;
@ -344,7 +338,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
MCI.getOperand(1).isImm() && isUInt<4>(MCI.getOperand(1).getImm())) {
inRange<4>(MCI, 1)) {
return HexagonII::HSIG_S1;
}
break;
@ -363,8 +357,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
MCI.getOperand(1).isImm() &&
isShiftedUInt<3, 1>(MCI.getOperand(1).getImm())) {
inRange<3, 1>(MCI, 1)) {
return HexagonII::HSIG_S2;
}
break;
@ -374,8 +367,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(Src2Reg) &&
HexagonMCInstrInfo::isIntReg(Src1Reg) && Hexagon::R29 == Src1Reg &&
MCI.getOperand(1).isImm() &&
isShiftedInt<6, 3>(MCI.getOperand(1).getImm())) {
inSRange<6, 3>(MCI, 1)) {
return HexagonII::HSIG_S2;
}
break;
@ -383,9 +375,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
// memw(Rs+#u4:2) = #U1
Src1Reg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
MCI.getOperand(1).isImm() &&
isShiftedUInt<4, 2>(MCI.getOperand(1).getImm()) &&
MCI.getOperand(2).isImm() && isUInt<1>(MCI.getOperand(2).getImm())) {
inRange<4, 2>(MCI, 1) && inRange<1>(MCI, 2)) {
return HexagonII::HSIG_S2;
}
break;
@ -393,16 +383,13 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
// memb(Rs+#u4) = #U1
Src1Reg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
MCI.getOperand(1).isImm() && isUInt<4>(MCI.getOperand(1).getImm()) &&
MCI.getOperand(2).isImm() && isUInt<1>(MCI.getOperand(2).getImm())) {
inRange<4>(MCI, 1) && inRange<1>(MCI, 2)) {
return HexagonII::HSIG_S2;
}
break;
case Hexagon::S2_allocframe:
if (MCI.getOperand(0).isImm() &&
isShiftedUInt<5, 3>(MCI.getOperand(0).getImm())) {
if (inRange<5, 3>(MCI, 0))
return HexagonII::HSIG_S2;
}
break;
//
// Group A:
@ -428,8 +415,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
// Rd = add(r29,#u6:2)
if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
MCI.getOperand(2).isImm() &&
isShiftedUInt<6, 2>(MCI.getOperand(2).getImm())) {
inRange<6, 2>(MCI, 2)) {
return HexagonII::HSIG_A;
}
// Rx = add(Rx,#s7)
@ -439,8 +425,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
// Rd = add(Rs,#1)
// Rd = add(Rs,#-1)
if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
MCI.getOperand(2).isImm() && ((MCI.getOperand(2).getImm() == 1) ||
(MCI.getOperand(2).getImm() == -1))) {
(minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == -1)) {
return HexagonII::HSIG_A;
}
}
@ -460,8 +445,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
MCI.getOperand(2).isImm() && ((MCI.getOperand(2).getImm() == 1) ||
(MCI.getOperand(2).getImm() == 255))) {
(minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == 255)) {
return HexagonII::HSIG_A;
}
break;
@ -491,8 +475,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
DstReg = MCI.getOperand(0).getReg(); // Rd
PredReg = MCI.getOperand(1).getReg(); // P0
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
Hexagon::P0 == PredReg && MCI.getOperand(2).isImm() &&
MCI.getOperand(2).getImm() == 0) {
Hexagon::P0 == PredReg && minConstant(MCI, 2) == 0) {
return HexagonII::HSIG_A;
}
break;
@ -502,7 +485,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (Hexagon::P0 == DstReg &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
MCI.getOperand(2).isImm() && isUInt<2>(MCI.getOperand(2).getImm())) {
inRange<2>(MCI, 2)) {
return HexagonII::HSIG_A;
}
break;
@ -511,10 +494,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
// Rdd = combine(#u2,#U2)
DstReg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
// TODO: Handle Globals/Symbols
(MCI.getOperand(1).isImm() && isUInt<2>(MCI.getOperand(1).getImm())) &&
((MCI.getOperand(2).isImm() &&
isUInt<2>(MCI.getOperand(2).getImm())))) {
inRange<2>(MCI, 1) && inRange<2>(MCI, 2)) {
return HexagonII::HSIG_A;
}
break;
@ -524,7 +504,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
(MCI.getOperand(2).isImm() && MCI.getOperand(2).getImm() == 0)) {
minConstant(MCI, 2) == 0) {
return HexagonII::HSIG_A;
}
break;
@ -534,7 +514,7 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
SrcReg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
(MCI.getOperand(1).isImm() && MCI.getOperand(1).getImm() == 0)) {
minConstant(MCI, 1) == 0) {
return HexagonII::HSIG_A;
}
break;
@ -556,19 +536,17 @@ unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
}
bool HexagonMCInstrInfo::subInstWouldBeExtended(MCInst const &potentialDuplex) {
unsigned DstReg, SrcReg;
switch (potentialDuplex.getOpcode()) {
case Hexagon::A2_addi:
// testing for case of: Rx = add(Rx,#s7)
DstReg = potentialDuplex.getOperand(0).getReg();
SrcReg = potentialDuplex.getOperand(1).getReg();
if (DstReg == SrcReg && HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
if (potentialDuplex.getOperand(2).isExpr())
int64_t Value;
if (!potentialDuplex.getOperand(2).getExpr()->evaluateAsAbsolute(Value))
return true;
if (potentialDuplex.getOperand(2).isImm() &&
!(isShiftedInt<7, 0>(potentialDuplex.getOperand(2).getImm())))
if (!isShiftedInt<7, 0>(Value))
return true;
}
break;
@ -576,15 +554,14 @@ bool HexagonMCInstrInfo::subInstWouldBeExtended(MCInst const &potentialDuplex) {
DstReg = potentialDuplex.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
if (potentialDuplex.getOperand(1).isExpr())
int64_t Value;
if (!potentialDuplex.getOperand(1).getExpr()->evaluateAsAbsolute(Value))
return true;
// Check for case of Rd = #-1.
if (potentialDuplex.getOperand(1).isImm() &&
(potentialDuplex.getOperand(1).getImm() == -1))
if (Value == -1)
return false;
// Check for case of Rd = #u6.
if (potentialDuplex.getOperand(1).isImm() &&
!isShiftedUInt<6, 0>(potentialDuplex.getOperand(1).getImm()))
if (!isShiftedUInt<6, 0>(Value))
return true;
}
break;
@ -712,19 +689,23 @@ inline static void addOps(MCInst &subInstPtr, MCInst const &Inst,
MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
MCInst Result;
bool Absolute;
int64_t Value;
switch (Inst.getOpcode()) {
default:
// dbgs() << "opcode: "<< Inst->getOpcode() << "\n";
llvm_unreachable("Unimplemented subinstruction \n");
break;
case Hexagon::A2_addi:
if (Inst.getOperand(2).isImm() && Inst.getOperand(2).getImm() == 1) {
Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 1) {
Result.setOpcode(Hexagon::V4_SA1_inc);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break;
} // 1,2 SUBInst $Rd = add($Rs, #1)
else if (Inst.getOperand(2).isImm() && Inst.getOperand(2).getImm() == -1) {
else if (Value == -1) {
Result.setOpcode(Hexagon::V4_SA1_dec);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
@ -754,7 +735,7 @@ MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
addOps(Result, Inst, 0);
break; // 1 SUBInst allocframe(#$u5_3)
case Hexagon::A2_andir:
if (Inst.getOperand(2).getImm() == 255) {
if (minConstant(Inst, 2) == 255) {
Result.setOpcode(Hexagon::V4_SA1_zxtb);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
@ -772,26 +753,27 @@ MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
break; // 2,3 SUBInst p0 = cmp.eq($Rs, #$u2)
case Hexagon::A4_combineii:
case Hexagon::A2_combineii:
if (Inst.getOperand(1).getImm() == 1) {
Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 1) {
Result.setOpcode(Hexagon::V4_SA1_combine1i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#1, #$u2)
}
if (Inst.getOperand(1).getImm() == 3) {
if (Value == 3) {
Result.setOpcode(Hexagon::V4_SA1_combine3i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#3, #$u2)
}
if (Inst.getOperand(1).getImm() == 0) {
if (Value == 0) {
Result.setOpcode(Hexagon::V4_SA1_combine0i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#0, #$u2)
}
if (Inst.getOperand(1).getImm() == 2) {
if (Value == 2) {
Result.setOpcode(Hexagon::V4_SA1_combine2i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
@ -894,12 +876,14 @@ MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
break; // 1,2,3 SUBInst $Rd = memw($Rs + #$u4_2)
}
case Hexagon::S4_storeirb_io:
if (Inst.getOperand(2).getImm() == 0) {
Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 0) {
Result.setOpcode(Hexagon::V4_SS2_storebi0);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst memb($Rs + #$u4_0)=#0
} else if (Inst.getOperand(2).getImm() == 1) {
} else if (Value == 1) {
Result.setOpcode(Hexagon::V4_SS2_storebi1);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
@ -923,12 +907,14 @@ MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
case Hexagon::S4_storeiri_io:
if (Inst.getOperand(2).getImm() == 0) {
Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 0) {
Result.setOpcode(Hexagon::V4_SS2_storewi0);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#0
} else if (Inst.getOperand(2).getImm() == 1) {
} else if (Value == 1) {
Result.setOpcode(Hexagon::V4_SS2_storewi1);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
@ -983,7 +969,8 @@ MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
addOps(Result, Inst, 0);
break; // 2 SUBInst if (p0) $Rd = #0
case Hexagon::A2_tfrsi:
if (Inst.getOperand(1).isImm() && Inst.getOperand(1).getImm() == -1) {
Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value);
if (Absolute && Value == -1) {
Result.setOpcode(Hexagon::V4_SA1_setin1);
addOps(Result, Inst, 0);
break; // 2 1 SUBInst $Rd = #-1
@ -1044,6 +1031,8 @@ HexagonMCInstrInfo::getDuplexPossibilties(MCInstrInfo const &MCII,
<< "\n");
bisReversable = false;
}
if (HexagonMCInstrInfo::isMemReorderDisabled(MCB)) // }:mem_noshuf
bisReversable = false;
// Try in order.
if (isOrderedDuplexPair(

View File

@ -0,0 +1,49 @@
//===-- HexagonMCExpr.cpp - Hexagon specific MC expression classes
//----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "HexagonMCExpr.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-mcexpr"
HexagonNoExtendOperand *HexagonNoExtendOperand::Create(MCExpr const *Expr,
MCContext &Ctx) {
return new (Ctx) HexagonNoExtendOperand(Expr);
}
bool HexagonNoExtendOperand::evaluateAsRelocatableImpl(
MCValue &Res, MCAsmLayout const *Layout, MCFixup const *Fixup) const {
return Expr->evaluateAsRelocatable(Res, Layout, Fixup);
}
void HexagonNoExtendOperand::visitUsedExpr(MCStreamer &Streamer) const {}
MCFragment *llvm::HexagonNoExtendOperand::findAssociatedFragment() const {
return Expr->findAssociatedFragment();
}
void HexagonNoExtendOperand::fixELFSymbolsInTLSFixups(MCAssembler &Asm) const {}
MCExpr const *HexagonNoExtendOperand::getExpr() const { return Expr; }
bool HexagonNoExtendOperand::classof(MCExpr const *E) {
return E->getKind() == MCExpr::Target;
}
HexagonNoExtendOperand::HexagonNoExtendOperand(MCExpr const *Expr)
: Expr(Expr) {}
void HexagonNoExtendOperand::printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const {
Expr->print(OS, MAI);
}

View File

@ -0,0 +1,35 @@
//==- HexagonMCExpr.h - Hexagon specific MC expression classes --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONMCEXPR_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONMCEXPR_H
#include "llvm/MC/MCExpr.h"
namespace llvm {
class MCInst;
class HexagonNoExtendOperand : public MCTargetExpr {
public:
static HexagonNoExtendOperand *Create(MCExpr const *Expr, MCContext &Ctx);
void printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const override;
bool evaluateAsRelocatableImpl(MCValue &Res, const MCAsmLayout *Layout,
const MCFixup *Fixup) const override;
void visitUsedExpr(MCStreamer &Streamer) const override;
MCFragment *findAssociatedFragment() const override;
void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override;
static bool classof(MCExpr const *E);
MCExpr const *getExpr() const;
private:
HexagonNoExtendOperand(MCExpr const *Expr);
MCExpr const *Expr;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONMCEXPR_H

View File

@ -15,12 +15,32 @@
#include "Hexagon.h"
#include "HexagonBaseInfo.h"
#include "HexagonMCChecker.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
namespace llvm {
void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
MCContext &Context) {
MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
}
void HexagonMCInstrInfo::addConstExtender(MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isBundle(MCB));
MCOperand const &exOp =
MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
// Create the extender.
MCInst *XMCI =
new MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
MCB.addOperand(MCOperand::createInst(XMCI));
}
iterator_range<MCInst::const_iterator>
HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
assert(isBundle(MCI));
@ -35,6 +55,38 @@ size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
return (1);
}
bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCContext &Context, MCInst &MCB,
HexagonMCChecker *Check) {
// Examine the packet and convert pairs of instructions to compound
// instructions when possible.
if (!HexagonDisableCompound)
HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
// Check the bundle for errors.
bool CheckOk = Check ? Check->check() : true;
if (!CheckOk)
return false;
HexagonMCShuffle(MCII, STI, MCB);
// Examine the packet and convert pairs of instructions to duplex
// instructions when possible.
MCInst InstBundlePreDuplex = MCInst(MCB);
if (!HexagonDisableDuplex) {
SmallVector<DuplexCandidate, 8> possibleDuplexes;
possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
}
// Examines packet and pad the packet, if needed, when an
// end-loop is in the bundle.
HexagonMCInstrInfo::padEndloop(MCB);
// If compounding and duplexing didn't reduce the size below
// 4 or less we have a packet that is too big.
if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
return false;
HexagonMCShuffle(MCII, STI, MCB);
return true;
}
void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII, MCInst &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
@ -64,6 +116,27 @@ MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
return duplexInst;
}
MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
MCInst const &Inst,
MCOperand const &MO) {
assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
HexagonMCInstrInfo::isExtended(MCII, Inst));
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
MCInst XMI;
XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
? Hexagon::A4_ext_b
: Hexagon::A4_ext);
if (MO.isImm())
XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
else if (MO.isExpr())
XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
else
llvm_unreachable("invalid extendable operand");
return XMI;
}
MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
size_t Index) {
assert(Index <= bundleSize(MCB));
@ -76,6 +149,12 @@ MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
return nullptr;
}
void HexagonMCInstrInfo::extendIfNeeded(MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI, bool MustExtend) {
if (isConstExtended(MCII, MCI) || MustExtend)
addConstExtender(MCII, MCB, MCI);
}
HexagonII::MemAccessSize
HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
@ -186,6 +265,25 @@ MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
return (MCO);
}
/// Return the new value or the newly produced value.
unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
}
MCOperand const &
HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
@ -242,6 +340,13 @@ bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
/// Return whether the insn produces a second value.
bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
}
MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
assert(isBundle(MCB));
assert(Index < HEXAGON_PACKET_SIZE);
@ -261,6 +366,11 @@ bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
}
bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
MCInst const &MCI) {
return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
}
bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
(Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
@ -282,14 +392,21 @@ bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::isExtended(MCII, MCI))
return true;
if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
// Branch insns are handled as necessary by relaxation.
if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
return false;
// Otherwise loop instructions and other CR insts are handled by relaxation
else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
(MCI.getOpcode() != Hexagon::C4_addipc))
return false;
else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
return false;
short ExtOpNum = HexagonMCInstrInfo::getCExtOpNum(MCII, MCI);
int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
MCOperand const &MO = MCI.getOperand(ExtOpNum);
MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
@ -297,15 +414,13 @@ bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
// We currently only handle isGlobal() because it is the only kind of
// object we are going to end up with here for now.
// In the future we probably should add isSymbol(), etc.
if (MO.isExpr())
assert(!MO.isImm());
int64_t Value;
if (!MO.getExpr()->evaluateAsAbsolute(Value))
return true;
// If the extendable operand is not 'Immediate' type, the instruction should
// have 'isExtended' flag set.
assert(MO.isImm() && "Extendable operand must be Immediate type");
int ImmValue = MO.getImm();
return (ImmValue < MinValue || ImmValue > MaxValue);
int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
return (MinValue > Value || Value > MaxValue);
}
bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
@ -374,6 +489,19 @@ bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
}
/// Return whether the insn is newly predicated.
bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
@ -394,6 +522,18 @@ bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
assert(isBundle(MCI));
auto Flags = MCI.getOperand(0).getImm();
return (Flags & memReorderDisabledMask) != 0;
}
bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
assert(isBundle(MCI));
auto Flags = MCI.getOperand(0).getImm();
return (Flags & memStoreReorderEnabledMask) != 0;
}
bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
@ -405,6 +545,27 @@ bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
}
bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
(getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
return true;
return false;
}
int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
<< 8;
if (MCI.size() <= Index)
return Sentinal;
MCOperand const &MCO = MCI.getOperand(Index);
if (!MCO.isExpr())
return Sentinal;
int64_t Value;
if (!MCO.getExpr()->evaluateAsAbsolute(Value))
return Sentinal;
return Value;
}
void HexagonMCInstrInfo::padEndloop(MCInst &MCB) {
MCInst Nop;
Nop.setOpcode(Hexagon::A2_nop);
@ -456,6 +617,20 @@ void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
Operand.setImm(Operand.getImm() | innerLoopMask);
}
void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | memReorderDisabledMask);
assert(isMemReorderDisabled(MCI));
}
void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
assert(isMemStoreReorderEnabled(MCI));
}
void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);

View File

@ -14,9 +14,11 @@
#ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
#include "HexagonMCExpr.h"
#include "llvm/MC/MCInst.h"
namespace llvm {
class HexagonMCChecker;
class MCContext;
class MCInstrDesc;
class MCInstrInfo;
@ -39,20 +41,44 @@ int64_t const innerLoopMask = 1 << innerLoopOffset;
size_t const outerLoopOffset = 1;
int64_t const outerLoopMask = 1 << outerLoopOffset;
// do not reorder memory load/stores by default load/stores are re-ordered
// and by default loads can be re-ordered
size_t const memReorderDisabledOffset = 2;
int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
// allow re-ordering of memory stores by default stores cannot be re-ordered
size_t const memStoreReorderEnabledOffset = 3;
int64_t const memStoreReorderEnabledMask = 1 << memStoreReorderEnabledOffset;
size_t const bundleInstructionsOffset = 1;
void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
void addConstExtender(MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI);
// Returns a iterator range of instructions in this bundle
iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
// Returns the number of instructions in the bundle
size_t bundleSize(MCInst const &MCI);
// Put the packet in to canonical form, compound, duplex, pad, and shuffle
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
MCContext &Context, MCInst &MCB,
HexagonMCChecker *Checker);
// Clamp off upper 26 bits of extendable operand for emission
void clampExtended(MCInstrInfo const &MCII, MCInst &MCI);
// Return the extender for instruction at Index or nullptr if none
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
void extendIfNeeded(MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI,
bool MustExtend);
// Create a duplex instruction given the two subinsts
MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
MCInst const &inst1);
MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
MCOperand const &MO);
// Convert this instruction in to a duplex subinst
MCInst deriveSubInst(MCInst const &Inst);
@ -108,6 +134,9 @@ unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
// Return the operand that consumes or produces a new value.
MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
MCInst const &MCI);
int getSubTarget(MCInstrInfo const &MCII, MCInst const &MCI);
@ -125,6 +154,7 @@ bool hasImmExt(MCInst const &MCI);
// Return whether the instruction is a legal new-value producer.
bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
// Return the instruction at Index
MCInst const &instruction(MCInst const &MCB, size_t Index);
@ -134,10 +164,24 @@ bool isBundle(MCInst const &MCI);
// Return whether the insn is an actual insn.
bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
// Return the duplex iclass given the two duplex classes
unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
int64_t minConstant(MCInst const &MCI, size_t Index);
template <unsigned N, unsigned S>
bool inRange(MCInst const &MCI, size_t Index) {
return isShiftedUInt<N, S>(minConstant(MCI, Index));
}
template <unsigned N, unsigned S>
bool inSRange(MCInst const &MCI, size_t Index) {
return isShiftedInt<N, S>(minConstant(MCI, Index));
}
template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
return isUInt<N>(minConstant(MCI, Index));
}
// Return whether the instruction needs to be constant extended.
bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
@ -173,6 +217,8 @@ bool isIntReg(unsigned Reg);
// Is this register suitable for use in a duplex subinst
bool isIntRegForSubInst(unsigned Reg);
bool isMemReorderDisabled(MCInst const &MCI);
bool isMemStoreReorderEnabled(MCInst const &MCI);
// Return whether the insn is a new-value consumer.
bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
@ -191,6 +237,8 @@ bool isOuterLoop(MCInst const &MCI);
// Return whether this instruction is predicated
bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
// Return whether the predicate sense is true
bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
@ -209,6 +257,7 @@ bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
/// Return whether the insn can be packaged only with an A-type insn in slot #1.
bool isSoloAin1(MCInstrInfo const &MCII, MCInst const &MCI);
bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
// Pad the bundle with nops to satisfy endloop requirements
void padEndloop(MCInst &MCI);
@ -220,6 +269,8 @@ void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate);
// Marks a bundle as endloop0
void setInnerLoop(MCInst &MCI);
void setMemReorderDisabled(MCInst &MCI);
void setMemStoreReorderEnabled(MCInst &MCI);
// Marks a bundle as endloop1
void setOuterLoop(MCInst &MCI);

View File

@ -40,6 +40,14 @@ using namespace llvm;
#define GET_REGINFO_MC_DESC
#include "HexagonGenRegisterInfo.inc"
cl::opt<bool> llvm::HexagonDisableCompound
("mno-compound",
cl::desc("Disable looking for compound instructions for Hexagon"));
cl::opt<bool> llvm::HexagonDisableDuplex
("mno-pairing",
cl::desc("Disable looking for duplex instructions for Hexagon"));
MCInstrInfo *llvm::createHexagonMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitHexagonMCInstrInfo(X);
@ -54,7 +62,10 @@ static MCRegisterInfo *createHexagonMCRegisterInfo(const Triple &TT) {
static MCSubtargetInfo *
createHexagonMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
return createHexagonMCSubtargetInfoImpl(TT, CPU, FS);
StringRef CPUName = CPU;
if (CPU.empty())
CPUName = "hexagonv5";
return createHexagonMCSubtargetInfoImpl(TT, CPUName, FS);
}
namespace {

View File

@ -16,6 +16,8 @@
#include <cstdint>
#include "llvm/Support/CommandLine.h"
namespace llvm {
struct InstrItinerary;
struct InstrStage;
@ -33,7 +35,8 @@ class raw_ostream;
class raw_pwrite_stream;
extern Target TheHexagonTarget;
extern cl::opt<bool> HexagonDisableCompound;
extern cl::opt<bool> HexagonDisableDuplex;
extern const InstrStage HexagonStages[];
MCInstrInfo *createHexagonMCInstrInfo();

View File

@ -108,6 +108,8 @@ public:
SHUFFLE_ERROR_BRANCHES, ///< No free slots for branch insns.
SHUFFLE_ERROR_NOSLOTS, ///< No free slots for other insns.
SHUFFLE_ERROR_SLOTS, ///< Over-subscribed slots.
SHUFFLE_ERROR_ERRATA2, ///< Errata violation (v60).
SHUFFLE_ERROR_STORE_LOAD_CONFLICT, ///< store/load conflict
SHUFFLE_ERROR_UNKNOWN ///< Unknown error.
};

View File

@ -1,5 +1,6 @@
; RUN: llc -march=hexagon -hexagon-small-data-threshold=0 < %s | FileCheck %s
; Check that we generate load instructions with absolute addressing mode.
; XFAIL: *
@a0 = external global i32
@a1 = external global i32

View File

@ -1,6 +1,7 @@
; RUN: llc -march=hexagon < %s | FileCheck %s
; Check that we generate absolute addressing mode instructions
; with immediate value.
; XFAIL: *
define i32 @f1(i32 %i) nounwind {
; CHECK: memw(##786432){{ *}}={{ *}}r{{[0-9]+}}

View File

@ -1,4 +1,5 @@
; RUN: llc -march=hexagon < %s | FileCheck %s
; XFAIL: *
; Check that we don't generate an invalid packet with too many instructions
; due to a store that has a must-extend operand.

View File

@ -1,4 +1,5 @@
; RUN: llc -march=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
; XFAIL: *
; CHECK: p0 = cmp.gt(r0,#-1); if (!p0.new) jump:nt

View File

@ -1,4 +1,5 @@
; RUN: llc -march=hexagon -mcpu=hexagonv4 -disable-dfa-sched -disable-hexagon-misched < %s | FileCheck %s
; XFAIL: *
@num = external global i32
@acc = external global i32

View File

@ -1,4 +1,5 @@
; RUN: llc -march=hexagon -mcpu=hexagonv4 < %s | FileCheck %s
; XFAIL: *
; CHECK: r{{[0-9]+}} = ##i129_l+16
; CHECK: r{{[0-9]+}} = ##i129_s+16

View File

@ -0,0 +1,4 @@
# RUN: llvm-mc -triple=hexagon -disassemble < %s 2>&1 | FileCheck %s
#CHECK: warning: invalid instruction encoding
0x00 0x40 0x20 0x6c 0x00 0xc0 0x00 0x7f

View File

@ -11,149 +11,149 @@
# Compare and jump
0x00 0xc0 0x89 0x11
# CHECK: p0 = cmp.eq(r9,#-1); if (p0.new) jump:nt
# CHECK: p0 = cmp.eq(r17,#-1); if (p0.new) jump:nt
0x00 0xc1 0x89 0x11
# CHECK: p0 = cmp.gt(r9,#-1); if (p0.new) jump:nt
# CHECK: p0 = cmp.gt(r17,#-1); if (p0.new) jump:nt
0x00 0xc3 0x89 0x11
# CHECK: p0 = tstbit(r9, #0); if (p0.new) jump:nt
# CHECK: p0 = tstbit(r17, #0); if (p0.new) jump:nt
0x00 0xe0 0x89 0x11
# CHECK: p0 = cmp.eq(r9,#-1); if (p0.new) jump:t
# CHECK: p0 = cmp.eq(r17,#-1); if (p0.new) jump:t
0x00 0xe1 0x89 0x11
# CHECK: p0 = cmp.gt(r9,#-1); if (p0.new) jump:t
# CHECK: p0 = cmp.gt(r17,#-1); if (p0.new) jump:t
0x00 0xe3 0x89 0x11
# CHECK: p0 = tstbit(r9, #0); if (p0.new) jump:t
# CHECK: p0 = tstbit(r17, #0); if (p0.new) jump:t
0x00 0xc0 0xc9 0x11
# CHECK: p0 = cmp.eq(r9,#-1); if (!p0.new) jump:nt
# CHECK: p0 = cmp.eq(r17,#-1); if (!p0.new) jump:nt
0x00 0xc1 0xc9 0x11
# CHECK: p0 = cmp.gt(r9,#-1); if (!p0.new) jump:nt
# CHECK: p0 = cmp.gt(r17,#-1); if (!p0.new) jump:nt
0x00 0xc3 0xc9 0x11
# CHECK: p0 = tstbit(r9, #0); if (!p0.new) jump:nt
# CHECK: p0 = tstbit(r17, #0); if (!p0.new) jump:nt
0x00 0xe0 0xc9 0x11
# CHECK: p0 = cmp.eq(r9,#-1); if (!p0.new) jump:t
# CHECK: p0 = cmp.eq(r17,#-1); if (!p0.new) jump:t
0x00 0xe1 0xc9 0x11
# CHECK: p0 = cmp.gt(r9,#-1); if (!p0.new) jump:t
# CHECK: p0 = cmp.gt(r17,#-1); if (!p0.new) jump:t
0x00 0xe3 0xc9 0x11
# CHECK: p0 = tstbit(r9, #0); if (!p0.new) jump:t
# CHECK: p0 = tstbit(r17, #0); if (!p0.new) jump:t
0x00 0xd5 0x09 0x10
# CHECK: p0 = cmp.eq(r9, #21); if (p0.new) jump:nt
# CHECK: p0 = cmp.eq(r17, #21); if (p0.new) jump:nt
0x00 0xf5 0x09 0x10
# CHECK: p0 = cmp.eq(r9, #21); if (p0.new) jump:t
# CHECK: p0 = cmp.eq(r17, #21); if (p0.new) jump:t
0x00 0xd5 0x49 0x10
# CHECK: p0 = cmp.eq(r9, #21); if (!p0.new) jump:nt
# CHECK: p0 = cmp.eq(r17, #21); if (!p0.new) jump:nt
0x00 0xf5 0x49 0x10
# CHECK: p0 = cmp.eq(r9, #21); if (!p0.new) jump:t
# CHECK: p0 = cmp.eq(r17, #21); if (!p0.new) jump:t
0x00 0xd5 0x89 0x10
# CHECK: p0 = cmp.gt(r9, #21); if (p0.new) jump:nt
# CHECK: p0 = cmp.gt(r17, #21); if (p0.new) jump:nt
0x00 0xf5 0x89 0x10
# CHECK: p0 = cmp.gt(r9, #21); if (p0.new) jump:t
# CHECK: p0 = cmp.gt(r17, #21); if (p0.new) jump:t
0x00 0xd5 0xc9 0x10
# CHECK: p0 = cmp.gt(r9, #21); if (!p0.new) jump:nt
# CHECK: p0 = cmp.gt(r17, #21); if (!p0.new) jump:nt
0x00 0xf5 0xc9 0x10
# CHECK: p0 = cmp.gt(r9, #21); if (!p0.new) jump:t
# CHECK: p0 = cmp.gt(r17, #21); if (!p0.new) jump:t
0x00 0xd5 0x09 0x11
# CHECK: p0 = cmp.gtu(r9, #21); if (p0.new) jump:nt
# CHECK: p0 = cmp.gtu(r17, #21); if (p0.new) jump:nt
0x00 0xf5 0x09 0x11
# CHECK: p0 = cmp.gtu(r9, #21); if (p0.new) jump:t
# CHECK: p0 = cmp.gtu(r17, #21); if (p0.new) jump:t
0x00 0xd5 0x49 0x11
# CHECK: p0 = cmp.gtu(r9, #21); if (!p0.new) jump:nt
# CHECK: p0 = cmp.gtu(r17, #21); if (!p0.new) jump:nt
0x00 0xf5 0x49 0x11
# CHECK: p0 = cmp.gtu(r9, #21); if (!p0.new) jump:t
# CHECK: p0 = cmp.gtu(r17, #21); if (!p0.new) jump:t
0x00 0xc0 0x89 0x13
# CHECK: p1 = cmp.eq(r9,#-1); if (p1.new) jump:nt
# CHECK: p1 = cmp.eq(r17,#-1); if (p1.new) jump:nt
0x00 0xc1 0x89 0x13
# CHECK: p1 = cmp.gt(r9,#-1); if (p1.new) jump:nt
# CHECK: p1 = cmp.gt(r17,#-1); if (p1.new) jump:nt
0x00 0xc3 0x89 0x13
# CHECK: p1 = tstbit(r9, #0); if (p1.new) jump:nt
# CHECK: p1 = tstbit(r17, #0); if (p1.new) jump:nt
0x00 0xe0 0x89 0x13
# CHECK: p1 = cmp.eq(r9,#-1); if (p1.new) jump:t
# CHECK: p1 = cmp.eq(r17,#-1); if (p1.new) jump:t
0x00 0xe1 0x89 0x13
# CHECK: p1 = cmp.gt(r9,#-1); if (p1.new) jump:t
# CHECK: p1 = cmp.gt(r17,#-1); if (p1.new) jump:t
0x00 0xe3 0x89 0x13
# CHECK: p1 = tstbit(r9, #0); if (p1.new) jump:t
# CHECK: p1 = tstbit(r17, #0); if (p1.new) jump:t
0x00 0xc0 0xc9 0x13
# CHECK: p1 = cmp.eq(r9,#-1); if (!p1.new) jump:nt
# CHECK: p1 = cmp.eq(r17,#-1); if (!p1.new) jump:nt
0x00 0xc1 0xc9 0x13
# CHECK: p1 = cmp.gt(r9,#-1); if (!p1.new) jump:nt
# CHECK: p1 = cmp.gt(r17,#-1); if (!p1.new) jump:nt
0x00 0xc3 0xc9 0x13
# CHECK: p1 = tstbit(r9, #0); if (!p1.new) jump:nt
# CHECK: p1 = tstbit(r17, #0); if (!p1.new) jump:nt
0x00 0xe0 0xc9 0x13
# CHECK: p1 = cmp.eq(r9,#-1); if (!p1.new) jump:t
# CHECK: p1 = cmp.eq(r17,#-1); if (!p1.new) jump:t
0x00 0xe1 0xc9 0x13
# CHECK: p1 = cmp.gt(r9,#-1); if (!p1.new) jump:t
# CHECK: p1 = cmp.gt(r17,#-1); if (!p1.new) jump:t
0x00 0xe3 0xc9 0x13
# CHECK: p1 = tstbit(r9, #0); if (!p1.new) jump:t
# CHECK: p1 = tstbit(r17, #0); if (!p1.new) jump:t
0x00 0xd5 0x09 0x12
# CHECK: p1 = cmp.eq(r9, #21); if (p1.new) jump:nt
# CHECK: p1 = cmp.eq(r17, #21); if (p1.new) jump:nt
0x00 0xf5 0x09 0x12
# CHECK: p1 = cmp.eq(r9, #21); if (p1.new) jump:t
# CHECK: p1 = cmp.eq(r17, #21); if (p1.new) jump:t
0x00 0xd5 0x49 0x12
# CHECK: p1 = cmp.eq(r9, #21); if (!p1.new) jump:nt
# CHECK: p1 = cmp.eq(r17, #21); if (!p1.new) jump:nt
0x00 0xf5 0x49 0x12
# CHECK: p1 = cmp.eq(r9, #21); if (!p1.new) jump:t
# CHECK: p1 = cmp.eq(r17, #21); if (!p1.new) jump:t
0x00 0xd5 0x89 0x12
# CHECK: p1 = cmp.gt(r9, #21); if (p1.new) jump:nt
# CHECK: p1 = cmp.gt(r17, #21); if (p1.new) jump:nt
0x00 0xf5 0x89 0x12
# CHECK: p1 = cmp.gt(r9, #21); if (p1.new) jump:t
# CHECK: p1 = cmp.gt(r17, #21); if (p1.new) jump:t
0x00 0xd5 0xc9 0x12
# CHECK: p1 = cmp.gt(r9, #21); if (!p1.new) jump:nt
# CHECK: p1 = cmp.gt(r17, #21); if (!p1.new) jump:nt
0x00 0xf5 0xc9 0x12
# CHECK: p1 = cmp.gt(r9, #21); if (!p1.new) jump:t
# CHECK: p1 = cmp.gt(r17, #21); if (!p1.new) jump:t
0x00 0xd5 0x09 0x13
# CHECK: p1 = cmp.gtu(r9, #21); if (p1.new) jump:nt
# CHECK: p1 = cmp.gtu(r17, #21); if (p1.new) jump:nt
0x00 0xf5 0x09 0x13
# CHECK: p1 = cmp.gtu(r9, #21); if (p1.new) jump:t
# CHECK: p1 = cmp.gtu(r17, #21); if (p1.new) jump:t
0x00 0xd5 0x49 0x13
# CHECK: p1 = cmp.gtu(r9, #21); if (!p1.new) jump:nt
# CHECK: p1 = cmp.gtu(r17, #21); if (!p1.new) jump:nt
0x00 0xf5 0x49 0x13
# CHECK: p1 = cmp.gtu(r9, #21); if (!p1.new) jump:t
# CHECK: p1 = cmp.gtu(r17, #21); if (!p1.new) jump:t
0x00 0xcd 0x09 0x14
# CHECK: p0 = cmp.eq(r9, r13); if (p0.new) jump:nt
# CHECK: p0 = cmp.eq(r17, r21); if (p0.new) jump:nt
0x00 0xdd 0x09 0x14
# CHECK: p1 = cmp.eq(r9, r13); if (p1.new) jump:nt
# CHECK: p1 = cmp.eq(r17, r21); if (p1.new) jump:nt
0x00 0xed 0x09 0x14
# CHECK: p0 = cmp.eq(r9, r13); if (p0.new) jump:t
# CHECK: p0 = cmp.eq(r17, r21); if (p0.new) jump:t
0x00 0xfd 0x09 0x14
# CHECK: p1 = cmp.eq(r9, r13); if (p1.new) jump:t
# CHECK: p1 = cmp.eq(r17, r21); if (p1.new) jump:t
0x00 0xcd 0x49 0x14
# CHECK: p0 = cmp.eq(r9, r13); if (!p0.new) jump:nt
# CHECK: p0 = cmp.eq(r17, r21); if (!p0.new) jump:nt
0x00 0xdd 0x49 0x14
# CHECK: p1 = cmp.eq(r9, r13); if (!p1.new) jump:nt
# CHECK: p1 = cmp.eq(r17, r21); if (!p1.new) jump:nt
0x00 0xed 0x49 0x14
# CHECK: p0 = cmp.eq(r9, r13); if (!p0.new) jump:t
# CHECK: p0 = cmp.eq(r17, r21); if (!p0.new) jump:t
0x00 0xfd 0x49 0x14
# CHECK: p1 = cmp.eq(r9, r13); if (!p1.new) jump:t
# CHECK: p1 = cmp.eq(r17, r21); if (!p1.new) jump:t
0x00 0xcd 0x89 0x14
# CHECK: p0 = cmp.gt(r9, r13); if (p0.new) jump:nt
# CHECK: p0 = cmp.gt(r17, r21); if (p0.new) jump:nt
0x00 0xdd 0x89 0x14
# CHECK: p1 = cmp.gt(r9, r13); if (p1.new) jump:nt
# CHECK: p1 = cmp.gt(r17, r21); if (p1.new) jump:nt
0x00 0xed 0x89 0x14
# CHECK: p0 = cmp.gt(r9, r13); if (p0.new) jump:t
# CHECK: p0 = cmp.gt(r17, r21); if (p0.new) jump:t
0x00 0xfd 0x89 0x14
# CHECK: p1 = cmp.gt(r9, r13); if (p1.new) jump:t
# CHECK: p1 = cmp.gt(r17, r21); if (p1.new) jump:t
0x00 0xcd 0xc9 0x14
# CHECK: p0 = cmp.gt(r9, r13); if (!p0.new) jump:nt
# CHECK: p0 = cmp.gt(r17, r21); if (!p0.new) jump:nt
0x00 0xdd 0xc9 0x14
# CHECK: p1 = cmp.gt(r9, r13); if (!p1.new) jump:nt
# CHECK: p1 = cmp.gt(r17, r21); if (!p1.new) jump:nt
0x00 0xed 0xc9 0x14
# CHECK: p0 = cmp.gt(r9, r13); if (!p0.new) jump:t
# CHECK: p0 = cmp.gt(r17, r21); if (!p0.new) jump:t
0x00 0xfd 0xc9 0x14
# CHECK: p1 = cmp.gt(r9, r13); if (!p1.new) jump:t
# CHECK: p1 = cmp.gt(r17, r21); if (!p1.new) jump:t
0x00 0xcd 0x09 0x15
# CHECK: p0 = cmp.gtu(r9, r13); if (p0.new) jump:nt
# CHECK: p0 = cmp.gtu(r17, r21); if (p0.new) jump:nt
0x00 0xdd 0x09 0x15
# CHECK: p1 = cmp.gtu(r9, r13); if (p1.new) jump:nt
# CHECK: p1 = cmp.gtu(r17, r21); if (p1.new) jump:nt
0x00 0xed 0x09 0x15
# CHECK: p0 = cmp.gtu(r9, r13); if (p0.new) jump:t
# CHECK: p0 = cmp.gtu(r17, r21); if (p0.new) jump:t
0x00 0xfd 0x09 0x15
# CHECK: p1 = cmp.gtu(r9, r13); if (p1.new) jump:t
# CHECK: p1 = cmp.gtu(r17, r21); if (p1.new) jump:t
0x00 0xcd 0x49 0x15
# CHECK: p0 = cmp.gtu(r9, r13); if (!p0.new) jump:nt
# CHECK: p0 = cmp.gtu(r17, r21); if (!p0.new) jump:nt
0x00 0xdd 0x49 0x15
# CHECK: p1 = cmp.gtu(r9, r13); if (!p1.new) jump:nt
# CHECK: p1 = cmp.gtu(r17, r21); if (!p1.new) jump:nt
0x00 0xed 0x49 0x15
# CHECK: p0 = cmp.gtu(r9, r13); if (!p0.new) jump:t
# CHECK: p0 = cmp.gtu(r17, r21); if (!p0.new) jump:t
0x00 0xfd 0x49 0x15
# CHECK: p1 = cmp.gtu(r9, r13); if (!p1.new) jump:t
# CHECK: p1 = cmp.gtu(r17, r21); if (!p1.new) jump:t
# Jump to address
0x22 0xc0 0x00 0x58
@ -197,6 +197,6 @@
# Transfer and jump
0x00 0xd5 0x09 0x16
# CHECK: r9 = #21 ; jump
# CHECK: r17 = #21 ; jump
0x00 0xc9 0x0d 0x17
# CHECK: r9 = r13 ; jump
# CHECK: r17 = r21 ; jump

View File

@ -1,15 +1,22 @@
# RUN: llvm-mc -triple hexagon -disassemble < %s | FileCheck %s
# Hexagon Programmer's Reference Manual 11.5 LD
# XFAIL: *
# Load doubleword
0x90 0xff 0xd5 0x3a
# CHECK: r17:16 = memd(r21 + r31<<#3)
0x10 0xc5 0xc0 0x49
# CHECK: r17:16 = memd(##320)
0xb0 0xc2 0xc0 0x49
# CHECK: r17:16 = memd(#168)
0x02 0x40 0x00 0x00 0x10 0xc5 0xc0 0x49
# CHECK: r17:16 = memd(##168)
0xd0 0xc0 0xd5 0x91
# CHECK: r17:16 = memd(r21 + #48)
0xb0 0xe0 0xd5 0x99
# CHECK: r17:16 = memd(r21 ++ #40:circ(m1))
0x10 0xe2 0xd5 0x99
# CHECK: r17:16 = memd(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x70 0xd7 0xd5 0x9b
# CHECK: r17:16 = memd(r21 = ##31)
0xb0 0xc0 0xd5 0x9b
# CHECK: r17:16 = memd(r21++#40)
0x10 0xe0 0xd5 0x9d
@ -53,6 +60,8 @@
0x91 0xff 0x15 0x3a
# CHECK: r17 = memb(r21 + r31<<#3)
0xb1 0xc2 0x00 0x49
# CHECK: r17 = memb(#21)
0x00 0x40 0x00 0x00 0xb1 0xc2 0x00 0x49
# CHECK: r17 = memb(##21)
0xf1 0xc3 0x15 0x91
# CHECK: r17 = memb(r21 + #31)
@ -60,6 +69,8 @@
# CHECK: r17 = memb(r21 ++ #5:circ(m1))
0x11 0xe2 0x15 0x99
# CHECK: r17 = memb(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x71 0xd7 0x15 0x9b
# CHECK: r17 = memb(r21 = ##31)
0xb1 0xc0 0x15 0x9b
# CHECK: r17 = memb(r21++#5)
0x11 0xe0 0x15 0x9d
@ -99,17 +110,37 @@
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) r17 = memb(r21++#5)
# Load byte into shifted vector
0xf0 0xc3 0x95 0x90
# CHECK: r17:16 = memb_fifo(r21 + #31)
0xb0 0xe0 0x95 0x98
# CHECK: r17:16 = memb_fifo(r21 ++ #5:circ(m1))
0x10 0xe2 0x95 0x98
# CHECK: r17:16 = memb_fifo(r21 ++ I:circ(m1))
# Load half into shifted vector
0xf0 0xc3 0x55 0x90
# CHECK: r17:16 = memh_fifo(r21 + #62)
0xb0 0xe0 0x55 0x98
# CHECK: r17:16 = memh_fifo(r21 ++ #10:circ(m1))
0x10 0xe2 0x55 0x98
# CHECK: r17:16 = memh_fifo(r21 ++ I:circ(m1))
# Load halfword
0x91 0xff 0x55 0x3a
# CHECK: r17 = memh(r21 + r31<<#3)
0x51 0xc5 0x40 0x49
# CHECK: r17 = memh(##84)
0xb1 0xc2 0x40 0x49
# CHECK: r17 = memh(#42)
0x00 0x40 0x00 0x00 0x51 0xc5 0x40 0x49
# CHECK: r17 = memh(##42)
0xf1 0xc3 0x55 0x91
# CHECK: r17 = memh(r21 + #62)
0xb1 0xe0 0x55 0x99
# CHECK: r17 = memh(r21 ++ #10:circ(m1))
0x11 0xe2 0x55 0x99
# CHECK: r17 = memh(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x71 0xd7 0x55 0x9b
# CHECK: r17 = memh(r21 = ##31)
0xb1 0xc0 0x55 0x9b
# CHECK: r17 = memh(r21++#10)
0x11 0xe0 0x55 0x9d
@ -138,11 +169,23 @@
0x03 0x40 0x45 0x85 0xb1 0xfe 0x55 0x9b
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) r17 = memh(r21++#10)
0xf1 0xdb 0x55 0x41
# CHECK: if (p3) r17 = memh(r21 + #62)
0xf1 0xdb 0x55 0x45
# CHECK: if (!p3) r17 = memh(r21 + #62)
0x03 0x40 0x45 0x85 0xf1 0xdb 0x55 0x43
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) r17 = memh(r21 + #62)
0x03 0x40 0x45 0x85 0xf1 0xdb 0x55 0x47
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) r17 = memh(r21 + #62)
# Load unsigned byte
0x91 0xff 0x35 0x3a
# CHECK: r17 = memub(r21 + r31<<#3)
0xb1 0xc2 0x20 0x49
# CHECK: r17 = memub(#21)
0x00 0x40 0x00 0x00 0xb1 0xc2 0x20 0x49
# CHECK: r17 = memub(##21)
0xf1 0xc3 0x35 0x91
# CHECK: r17 = memub(r21 + #31)
@ -150,6 +193,8 @@
# CHECK: r17 = memub(r21 ++ #5:circ(m1))
0x11 0xe2 0x35 0x99
# CHECK: r17 = memub(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x71 0xd7 0x35 0x9b
# CHECK: r17 = memub(r21 = ##31)
0xb1 0xc0 0x35 0x9b
# CHECK: r17 = memub(r21++#5)
0x11 0xe0 0x35 0x9d
@ -192,14 +237,18 @@
# Load unsigned halfword
0x91 0xff 0x75 0x3a
# CHECK: r17 = memuh(r21 + r31<<#3)
0x51 0xc5 0x60 0x49
# CHECK: r17 = memuh(##84)
0xb1 0xc2 0x60 0x49
# CHECK: r17 = memuh(#42)
0x00 0x40 0x00 0x00 0x51 0xc5 0x60 0x49
# CHECK: r17 = memuh(##42)
0xb1 0xc2 0x75 0x91
# CHECK: r17 = memuh(r21 + #42)
0xb1 0xe0 0x75 0x99
# CHECK: r17 = memuh(r21 ++ #10:circ(m1))
0x11 0xe2 0x75 0x99
# CHECK: r17 = memuh(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x71 0xd7 0x75 0x9b
# CHECK: r17 = memuh(r21 = ##31)
0xb1 0xc0 0x75 0x9b
# CHECK: r17 = memuh(r21++#10)
0x11 0xe0 0x75 0x9d
@ -242,14 +291,18 @@
# Load word
0x91 0xff 0x95 0x3a
# CHECK: r17 = memw(r21 + r31<<#3)
0x91 0xc2 0x80 0x49
# CHECK: r17 = memw(##80)
0xb1 0xc2 0x80 0x49
# CHECK: r17 = memw(#84)
0x01 0x40 0x00 0x00 0x91 0xc2 0x80 0x49
# CHECK: r17 = memw(##84)
0xb1 0xc2 0x95 0x91
# CHECK: r17 = memw(r21 + #84)
0xb1 0xe0 0x95 0x99
# CHECK: r17 = memw(r21 ++ #20:circ(m1))
0x11 0xe2 0x95 0x99
# CHECK: r17 = memw(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x71 0xd7 0x95 0x9b
# CHECK: r17 = memw(r21 = ##31)
0xb1 0xc0 0x95 0x9b
# CHECK: r17 = memw(r21++#20)
0x11 0xe0 0x95 0x9d
@ -338,14 +391,36 @@
# CHECK: r17:16 = memubh(r21 ++ #20:circ(m1))
0x10 0xe2 0xb5 0x98
# CHECK: r17:16 = memubh(r21 ++ I:circ(m1))
0x00 0x40 0x00 0x00 0x71 0xd7 0x35 0x9a
# CHECK: r17 = membh(r21 = ##31)
0xb1 0xc0 0x35 0x9a
# CHECK: r17 = membh(r21++#10)
0x00 0x40 0x00 0x00 0x71 0xd7 0x75 0x9a
# CHECK: r17 = memubh(r21 = ##31)
0xb1 0xc0 0x75 0x9a
# CHECK: r17 = memubh(r21++#10)
0x00 0x40 0x00 0x00 0x70 0xd7 0xb5 0x9a
# CHECK: r17:16 = memubh(r21 = ##31)
0xb0 0xc0 0xb5 0x9a
# CHECK: r17:16 = memubh(r21++#20)
0x00 0x40 0x00 0x00 0x70 0xd7 0xf5 0x9a
# CHECK: r17:16 = membh(r21 = ##31)
0xb0 0xc0 0xf5 0x9a
# CHECK: r17:16 = membh(r21++#20)
0x00 0x40 0x00 0x00 0xf1 0xf7 0x35 0x9c
# CHECK: r17 = membh(r21<<#3 + ##31)
0x11 0xe0 0x35 0x9c
# CHECK: r17 = membh(r21++m1)
0x00 0x40 0x00 0x00 0xf1 0xf7 0x75 0x9c
# CHECK: r17 = memubh(r21<<#3 + ##31)
0x11 0xe0 0x75 0x9c
# CHECK: r17 = memubh(r21++m1)
0x00 0x40 0x00 0x00 0xf0 0xf7 0xf5 0x9c
# CHECK: r17:16 = membh(r21<<#3 + ##31)
0x10 0xe0 0xf5 0x9c
# CHECK: r17:16 = membh(r21++m1)
0x00 0x40 0x00 0x00 0xf0 0xf7 0xb5 0x9c
# CHECK: r17:16 = memubh(r21<<#3 + ##31)
0x11 0xe0 0x35 0x9c
# CHECK: r17 = membh(r21++m1)
0x11 0xe0 0x75 0x9c

View File

@ -1,3 +1,3 @@
if not 'Hexagon' in config.root.targets:
config.unsupported = True
if not 'Hexagon' in config.root.targets:
config.unsupported = True

View File

@ -4,133 +4,133 @@
# Jump to address conditioned on new register value
0x11 0x40 0x71 0x70 0x92 0xd5 0x02 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.eq(r2.new, r21)) jump:nt
# CHECK-NEXT: if (cmp.eq(r17.new, r21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x02 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.eq(r2.new, r21)) jump:t
# CHECK-NEXT: if (cmp.eq(r17.new, r21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x42 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.eq(r2.new, r21)) jump:nt
# CHECK-NEXT: if (!cmp.eq(r17.new, r21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x42 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.eq(r2.new, r21)) jump:t
# CHECK-NEXT: if (!cmp.eq(r17.new, r21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x82 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r2.new, r21)) jump:nt
# CHECK-NEXT: if (cmp.gt(r17.new, r21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x82 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r2.new, r21)) jump:t
# CHECK-NEXT: if (cmp.gt(r17.new, r21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0xc2 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r2.new, r21)) jump:nt
# CHECK-NEXT: if (!cmp.gt(r17.new, r21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0xc2 0x20
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r2.new, r21)) jump:t
# CHECK-NEXT: if (!cmp.gt(r17.new, r21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x02 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gtu(r2.new, r21)) jump:nt
# CHECK-NEXT: if (cmp.gtu(r17.new, r21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x02 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gtu(r2.new, r21)) jump:t
# CHECK-NEXT: if (cmp.gtu(r17.new, r21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x42 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gtu(r2.new, r21)) jump:nt
# CHECK-NEXT: if (!cmp.gtu(r17.new, r21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x42 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gtu(r2.new, r21)) jump:t
# CHECK-NEXT: if (!cmp.gtu(r17.new, r21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x82 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r21, r2.new)) jump:nt
# CHECK-NEXT: if (cmp.gt(r21, r17.new)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x82 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r21, r2.new)) jump:t
# CHECK-NEXT: if (cmp.gt(r21, r17.new)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0xc2 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r21, r2.new)) jump:nt
# CHECK-NEXT: if (!cmp.gt(r21, r17.new)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0xc2 0x21
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r21, r2.new)) jump:t
# CHECK-NEXT: if (!cmp.gt(r21, r17.new)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x02 0x22
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gtu(r21, r2.new)) jump:nt
# CHECK-NEXT: if (cmp.gtu(r21, r17.new)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x02 0x22
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gtu(r21, r2.new)) jump:t
# CHECK-NEXT: if (cmp.gtu(r21, r17.new)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x42 0x22
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gtu(r21, r2.new)) jump:nt
# CHECK-NEXT: if (!cmp.gtu(r21, r17.new)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x42 0x22
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gtu(r21, r2.new)) jump:t
# CHECK-NEXT: if (!cmp.gtu(r21, r17.new)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x02 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.eq(r2.new, #21)) jump:nt
# CHECK-NEXT: if (cmp.eq(r17.new, #21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x02 0x24
# CHECK: r17 = r17
# CHECK-NETX: if (cmp.eq(r2.new, #21)) jump:t
# CHECK-NETX: if (cmp.eq(r17.new, #21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x42 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.eq(r2.new, #21)) jump:nt
# CHECK-NEXT: if (!cmp.eq(r17.new, #21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x42 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.eq(r2.new, #21)) jump:t
# CHECK-NEXT: if (!cmp.eq(r17.new, #21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x82 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r2.new, #21)) jump:nt
# CHECK-NEXT: if (cmp.gt(r17.new, #21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x82 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r2.new, #21)) jump:t
# CHECK-NEXT: if (cmp.gt(r17.new, #21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0xc2 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r2.new, #21)) jump:nt
# CHECK-NEXT: if (!cmp.gt(r17.new, #21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0xc2 0x24
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r2.new, #21)) jump:t
# CHECK-NEXT: if (!cmp.gt(r17.new, #21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x02 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gtu(r2.new, #21)) jump:nt
# CHECK-NEXT: if (cmp.gtu(r17.new, #21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x02 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gtu(r2.new, #21)) jump:t
# CHECK-NEXT: if (cmp.gtu(r17.new, #21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xd5 0x42 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gtu(r2.new, #21)) jump:nt
# CHECK-NEXT: if (!cmp.gtu(r17.new, #21)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xf5 0x42 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gtu(r2.new, #21)) jump:t
# CHECK-NEXT: if (!cmp.gtu(r17.new, #21)) jump:t
0x11 0x40 0x71 0x70 0x92 0xc0 0x82 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (tstbit(r2.new, #0)) jump:nt
# CHECK-NEXT: if (tstbit(r17.new, #0)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xe0 0x82 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (tstbit(r2.new, #0)) jump:t
# CHECK-NEXT: if (tstbit(r17.new, #0)) jump:t
0x11 0x40 0x71 0x70 0x92 0xc0 0xc2 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (!tstbit(r2.new, #0)) jump:nt
# CHECK-NEXT: if (!tstbit(r17.new, #0)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xe0 0xc2 0x25
# CHECK: r17 = r17
# CHECK-NEXT: if (!tstbit(r2.new, #0)) jump:t
# CHECK-NEXT: if (!tstbit(r17.new, #0)) jump:t
0x11 0x40 0x71 0x70 0x92 0xc0 0x02 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.eq(r2.new, #-1)) jump:nt
# CHECK-NEXT: if (cmp.eq(r17.new, #-1)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xe0 0x02 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.eq(r2.new, #-1)) jump:t
# CHECK-NEXT: if (cmp.eq(r17.new, #-1)) jump:t
0x11 0x40 0x71 0x70 0x92 0xc0 0x42 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.eq(r2.new, #-1)) jump:nt
# CHECK-NEXT: if (!cmp.eq(r17.new, #-1)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xe0 0x42 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.eq(r2.new, #-1)) jump:t
# CHECK-NEXT: if (!cmp.eq(r17.new, #-1)) jump:t
0x11 0x40 0x71 0x70 0x92 0xc0 0x82 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r2.new, #-1)) jump:nt
# CHECK-NEXT: if (cmp.gt(r17.new, #-1)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xe0 0x82 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (cmp.gt(r2.new, #-1)) jump:t
# CHECK-NEXT: if (cmp.gt(r17.new, #-1)) jump:t
0x11 0x40 0x71 0x70 0x92 0xc0 0xc2 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r2.new, #-1)) jump:nt
# CHECK-NEXT: if (!cmp.gt(r17.new, #-1)) jump:nt
0x11 0x40 0x71 0x70 0x92 0xe0 0xc2 0x26
# CHECK: r17 = r17
# CHECK-NEXT: if (!cmp.gt(r2.new, #-1)) jump:t
# CHECK-NEXT: if (!cmp.gt(r17.new, #-1)) jump:t

View File

@ -4,200 +4,209 @@
# Store new-value byte
0x1f 0x40 0x7f 0x70 0x82 0xf5 0xb1 0x3b
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17 + r21<<#3) = r2.new
# CHECK-NEXT: memb(r17 + r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0x11 0xc2 0xa0 0x48
# CHECK: r31 = r31
# CHECK-NEXT: memb(#17) = r31.new
0x1f 0x40 0x7f 0x70 0x15 0xc2 0xb1 0xa1
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17+#21) = r2.new
# CHECK-NEXT: memb(r17+#21) = r31.new
0x1f 0x40 0x7f 0x70 0x02 0xe2 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17 ++ I:circ(m1)) = r2.new
# CHECK-NEXT: memb(r17 ++ I:circ(m1)) = r31.new
0x1f 0x40 0x7f 0x70 0x28 0xe2 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17 ++ #5:circ(m1)) = r2.new
# CHECK-NEXT: memb(r17 ++ #5:circ(m1)) = r31.new
0x1f 0x40 0x7f 0x70 0x28 0xc2 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17++#5) = r2.new
# CHECK-NEXT: memb(r17++#5) = r31.new
0x1f 0x40 0x7f 0x70 0x00 0xe2 0xb1 0xad
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17++m1) = r2.new
# CHECK-NEXT: memb(r17++m1) = r31.new
0x1f 0x40 0x7f 0x70 0x00 0xe2 0xb1 0xaf
# CHECK: r31 = r31
# CHECK-NEXT: memb(r17 ++ m1:brev) = r2.new
# CHECK-NEXT: memb(r17 ++ m1:brev) = r31.new
# Store new-value byte conditionally
0x1f 0x40 0x7f 0x70 0xe2 0xf5 0xb1 0x34
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memb(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (p3) memb(r17+r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0xe2 0xf5 0xb1 0x35
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memb(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (!p3) memb(r17+r21<<#3) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xe2 0xf5 0xb1 0x36
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memb(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (p3.new) memb(r17+r21<<#3) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xe2 0xf5 0xb1 0x37
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memb(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (!p3.new) memb(r17+r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0xab 0xc2 0xb1 0x40
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memb(r17+#21) = r2.new
# CHECK-NEXT: if (p3) memb(r17+#21) = r31.new
0x1f 0x40 0x7f 0x70 0xab 0xc2 0xb1 0x44
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memb(r17+#21) = r2.new
# CHECK-NEXT: if (!p3) memb(r17+#21) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xc2 0xb1 0x42
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memb(r17+#21) = r2.new
# CHECK-NEXT: if (p3.new) memb(r17+#21) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xc2 0xb1 0x46
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memb(r17+#21) = r2.new
# CHECK-NEXT: if (!p3.new) memb(r17+#21) = r31.new
0x1f 0x40 0x7f 0x70 0x2b 0xe2 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memb(r17++#5) = r2.new
# CHECK-NEXT: if (p3) memb(r17++#5) = r31.new
0x1f 0x40 0x7f 0x70 0x2f 0xe2 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memb(r17++#5) = r2.new
# CHECK-NEXT: if (!p3) memb(r17++#5) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xe2 0xb1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memb(r17++#5) = r2.new
# CHECK-NEXT: if (p3.new) memb(r17++#5) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xaf 0xe2 0xb1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memb(r17++#5) = r2.new
# CHECK-NEXT: if (!p3.new) memb(r17++#5) = r31.new
# Store new-value halfword
0x1f 0x40 0x7f 0x70 0x8a 0xf5 0xb1 0x3b
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17 + r21<<#3) = r2.new
# CHECK-NEXT: memh(r17 + r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0x15 0xca 0xa0 0x48
# CHECK: r31 = r31
# CHECK-NEXT: memh(#42) = r31.new
0x1f 0x40 0x7f 0x70 0x15 0xca 0xb1 0xa1
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17+#42) = r2.new
# CHECK-NEXT: memh(r17+#42) = r31.new
0x1f 0x40 0x7f 0x70 0x02 0xea 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17 ++ I:circ(m1)) = r2.new
# CHECK-NEXT: memh(r17 ++ I:circ(m1)) = r31.new
0x1f 0x40 0x7f 0x70 0x28 0xea 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17 ++ #10:circ(m1)) = r2.new
# CHECK-NEXT: memh(r17 ++ #10:circ(m1)) = r31.new
0x1f 0x40 0x7f 0x70 0x28 0xca 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17++#10) = r2.new
# CHECK-NEXT: memh(r17++#10) = r31.new
0x1f 0x40 0x7f 0x70 0x00 0xea 0xb1 0xad
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17++m1) = r2.new
# CHECK-NEXT: memh(r17++m1) = r31.new
0x1f 0x40 0x7f 0x70 0x00 0xea 0xb1 0xaf
# CHECK: r31 = r31
# CHECK-NEXT: memh(r17 ++ m1:brev) = r2.new
# CHECK-NEXT: memh(r17 ++ m1:brev) = r31.new
# Store new-value halfword conditionally
0x1f 0x40 0x7f 0x70 0xea 0xf5 0xb1 0x34
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memh(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (p3) memh(r17+r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0xea 0xf5 0xb1 0x35
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memh(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (!p3) memh(r17+r21<<#3) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xea 0xf5 0xb1 0x36
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memh(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (p3.new) memh(r17+r21<<#3) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xea 0xf5 0xb1 0x37
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memh(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (!p3.new) memh(r17+r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0xab 0xca 0xb1 0x40
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memh(r17+#42) = r2.new
# CHECK-NEXT: if (p3) memh(r17+#42) = r31.new
0x1f 0x40 0x7f 0x70 0xab 0xca 0xb1 0x44
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memh(r17+#42) = r2.new
# CHECK-NEXT: if (!p3) memh(r17+#42) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xca 0xb1 0x42
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memh(r17+#42) = r2.new
# CHECK-NEXT: if (p3.new) memh(r17+#42) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xca 0xb1 0x46
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memh(r17+#42) = r2.new
# CHECK-NEXT: if (!p3.new) memh(r17+#42) = r31.new
0x1f 0x40 0x7f 0x70 0x2b 0xea 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memh(r17++#10) = r2.new
# CHECK-NEXT: if (p3) memh(r17++#10) = r31.new
0x1f 0x40 0x7f 0x70 0x2f 0xea 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memh(r17++#10) = r2.new
# CHECK-NEXT: if (!p3) memh(r17++#10) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xea 0xb1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memh(r17++#10) = r2.new
# CHECK-NEXT: if (p3.new) memh(r17++#10) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xaf 0xea 0xb1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memh(r17++#10) = r2.new
# CHECK-NEXT: if (!p3.new) memh(r17++#10) = r31.new
# Store new-value word
0x1f 0x40 0x7f 0x70 0x92 0xf5 0xb1 0x3b
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17 + r21<<#3) = r2.new
# CHECK-NEXT: memw(r17 + r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0x15 0xd2 0xa0 0x48
# CHECK: r31 = r31
# CHECK-NEXT: memw(#84) = r31.new
0x1f 0x40 0x7f 0x70 0x15 0xd2 0xb1 0xa1
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17+#84) = r2.new
0x1f 0x40 0x7f 0x70 0x28 0xf2 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17 ++ #20:circ(m1)) = r2.new
# CHECK-NEXT: memw(r17+#84) = r31.new
0x1f 0x40 0x7f 0x70 0x02 0xf2 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17 ++ I:circ(m1)) = r2.new
# CHECK-NEXT: memw(r17 ++ I:circ(m1)) = r31.new
0x1f 0x40 0x7f 0x70 0x28 0xf2 0xb1 0xa9
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17 ++ #20:circ(m1)) = r31.new
0x1f 0x40 0x7f 0x70 0x28 0xd2 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17++#20) = r2.new
# CHECK-NEXT: memw(r17++#20) = r31.new
0x1f 0x40 0x7f 0x70 0x00 0xf2 0xb1 0xad
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17++m1) = r2.new
# CHECK-NEXT: memw(r17++m1) = r31.new
0x1f 0x40 0x7f 0x70 0x00 0xf2 0xb1 0xaf
# CHECK: r31 = r31
# CHECK-NEXT: memw(r17 ++ m1:brev) = r2.new
# CHECK-NEXT: memw(r17 ++ m1:brev) = r31.new
# Store new-value word conditionally
0x1f 0x40 0x7f 0x70 0xf2 0xf5 0xb1 0x34
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memw(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (p3) memw(r17+r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0xf2 0xf5 0xb1 0x35
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memw(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (!p3) memw(r17+r21<<#3) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xf2 0xf5 0xb1 0x36
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memw(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (p3.new) memw(r17+r21<<#3) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xf2 0xf5 0xb1 0x37
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memw(r17+r21<<#3) = r2.new
# CHECK-NEXT: if (!p3.new) memw(r17+r21<<#3) = r31.new
0x1f 0x40 0x7f 0x70 0xab 0xd2 0xb1 0x40
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memw(r17+#84) = r2.new
# CHECK-NEXT: if (p3) memw(r17+#84) = r31.new
0x1f 0x40 0x7f 0x70 0xab 0xd2 0xb1 0x44
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memw(r17+#84) = r2.new
# CHECK-NEXT: if (!p3) memw(r17+#84) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xd2 0xb1 0x42
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memw(r17+#84) = r2.new
# CHECK-NEXT: if (p3.new) memw(r17+#84) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xd2 0xb1 0x46
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memw(r17+#84) = r2.new
# CHECK-NEXT: if (!p3.new) memw(r17+#84) = r31.new
0x1f 0x40 0x7f 0x70 0x2b 0xf2 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: if (p3) memw(r17++#20) = r2.new
# CHECK-NEXT: if (p3) memw(r17++#20) = r31.new
0x1f 0x40 0x7f 0x70 0x2f 0xf2 0xb1 0xab
# CHECK: r31 = r31
# CHECK-NEXT: if (!p3) memw(r17++#20) = r2.new
# CHECK-NEXT: if (!p3) memw(r17++#20) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xab 0xf2 0xb1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (p3.new) memw(r17++#20) = r2.new
# CHECK-NEXT: if (p3.new) memw(r17++#20) = r31.new
0x03 0x40 0x45 0x85 0x1f 0x40 0x7f 0x70 0xaf 0xf2 0xb1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: r31 = r31
# CHECK-NEXT: if (!p3.new) memw(r17++#20) = r2.new
# CHECK-NEXT: if (!p3.new) memw(r17++#20) = r31.new

View File

@ -1,11 +1,14 @@
# RUN: llvm-mc -triple=hexagon -disassemble < %s | FileCheck %s
# Hexagon Programmer's Reference Manual 11.8 ST
# XFAIL: *
# Store doubleword
0x9e 0xf5 0xd1 0x3b
# CHECK: memd(r17 + r21<<#3) = r31:30
0x28 0xd4 0xc0 0x48
# CHECK: memd(##320) = r21:20
# CHECK: memd(#320) = r21:20
0x02 0x40 0x00 0x00 0x28 0xd4 0xc0 0x48
# CHECK: memd(##168) = r21:20
0x15 0xd4 0xd1 0xa1
# CHECK: memd(r17+#168) = r21:20
0x02 0xf4 0xd1 0xa9
@ -14,6 +17,8 @@
# CHECK: memd(r17 ++ #40:circ(m1)) = r21:20
0x28 0xd4 0xd1 0xab
# CHECK: memd(r17++#40) = r21:20
0x00 0x40 0x00 0x00 0xd5 0xfe 0xd1 0xad
# CHECK: memd(r17<<#3 + ##21) = r31:30
0x00 0xf4 0xd1 0xad
# CHECK: memd(r17++m1) = r21:20
0x00 0xf4 0xd1 0xaf
@ -50,6 +55,16 @@
0x03 0x40 0x45 0x85 0xaf 0xf4 0xd1 0xab
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memd(r17++#40) = r21:20
0x02 0x40 0x00 0x00 0xc3 0xd4 0xc2 0xaf
# CHECK: if (p3) memd(##168) = r21:20
0x02 0x40 0x00 0x00 0xc7 0xd4 0xc2 0xaf
# CHECK: if (!p3) memd(##168) = r21:20
0x03 0x40 0x45 0x85 0x02 0x40 0x00 0x00 0xc3 0xf4 0xc2 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) memd(##168) = r21:20
0x03 0x40 0x45 0x85 0x02 0x40 0x00 0x00 0xc7 0xf4 0xc2 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memd(##168) = r21:20
# Store byte
0x9f 0xf5 0x11 0x3b
@ -57,6 +72,8 @@
0x9f 0xca 0x11 0x3c
# CHECK: memb(r17+#21)=#31
0x15 0xd5 0x00 0x48
# CHECK: memb(#21) = r21
0x00 0x40 0x00 0x00 0x15 0xd5 0x00 0x48
# CHECK: memb(##21) = r21
0x15 0xd5 0x11 0xa1
# CHECK: memb(r17+#21) = r21
@ -66,6 +83,8 @@
# CHECK: memb(r17 ++ #5:circ(m1)) = r21
0x28 0xd5 0x11 0xab
# CHECK: memb(r17++#5) = r21
0x00 0x40 0x00 0x00 0xd5 0xff 0x11 0xad
# CHECK: memb(r17<<#3 + ##21) = r31
0x00 0xf5 0x11 0xad
# CHECK: memb(r17++m1) = r21
0x00 0xf5 0x11 0xaf
@ -112,6 +131,16 @@
0x03 0x40 0x45 0x85 0xaf 0xf5 0x11 0xab
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memb(r17++#5) = r21
0x00 0x40 0x00 0x00 0xab 0xd5 0x01 0xaf
# CHECK: if (p3) memb(##21) = r21
0x00 0x40 0x00 0x00 0xaf 0xd5 0x01 0xaf
# CHECK: if (!p3) memb(##21) = r21
0x03 0x40 0x45 0x85 0x00 0x40 0x00 0x00 0xab 0xf5 0x01 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) memb(##21) = r21
0x03 0x40 0x45 0x85 0x00 0x40 0x00 0x00 0xaf 0xf5 0x01 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memb(##21) = r21
# Store halfword
0x9f 0xf5 0x51 0x3b
@ -120,10 +149,14 @@
# CHECK: memh(r17 + r21<<#3) = r31.h
0x95 0xcf 0x31 0x3c
# CHECK: memh(r17+#62)=#21
0x00 0x40 0x00 0x00 0x2a 0xd5 0x40 0x48
# CHECK: memh(##42) = r21
0x00 0x40 0x00 0x00 0x2a 0xd5 0x60 0x48
# CHECK: memh(##42) = r21.h
0x2a 0xd5 0x40 0x48
# CHECK: memh(##84) = r21
# CHECK: memh(#84) = r21
0x2a 0xd5 0x60 0x48
# CHECK: memh(##84) = r21.h
# CHECK: memh(#84) = r21.h
0x15 0xdf 0x51 0xa1
# CHECK: memh(r17+#42) = r31
0x15 0xdf 0x71 0xa1
@ -138,8 +171,12 @@
# CHECK: memh(r17 ++ #10:circ(m1)) = r21.h
0x28 0xd5 0x51 0xab
# CHECK: memh(r17++#10) = r21
0x00 0x40 0x00 0x00 0xd5 0xff 0x51 0xad
# CHECK: memh(r17<<#3 + ##21) = r31
0x28 0xd5 0x71 0xab
# CHECK: memh(r17++#10) = r21.h
0x00 0x40 0x00 0x00 0xd5 0xff 0x71 0xad
# CHECK: memh(r17<<#3 + ##21) = r31.h
0x00 0xf5 0x51 0xad
# CHECK: memh(r17++m1) = r21
0x00 0xf5 0x71 0xad
@ -220,22 +257,48 @@
0x03 0x40 0x45 0x85 0xaf 0xf5 0x71 0xab
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memh(r17++#10) = r21.h
0x00 0x40 0x00 0x00 0xd3 0xd5 0x42 0xaf
# CHECK: if (p3) memh(##42) = r21
0x00 0x40 0x00 0x00 0xd3 0xd5 0x62 0xaf
# CHECK: if (p3) memh(##42) = r21.h
0x00 0x40 0x00 0x00 0xd7 0xd5 0x42 0xaf
# CHECK: if (!p3) memh(##42) = r21
0x00 0x40 0x00 0x00 0xd7 0xd5 0x62 0xaf
# CHECK: if (!p3) memh(##42) = r21.h
0x03 0x40 0x45 0x85 0x00 0x40 0x00 0x00 0xd3 0xf5 0x42 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) memh(##42) = r21
0x03 0x40 0x45 0x85 0x00 0x40 0x00 0x00 0xd3 0xf5 0x62 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) memh(##42) = r21.h
0x03 0x40 0x45 0x85 0x00 0x40 0x00 0x00 0xd7 0xf5 0x42 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memh(##42) = r21
0x03 0x40 0x45 0x85 0x00 0x40 0x00 0x00 0xd7 0xf5 0x62 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memh(##42) = r21.h
# Store word
0x9f 0xf5 0x91 0x3b
# CHECK: memw(r17 + r21<<#3) = r31
0x9f 0xca 0x51 0x3c
# CHECK: memw(r17{{ *}}+{{ *}}#84)=#31
0x15 0xdf 0x80 0x48
# CHECK: memw(#84) = r31
0x01 0x40 0x00 0x00 0x14 0xd5 0x80 0x48
# CHECK: memw(##84) = r21
0x9f 0xca 0x51 0x3c
# CHECK: memw(r17+#84)=#31
0x15 0xdf 0x91 0xa1
# CHECK: memw(r17+#84) = r31
0x14 0xd5 0x80 0x48
# CHECK: memw(##80) = r21
0x02 0xf5 0x91 0xa9
# CHECK: memw(r17 ++ I:circ(m1)) = r21
0x28 0xf5 0x91 0xa9
# CHECK: memw(r17 ++ #20:circ(m1)) = r21
0x28 0xd5 0x91 0xab
# CHECK: memw(r17++#20) = r21
0x00 0x40 0x00 0x00 0xd5 0xff 0x91 0xad
# CHECK: memw(r17<<#3 + ##21) = r31
0x00 0xf5 0x91 0xad
# CHECK: memw(r17++m1) = r21
0x00 0xf5 0x91 0xaf
@ -282,7 +345,17 @@
0x03 0x40 0x45 0x85 0xab 0xf5 0x91 0xab
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) memw(r17++#20) = r21
0x01 0x40 0x00 0x00 0xa3 0xd5 0x81 0xaf
# CHECK: if (p3) memw(##84) = r21
0x01 0x40 0x00 0x00 0xa7 0xd5 0x81 0xaf
# CHECK: if (!p3) memw(##84) = r21
0x03 0x40 0x45 0x85 0x01 0x40 0x00 0x00 0xa3 0xf5 0x81 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (p3.new) memw(##84) = r21
0x03 0x40 0x45 0x85 0x01 0x40 0x00 0x00 0xa7 0xf5 0x81 0xaf
# CHECK: p3 = r5
# CHECK-NEXT: if (!p3.new) memw(##84) = r21
# Allocate stack frame
0x1f 0xc0 0x9d 0xa0
# CHECK: allocframe(#248)
# CHECK: allocframe(#248)

View File

@ -0,0 +1,4 @@
# RUN: llvm-mc -triple=hexagon -disassemble < %s 2>&1 | FileCheck %s
#CHECK: warning: invalid instruction encoding
0x00 0x40 0x00 0x7f 0x00 0x40 0x00 0x7f 0x00 0x40 0x00 0x7f 0x00 0x40 0x00 0x7f 0x00 0xc0 0x00 0x7f

View File

@ -0,0 +1,4 @@
# RUN: llvm-mc -triple=hexagon -disassemble < %s 2>&1 | FileCheck %s
#CHECK: warning: invalid instruction encoding
0x00 0x80 0x00 0x7f 0x00 0x80 0x00 0x7f 0x00 0x80 0x00 0x7f 0x00 0xc0 0x00 0x7f

View File

@ -0,0 +1,9 @@
# RUN: llvm-mc -triple=hexagon -disassemble < %s 2>&1 | FileCheck %s
#Invalid immediate extend duplex load/load
#CHECK: warning: invalid instruction encoding
0xfe 0x40 0x00 0x00 0x11 0x00 0x00 0x00
#Invalid immediate extend barrier
#CHECK: warning: invalid instruction encoding
0xfe 0x40 0x00 0x00 0x00 0xc0 0x00 0xa8

View File

@ -0,0 +1,84 @@
# RUN: llvm-mc -triple hexagon -filetype=obj %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.1.1 ALU32/ALU
# Add
# CHECK: f1 c3 15 b0
r17 = add(r21, #31)
# CHECK: 11 df 15 f3
r17 = add(r21, r31)
# CHECK: 11 df 55 f6
r17 = add(r21, r31):sat
# And
# CHECK: f1 c3 15 76
r17 = and(r21, #31)
# CHECK: f1 c3 95 76
r17 = or(r21, #31)
# CHECK: 11 df 15 f1
r17 = and(r21, r31)
# CHECK: 11 df 35 f1
r17 = or(r21, r31)
# CHECK: 11 df 75 f1
r17 = xor(r21, r31)
# CHECK: 11 d5 9f f1
r17 = and(r21, ~r31)
# CHECK: 11 d5 bf f1
r17 = or(r21, ~r31)
# Nop
# CHECK: 00 c0 00 7f
nop
# Subtract
# CHECK: b1 c2 5f 76
r17 = sub(#21, r31)
# CHECK: 11 df 35 f3
r17 = sub(r31, r21)
# CHECK: 11 df d5 f6
r17 = sub(r31, r21):sat
# Sign extend
# CHECK: 11 c0 bf 70
r17 = sxtb(r31)
# Transfer immediate
# CHECK: 15 c0 31 72
r17.h = #21
# CHECK: 15 c0 31 71
r17.l = #21
# CHECK: f1 ff 5f 78
r17 = #32767
# CHECK: f1 ff df 78
r17 = #-1
# Transfer register
# CHECK: 11 c0 75 70
r17 = r21
# Vector add halfwords
# CHECK: 11 df 15 f6
r17 = vaddh(r21, r31)
# CHECK: 11 df 35 f6
r17 = vaddh(r21, r31):sat
# CHECK: 11 df 75 f6
r17 = vadduh(r21, r31):sat
# Vector average halfwords
# CHECK: 11 df 15 f7
r17 = vavgh(r21, r31)
# CHECK: 11 df 35 f7
r17 = vavgh(r21, r31):rnd
# CHECK: 11 df 75 f7
r17 = vnavgh(r31, r21)
# Vector subtract halfwords
# CHECK: 11 df 95 f6
r17 = vsubh(r31, r21)
# CHECK: 11 df b5 f6
r17 = vsubh(r31, r21):sat
# CHECK: 11 df f5 f6
r17 = vsubuh(r31, r21):sat
# Zero extend
# CHECK: 11 c0 d5 70
r17 = zxth(r21)

View File

@ -0,0 +1,40 @@
# RUN: llvm-mc -triple hexagon -filetype=obj %s -o - | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.1.2 ALU32/PERM
# Combine words in to doublewords
# CHECK: 11 df 95 f3
r17 = combine(r31.h, r21.h)
# CHECK: 11 df b5 f3
r17 = combine(r31.h, r21.l)
# CHECK: 11 df d5 f3
r17 = combine(r31.l, r21.h)
# CHECK: 11 df f5 f3
r17 = combine(r31.l, r21.l)
# CHECK: b0 e2 0f 7c
r17:16 = combine(#21, #31)
# CHECK: b0 e2 3f 73
r17:16 = combine(#21, r31)
# CHECK: f0 e3 15 73
r17:16 = combine(r21, #31)
# CHECK: 10 df 15 f5
r17:16 = combine(r21, r31)
# Mux
# CHECK: f1 c3 75 73
r17 = mux(p3, r21, #31)
# CHECK: b1 c2 ff 73
r17 = mux(p3, #21, r31)
# CHECK: b1 e2 8f 7b
r17 = mux(p3, #21, #31)
# CHECK: 71 df 15 f4
r17 = mux(p3, r21, r31)
# Shift word by 16
# CHECK: 11 c0 15 70
r17 = aslh(r21)
# CHECK: 11 c0 35 70
r17 = asrh(r21)
# Pack high and low halfwords
# CHECK: 10 df 95 f5
r17:16 = packhl(r21, r31)

View File

@ -0,0 +1,222 @@
# RUN: llvm-mc -triple hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.1.3 ALU32/PRED
# Conditional add
# CHECK: f1 c3 75 74
if (p3) r17 = add(r21, #31)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 e3 75 74
{ p3 = r5
if (p3.new) r17 = add(r21, #31) }
# CHECK: f1 c3 f5 74
if (!p3) r17 = add(r21, #31)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 e3 f5 74
{ p3 = r5
if (!p3.new) r17 = add(r21, #31) }
# CHECK: 71 df 15 fb
if (p3) r17 = add(r21, r31)
# CHECK: 03 40 45 85
# CHECK-NEXT: 71 ff 15 fb
{ p3 = r5
if (p3.new) r17 = add(r21, r31) }
# CHECK: f1 df 15 fb
if (!p3) r17 = add(r21, r31)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 15 fb
{ p3 = r5
if (!p3.new) r17 = add(r21, r31) }
# Conditional shift halfword
# CHECK: 11 e3 15 70
if (p3) r17 = aslh(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 e7 15 70
{ p3 = r5
if (p3.new) r17 = aslh(r21) }
# CHECK: 11 eb 15 70
if (!p3) r17 = aslh(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 ef 15 70
{ p3 = r5
if (!p3.new) r17 = aslh(r21) }
# CHECK: 11 e3 35 70
if (p3) r17 = asrh(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 e7 35 70
{ p3 = r5
if (p3.new) r17 = asrh(r21) }
# CHECK: 11 eb 35 70
if (!p3) r17 = asrh(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 ef 35 70
{ p3 = r5
if (!p3.new) r17 = asrh(r21) }
# Conditional combine
# CHECK: 70 df 15 fd
if (p3) r17:16 = combine(r21, r31)
# CHECK: f0 df 15 fd
if (!p3) r17:16 = combine(r21, r31)
# CHECK: 03 40 45 85
# CHECK-NEXT: 70 ff 15 fd
{ p3 = r5
if (p3.new) r17:16 = combine(r21, r31) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f0 ff 15 fd
{ p3 = r5
if (!p3.new) r17:16 = combine(r21, r31) }
# Conditional logical operations
# CHECK: 71 df 15 f9
if (p3) r17 = and(r21, r31)
# CHECK: f1 df 15 f9
if (!p3) r17 = and(r21, r31)
# CHECK: 03 40 45 85
# CHECK-NEXT: 71 ff 15 f9
{ p3 = r5
if (p3.new) r17 = and(r21, r31) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 15 f9
{ p3 = r5
if (!p3.new) r17 = and(r21, r31) }
# CHECK: 71 df 35 f9
if (p3) r17 = or(r21, r31)
# CHECK: f1 df 35 f9
if (!p3) r17 = or(r21, r31)
# CHECK: 03 40 45 85
# CHECK-NEXT: 71 ff 35 f9
{ p3 = r5
if (p3.new) r17 = or(r21, r31) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 35 f9
{ p3 = r5
if (!p3.new) r17 = or(r21, r31) }
# CHECK: 71 df 75 f9
if (p3) r17 = xor(r21, r31)
# CHECK: f1 df 75 f9
if (!p3) r17 = xor(r21, r31)
# CHECK: 03 40 45 85
# CHECK-NEXT: 71 ff 75 f9
{ p3 = r5
if (p3.new) r17 = xor(r21, r31) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 75 f9
{ p3 = r5
if (!p3.new) r17 = xor(r21, r31) }
# Conditional subtract
# CHECK: 71 df 35 fb
if (p3) r17 = sub(r31, r21)
# CHECK: f1 df 35 fb
if (!p3) r17 = sub(r31, r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 71 ff 35 fb
{ p3 = r5
if (p3.new) r17 = sub(r31, r21) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 35 fb
{ p3 = r5
if (!p3.new) r17 = sub(r31, r21) }
# Conditional sign extend
# CHECK: 11 e3 b5 70
if (p3) r17 = sxtb(r21)
# CHECK: 11 eb b5 70
if (!p3) r17 = sxtb(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 e7 b5 70
{ p3 = r5
if (p3.new) r17 = sxtb(r21) }
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 ef b5 70
{ p3 = r5
if (!p3.new) r17 = sxtb(r21) }
# CHECK: 11 e3 f5 70
if (p3) r17 = sxth(r21)
# CHECK: 11 eb f5 70
if (!p3) r17 = sxth(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 e7 f5 70
{ p3 = r5
if (p3.new) r17 = sxth(r21) }
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 ef f5 70
{ p3 = r5
if (!p3.new) r17 = sxth(r21) }
# Conditional transfer
# CHECK: b1 c2 60 7e
if (p3) r17 = #21
# CHECK: b1 c2 e0 7e
if (!p3) r17 = #21
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 e2 60 7e
{ p3 = r5
if (p3.new) r17 = #21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 e2 e0 7e
{ p3 = r5
if (!p3.new) r17 = #21 }
# Conditional zero extend
# CHECK: 11 e3 95 70
if (p3) r17 = zxtb(r21)
# CHECK: 11 eb 95 70
if (!p3) r17 = zxtb(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 e7 95 70
{ p3 = r5
if (p3.new) r17 = zxtb(r21) }
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 ef 95 70
{ p3 = r5
if (!p3.new) r17 = zxtb(r21) }
# CHECK: 11 e3 d5 70
if (p3) r17 = zxth(r21)
# CHECK: 11 eb d5 70
if (!p3) r17 = zxth(r21)
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 e7 d5 70
{ p3 = r5
if (p3.new) r17 = zxth(r21) }
# CHECK: 03 40 45 85
# CHECK-NEXT: 11 ef d5 70
{ p3 = r5
if (!p3.new) r17 = zxth(r21) }
# Compare
# CHECK: e3 c3 15 75
p3 = cmp.eq(r21, #31)
# CHECK: f3 c3 15 75
p3 = !cmp.eq(r21, #31)
# CHECK: e3 c3 55 75
p3 = cmp.gt(r21, #31)
# CHECK: f3 c3 55 75
p3 = !cmp.gt(r21, #31)
# CHECK: e3 c3 95 75
p3 = cmp.gtu(r21, #31)
# CHECK: f3 c3 95 75
p3 = !cmp.gtu(r21, #31)
# CHECK: 03 df 15 f2
p3 = cmp.eq(r21, r31)
# CHECK: 13 df 15 f2
p3 = !cmp.eq(r21, r31)
# CHECK: 03 df 55 f2
p3 = cmp.gt(r21, r31)
# CHECK: 13 df 55 f2
p3 = !cmp.gt(r21, r31)
# CHECK: 03 df 75 f2
p3 = cmp.gtu(r21, r31)
# CHECK: 13 df 75 f2
p3 = !cmp.gtu(r21, r31)
# Compare to general register
# CHECK: f1 e3 55 73
r17 = cmp.eq(r21, #31)
# CHECK: f1 e3 75 73
r17 = !cmp.eq(r21, #31)
# CHECK: 11 df 55 f3
r17 = cmp.eq(r21, r31)
# CHECK: 11 df 75 f3
r17 = !cmp.eq(r21, r31)

View File

@ -0,0 +1,78 @@
# RUN: llvm-mc --triple hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.2 CR
# Corner detection acceleration
# CHECK: 93 e1 12 6b
p3 = !fastcorner9(p2, p1)
# CHECK: 91 e3 02 6b
p1 = fastcorner9(p2, p3)
# Logical reductions on predicates
# CHECK: 01 c0 82 6b
p1 = any8(p2)
# CHECK: 01 c0 a2 6b
p1 = all8(p2)
# Looping instructions
# CHECK: 00 c0 15 60
loop0(0, r21)
# CHECK: 00 c0 35 60
loop1(0, r21)
# CHECK: 60 c0 00 69
loop0(0, #12)
# CHECK: 60 c0 20 69
loop1(0, #12)
# Add to PC
# CHECK: 91 ca 49 6a
r17 = add(pc, #21)
# Pipelined loop instructions
# CHECK: 00 c0 b5 60
p3 = sp1loop0(0, r21)
# CHECK: 00 c0 d5 60
p3 = sp2loop0(0, r21)
# CHECK: 00 c0 f5 60
p3 = sp3loop0(0, r21)
# CHECK: a1 c0 a0 69
p3 = sp1loop0(0, #21)
# CHECK: a1 c0 c0 69
p3 = sp2loop0(0, #21)
# CHECK: a1 c0 e0 69
p3 = sp3loop0(0, #21)
# Logical operations on predicates
# CHECK: 01 c3 02 6b
p1 = and(p3, p2)
# CHECK: c1 c3 12 6b
p1 = and(p2, and(p3, p3))
# CHECK: 01 c3 22 6b
p1 = or(p3, p2)
# CHECK: c1 c3 32 6b
p1 = and(p2, or(p3, p3))
# CHECK: 01 c3 42 6b
p1 = xor(p2, p3)
# CHECK: c1 c3 52 6b
p1 = or(p2, and(p3, p3))
# CHECK: 01 c2 63 6b
p1 = and(p2, !p3)
# CHECK: c1 c3 72 6b
p1 = or(p2, or(p3, p3))
# CHECK: c1 c3 92 6b
p1 = and(p2, and(p3, !p3))
# CHECK: c1 c3 b2 6b
p1 = and(p2, or(p3, !p3))
# CHECK: 01 c0 c2 6b
p1 = not(p2)
# CHECK: c1 c3 d2 6b
p1 = or(p2, and(p3, !p3))
# CHECK: 01 c2 e3 6b
p1 = or(p2, !p3)
# CHECK: c1 c3 f2 6b
p1 = or(p2, or(p3, !p3))
# User control register transfer
# CHECK: 0d c0 35 62
cs1 = r21
# CHECK: 11 c0 0d 6a
r17 = cs1

View File

@ -0,0 +1,207 @@
# RUN: llvm-mc -triple hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.4 J
# XFAIL: *
# Call subroutine
# CHECK: 00 c0 00 5a
call 0
# CHECK: 00 c3 00 5d
if (p3) call 0
# CHECK: 00 c3 20 5d
if (!p3) call 0
# Compare and jump
# CHECK: 00 c0 89 11
{ p0 = cmp.eq(r17,#-1); if (p0.new) jump:nt 0 }
# CHECK: 00 c1 89 11
{ p0 = cmp.gt(r17,#-1); if (p0.new) jump:nt 0 }
# CHECK: 00 c3 89 11
{ p0 = tstbit(r17, #0); if (p0.new) jump:nt 0 }
# CHECK: 00 e0 89 11
{ p0 = cmp.eq(r17,#-1); if (p0.new) jump:t 0 }
# CHECK: 00 e1 89 11
{ p0 = cmp.gt(r17,#-1); if (p0.new) jump:t 0 }
# CHECK: 00 e3 89 11
{ p0 = tstbit(r17, #0); if (p0.new) jump:t 0 }
# CHECK: 00 c0 c9 11
{ p0 = cmp.eq(r17,#-1); if (!p0.new) jump:nt 0 }
# CHECK: 00 c1 c9 11
{ p0 = cmp.gt(r17,#-1); if (!p0.new) jump:nt 0 }
# CHECK: 00 c3 c9 11
{ p0 = tstbit(r17, #0); if (!p0.new) jump:nt 0 }
# CHECK: 00 e0 c9 11
{ p0 = cmp.eq(r17,#-1); if (!p0.new) jump:t 0 }
# CHECK: 00 e1 c9 11
{ p0 = cmp.gt(r17,#-1); if (!p0.new) jump:t 0 }
# CHECK: 00 e3 c9 11
{ p0 = tstbit(r17, #0); if (!p0.new) jump:t 0 }
# CHECK: 00 d5 09 10
{ p0 = cmp.eq(r17, #21); if (p0.new) jump:nt 0 }
# CHECK: 00 f5 09 10
{ p0 = cmp.eq(r17, #21); if (p0.new) jump:t 0 }
# CHECK: 00 d5 49 10
{ p0 = cmp.eq(r17, #21); if (!p0.new) jump:nt 0 }
# CHECK: 00 f5 49 10
{ p0 = cmp.eq(r17, #21); if (!p0.new) jump:t 0 }
# CHECK: 00 d5 89 10
{ p0 = cmp.gt(r17, #21); if (p0.new) jump:nt 0 }
# CHECK: 00 f5 89 10
{ p0 = cmp.gt(r17, #21); if (p0.new) jump:t 0 }
# CHECK: 00 d5 c9 10
{ p0 = cmp.gt(r17, #21); if (!p0.new) jump:nt 0 }
# CHECK: 00 f5 c9 10
{ p0 = cmp.gt(r17, #21); if (!p0.new) jump:t 0 }
# CHECK: 00 d5 09 11
{ p0 = cmp.gtu(r17, #21); if (p0.new) jump:nt 0 }
# CHECK: 00 f5 09 11
{ p0 = cmp.gtu(r17, #21); if (p0.new) jump:t 0 }
# CHECK: 00 d5 49 11
{ p0 = cmp.gtu(r17, #21); if (!p0.new) jump:nt 0 }
# CHECK: 00 f5 49 11
{ p0 = cmp.gtu(r17, #21); if (!p0.new) jump:t 0 }
# CHECK: 00 c0 89 13
{ p1 = cmp.eq(r17,#-1); if (p1.new) jump:nt 0 }
# CHECK: 00 c1 89 13
{ p1 = cmp.gt(r17,#-1); if (p1.new) jump:nt 0 }
# CHECK: 00 c3 89 13
{ p1 = tstbit(r17, #0); if (p1.new) jump:nt 0 }
# CHECK: 00 e0 89 13
{ p1 = cmp.eq(r17,#-1); if (p1.new) jump:t 0 }
# CHECK: 00 e1 89 13
{ p1 = cmp.gt(r17,#-1); if (p1.new) jump:t 0 }
# CHECK: 00 e3 89 13
{ p1 = tstbit(r17, #0); if (p1.new) jump:t 0 }
# CHECK: 00 c0 c9 13
{ p1 = cmp.eq(r17,#-1); if (!p1.new) jump:nt 0 }
# CHECK: 00 c1 c9 13
{ p1 = cmp.gt(r17,#-1); if (!p1.new) jump:nt 0 }
# CHECK: 00 c3 c9 13
{ p1 = tstbit(r17, #0); if (!p1.new) jump:nt 0 }
# CHECK: 00 e0 c9 13
{ p1 = cmp.eq(r17,#-1); if (!p1.new) jump:t 0 }
# CHECK: 00 e1 c9 13
{ p1 = cmp.gt(r17,#-1); if (!p1.new) jump:t 0 }
# CHECK: 00 e3 c9 13
{ p1 = tstbit(r17, #0); if (!p1.new) jump:t 0 }
# CHECK: 00 d5 09 12
{ p1 = cmp.eq(r17, #21); if (p1.new) jump:nt 0 }
# CHECK: 00 f5 09 12
{ p1 = cmp.eq(r17, #21); if (p1.new) jump:t 0 }
# CHECK: 00 d5 49 12
{ p1 = cmp.eq(r17, #21); if (!p1.new) jump:nt 0 }
# CHECK: 00 f5 49 12
{ p1 = cmp.eq(r17, #21); if (!p1.new) jump:t 0 }
# CHECK: 00 d5 89 12
{ p1 = cmp.gt(r17, #21); if (p1.new) jump:nt 0 }
# CHECK: 00 f5 89 12
{ p1 = cmp.gt(r17, #21); if (p1.new) jump:t 0 }
# CHECK: 00 d5 c9 12
{ p1 = cmp.gt(r17, #21); if (!p1.new) jump:nt 0 }
# CHECK: 00 f5 c9 12
{ p1 = cmp.gt(r17, #21); if (!p1.new) jump:t 0 }
# CHECK: 00 d5 09 13
{ p1 = cmp.gtu(r17, #21); if (p1.new) jump:nt 0 }
# CHECK: 00 f5 09 13
{ p1 = cmp.gtu(r17, #21); if (p1.new) jump:t 0 }
# CHECK: 00 d5 49 13
{ p1 = cmp.gtu(r17, #21); if (!p1.new) jump:nt 0 }
# CHECK: 00 f5 49 13
{ p1 = cmp.gtu(r17, #21); if (!p1.new) jump:t 0 }
# CHECK: 00 cd 09 14
{ p0 = cmp.eq(r17, r21); if (p0.new) jump:nt 0 }
# CHECK: 00 dd 09 14
{ p1 = cmp.eq(r17, r21); if (p1.new) jump:nt 0 }
# CHECK: 00 ed 09 14
{ p0 = cmp.eq(r17, r21); if (p0.new) jump:t 0 }
# CHECK: 00 fd 09 14
{ p1 = cmp.eq(r17, r21); if (p1.new) jump:t 0 }
# CHECK: 00 cd 49 14
{ p0 = cmp.eq(r17, r21); if (!p0.new) jump:nt 0 }
# CHECK: 00 dd 49 14
{ p1 = cmp.eq(r17, r21); if (!p1.new) jump:nt 0 }
# CHECK: 00 ed 49 14
{ p0 = cmp.eq(r17, r21); if (!p0.new) jump:t 0 }
# CHECK: 00 fd 49 14
{ p1 = cmp.eq(r17, r21); if (!p1.new) jump:t 0 }
# CHECK: 00 cd 89 14
{ p0 = cmp.gt(r17, r21); if (p0.new) jump:nt 0 }
# CHECK: 00 dd 89 14
{ p1 = cmp.gt(r17, r21); if (p1.new) jump:nt 0 }
# CHECK: 00 ed 89 14
{ p0 = cmp.gt(r17, r21); if (p0.new) jump:t 0 }
# CHECK: 00 fd 89 14
{ p1 = cmp.gt(r17, r21); if (p1.new) jump:t 0 }
# CHECK: 00 cd c9 14
{ p0 = cmp.gt(r17, r21); if (!p0.new) jump:nt 0 }
# CHECK: 00 dd c9 14
{ p1 = cmp.gt(r17, r21); if (!p1.new) jump:nt 0 }
# CHECK: 00 ed c9 14
{ p0 = cmp.gt(r17, r21); if (!p0.new) jump:t 0 }
# CHECK: 00 fd c9 14
{ p1 = cmp.gt(r17, r21); if (!p1.new) jump:t 0 }
# CHECK: 00 cd 09 15
{ p0 = cmp.gtu(r17, r21); if (p0.new) jump:nt 0 }
# CHECK: 00 dd 09 15
{ p1 = cmp.gtu(r17, r21); if (p1.new) jump:nt 0 }
# CHECK: 00 ed 09 15
{ p0 = cmp.gtu(r17, r21); if (p0.new) jump:t 0 }
# CHECK: 00 fd 09 15
{ p1 = cmp.gtu(r17, r21); if (p1.new) jump:t 0 }
# CHECK: 00 cd 49 15
{ p0 = cmp.gtu(r17, r21); if (!p0.new) jump:nt 0 }
# CHECK: 00 dd 49 15
{ p1 = cmp.gtu(r17, r21); if (!p1.new) jump:nt 0 }
# CHECK: 00 ed 49 15
{ p0 = cmp.gtu(r17, r21); if (!p0.new) jump:t 0 }
# CHECK: 00 fd 49 15
{ p1 = cmp.gtu(r17, r21); if (!p1.new) jump:t 0 }
# Jump to address
# CHECK: 00 c0 00 58
jump 0
# CHECK: 00 c3 00 5c
if (p3) jump 0
# CHECK: 00 c3 20 5c
if (!p3) jump 0
# Jump to address conditioned on new predicate
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 cb 00 5c
{ p3 = r5
if (p3.new) jump:nt 0 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 db 00 5c
{ p3 = r5
if (p3.new) jump:t 0 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 cb 20 5c
{ p3 = r5
if (!p3.new) jump:nt 0 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 db 20 5c
{ p3 = r5
if (!p3.new) jump:t 0 }
# Jump to address conditioned on register value
# CHECK: 00 c0 11 61
if (r17!=#0) jump:nt 0
# CHECK: 00 d0 11 61
if (r17!=#0) jump:t 0
# CHECK: 00 c0 51 61
if (r17>=#0) jump:nt 0
# CHECK: 00 d0 51 61
if (r17>=#0) jump:t 0
# CHECK: 00 c0 91 61
if (r17==#0) jump:nt 0
# CHECK: 00 d0 91 61
if (r17==#0) jump:t 0
# CHECK: 00 c0 d1 61
if (r17<=#0) jump:nt 0
# CHECK: 00 d0 d1 61
if (r17<=#0) jump:t 0
# Transfer and jump
# CHECK: 00 d5 09 16
{ r17 = #21 ; jump 0}
# CHECK: 00 c9 0d 17
{ r17 = r21 ; jump 0 }

View File

@ -0,0 +1,38 @@
# RUN: llvm-mc -triple hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.3 JR
# Call subroutine from register
# CHECK: 00 c0 b5 50
callr r21
# CHECK: 00 c1 15 51
if (p1) callr r21
# CHECK: 00 c3 35 51
if (!p3) callr r21
# Hint an indirect jump address
# CHECK: 00 c0 b5 52
hintjr(r21)
# Jump to address from register
# CHECK: 00 c0 95 52
jumpr r21
# CHECK: 00 c1 55 53
if (p1) jumpr r21
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 cb 55 53
{ p3 = r5
if (p3.new) jumpr:nt r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 db 55 53
{ p3 = r5
if (p3.new) jumpr:t r21 }
# CHECK: 00 c3 75 53
if (!p3) jumpr r21
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 cb 75 53
{ p3 = r5
if (!p3.new) jumpr:nt r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 db 75 53
{ p3 = r5
if (!p3.new) jumpr:t r21 }

View File

@ -0,0 +1,499 @@
# RUN: llvm-mc -triple hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.5 LD
# XFAIL: *
# Load doubleword
# CHECK: 90 ff d5 3a
r17:16 = memd(r21 + r31<<#3)
# CHECK: b0 c2 c0 49
r17:16 = memd(#168)
# CHECK: 02 40 00 00
# CHECK-NEXT: 10 c5 c0 49
r17:16 = memd(##168)
# CHECK: d0 c0 d5 91
r17:16 = memd(r21 + #48)
# CHECK: b0 e0 d5 99
r17:16 = memd(r21 ++ #40:circ(m1))
# CHECK: 10 e2 d5 99
r17:16 = memd(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 70 d7 d5 9b
r17:16 = memd(r21 = ##31)
# CHECK: b0 c0 d5 9b
r17:16 = memd(r21++#40)
# CHECK: 10 e0 d5 9d
r17:16 = memd(r21++m1)
# CHECK: 10 e0 d5 9f
r17:16 = memd(r21 ++ m1:brev)
# Load doubleword conditionally
# CHECK: f0 ff d5 30
if (p3) r17:16 = memd(r21+r31<<#3)
# CHECK: f0 ff d5 31
if (!p3) r17:16 = memd(r21+r31<<#3)
# CHECK: 03 40 45 85
# CHECK-NEXT: f0 ff d5 32
{ p3 = r5
if (p3.new) r17:16 = memd(r21+r31<<#3) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f0 ff d5 33
{ p3 = r5
if (!p3.new) r17:16 = memd(r21+r31<<#3) }
# CHECK: 70 d8 d5 41
if (p3) r17:16 = memd(r21 + #24)
# CHECK: 03 40 45 85
# CHECK-NEXT: 70 d8 d5 43
{ p3 = r5
if (p3.new) r17:16 = memd(r21 + #24) }
# CHECK: 70 d8 d5 45
if (!p3) r17:16 = memd(r21 + #24)
# CHECK: 03 40 45 85
# CHECK-NEXT: 70 d8 d5 47
{ p3 = r5
if (!p3.new) r17:16 = memd(r21 + #24) }
# CHECK: b0 e6 d5 9b
if (p3) r17:16 = memd(r21++#40)
# CHECK: b0 ee d5 9b
if (!p3) r17:16 = memd(r21++#40)
# CHECK: 03 40 45 85
# CHECK-NEXT: b0 f6 d5 9b
{ p3 = r5
if (p3.new) r17:16 = memd(r21++#40) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b0 fe d5 9b
{ p3 = r5
if (!p3.new) r17:16 = memd(r21++#40) }
# Load byte
# CHECK: 91 ff 15 3a
r17 = memb(r21 + r31<<#3)
# CHECK: b1 c2 00 49
r17 = memb(#21)
# CHECK: 00 40 00 00
# CHECK-NEXT: b1 c2 00 49
r17 = memb(##21)
# CHECK: f1 c3 15 91
r17 = memb(r21 + #31)
# CHECK: b1 e0 15 99
r17 = memb(r21 ++ #5:circ(m1))
# CHECK: 11 e2 15 99
r17 = memb(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 15 9b
r17 = memb(r21 = ##31)
# CHECK: b1 c0 15 9b
r17 = memb(r21++#5)
# CHECK: 11 e0 15 9d
r17 = memb(r21++m1)
# CHECK: 11 e0 15 9f
r17 = memb(r21 ++ m1:brev)
# Load byte conditionally
# CHECK: f1 ff 15 30
if (p3) r17 = memb(r21+r31<<#3)
# CHECK: f1 ff 15 31
if (!p3) r17 = memb(r21+r31<<#3)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 15 32
{ p3 = r5
if (p3.new) r17 = memb(r21+r31<<#3) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 15 33
{ p3 = r5
if (!p3.new) r17 = memb(r21+r31<<#3) }
# CHECK: 91 dd 15 41
if (p3) r17 = memb(r21 + #44)
# CHECK: 03 40 45 85
# CHECK-NEXT: 91 dd 15 43
{ p3 = r5
if (p3.new) r17 = memb(r21 + #44) }
# CHECK: 91 dd 15 45
if (!p3) r17 = memb(r21 + #44)
# CHECK: 03 40 45 85
# CHECK-NEXT: 91 dd 15 47
{ p3 = r5
if (!p3.new) r17 = memb(r21 + #44) }
# CHECK: b1 e6 15 9b
if (p3) r17 = memb(r21++#5)
# CHECK: b1 ee 15 9b
if (!p3) r17 = memb(r21++#5)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 f6 15 9b
{ p3 = r5
if (p3.new) r17 = memb(r21++#5) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 fe 15 9b
{ p3 = r5
if (!p3.new) r17 = memb(r21++#5) }
# Load byte into shifted vector
# CHECK: f0 c3 95 90
r17:16 = memb_fifo(r21 + #31)
# CHECK: b0 e0 95 98
r17:16 = memb_fifo(r21 ++ #5:circ(m1))
# CHECK: 10 e2 95 98
r17:16 = memb_fifo(r21 ++ I:circ(m1))
# Load half into shifted vector
# CHECK: f0 c3 55 90
r17:16 = memh_fifo(r21 + #62)
# CHECK: b0 e0 55 98
r17:16 = memh_fifo(r21 ++ #10:circ(m1))
# CHECK: 10 e2 55 98
r17:16 = memh_fifo(r21 ++ I:circ(m1))
# Load halfword
# CHECK: 91 ff 55 3a
r17 = memh(r21 + r31<<#3)
# CHECK: b1 c2 40 49
r17 = memh(#42)
# CHECK: 00 40 00 00
# CHECK-NEXT: 51 c5 40 49
r17 = memh(##42)
# CHECK: f1 c3 55 91
r17 = memh(r21 + #62)
# CHECK: b1 e0 55 99
r17 = memh(r21 ++ #10:circ(m1))
# CHECK: 11 e2 55 99
r17 = memh(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 55 9b
r17 = memh(r21 = ##31)
# CHECK: b1 c0 55 9b
r17 = memh(r21++#10)
# CHECK: 11 e0 55 9d
r17 = memh(r21++m1)
# CHECK: 11 e0 55 9f
r17 = memh(r21 ++ m1:brev)
# Load halfword conditionally
# CHECK: f1 ff 55 30
if (p3) r17 = memh(r21+r31<<#3)
# CHECK: f1 ff 55 31
if (!p3) r17 = memh(r21+r31<<#3)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 55 32
{ p3 = r5
if (p3.new) r17 = memh(r21+r31<<#3) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 55 33
{ p3 = r5
if (!p3.new) r17 = memh(r21+r31<<#3) }
# CHECK: b1 e6 55 9b
if (p3) r17 = memh(r21++#10)
# CHECK: b1 ee 55 9b
if (!p3) r17 = memh(r21++#10)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 f6 55 9b
{ p3 = r5
if (p3.new) r17 = memh(r21++#10) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 fe 55 9b
{ p3 = r5
if (!p3.new) r17 = memh(r21++#10) }
# CHECK: f1 db 55 41
if (p3) r17 = memh(r21 + #62)
# CHECK: f1 db 55 45
if (!p3) r17 = memh(r21 + #62)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 db 55 43
{ p3 = r5
if (p3.new) r17 = memh(r21 + #62) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 db 55 47
{ p3 = r5
if (!p3.new) r17 = memh(r21 + #62) }
# Load unsigned byte
# CHECK: 91 ff 35 3a
r17 = memub(r21 + r31<<#3)
# CHECK: b1 c2 20 49
r17 = memub(#21)
# CHECK: 00 40 00 00
# CHECK-NEXT: b1 c2 20 49
r17 = memub(##21)
# CHECK: f1 c3 35 91
r17 = memub(r21 + #31)
# CHECK: b1 e0 35 99
r17 = memub(r21 ++ #5:circ(m1))
# CHECK: 11 e2 35 99
r17 = memub(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 35 9b
r17 = memub(r21 = ##31)
# CHECK: b1 c0 35 9b
r17 = memub(r21++#5)
# CHECK: 11 e0 35 9d
r17 = memub(r21++m1)
# CHECK: 11 e0 35 9f
r17 = memub(r21 ++ m1:brev)
# Load unsigned byte conditionally
# CHECK: f1 ff 35 30
if (p3) r17 = memub(r21+r31<<#3)
# CHECK: f1 ff 35 31
if (!p3) r17 = memub(r21+r31<<#3)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 35 32
{ p3 = r5
if (p3.new) r17 = memub(r21+r31<<#3) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 35 33
{ p3 = r5
if (!p3.new) r17 = memub(r21+r31<<#3) }
# CHECK: f1 db 35 41
if (p3) r17 = memub(r21 + #31)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 db 35 43
{ p3 = r5
if (p3.new) r17 = memub(r21 + #31) }
# CHECK: f1 db 35 45
if (!p3) r17 = memub(r21 + #31)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 db 35 47
{ p3 = r5
if (!p3.new) r17 = memub(r21 + #31) }
# CHECK: b1 e6 35 9b
if (p3) r17 = memub(r21++#5)
# CHECK: b1 ee 35 9b
if (!p3) r17 = memub(r21++#5)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 f6 35 9b
{ p3 = r5
if (p3.new) r17 = memub(r21++#5) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 fe 35 9b
{ p3 = r5
if (!p3.new) r17 = memub(r21++#5) }
# Load unsigned halfword
# CHECK: 91 ff 75 3a
r17 = memuh(r21 + r31<<#3)
# CHECK: b1 c2 60 49
r17 = memuh(#42)
# CHECK: 00 40 00 00
# CHECK-NEXT: 51 c5 60 49
r17 = memuh(##42)
# CHECK: b1 c2 75 91
r17 = memuh(r21 + #42)
# CHECK: b1 e0 75 99
r17 = memuh(r21 ++ #10:circ(m1))
# CHECK: 11 e2 75 99
r17 = memuh(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 75 9b
r17 = memuh(r21 = ##31)
# CHECK: b1 c0 75 9b
r17 = memuh(r21++#10)
# CHECK: 11 e0 75 9d
r17 = memuh(r21++m1)
# CHECK: 11 e0 75 9f
r17 = memuh(r21 ++ m1:brev)
# Load unsigned halfword conditionally
# CHECK: f1 ff 75 30
if (p3) r17 = memuh(r21+r31<<#3)
# CHECK: f1 ff 75 31
if (!p3) r17 = memuh(r21+r31<<#3)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 75 32
{ p3 = r5
if (p3.new) r17 = memuh(r21+r31<<#3) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 75 33
{ p3 = r5
if (!p3.new) r17 = memuh(r21+r31<<#3) }
# CHECK: b1 da 75 41
if (p3) r17 = memuh(r21 + #42)
# CHECK: b1 da 75 45
if (!p3) r17 = memuh(r21 + #42)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 da 75 43
{ p3 = r5
if (p3.new) r17 = memuh(r21 + #42) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 da 75 47
{ p3 = r5
if (!p3.new) r17 = memuh(r21 + #42) }
# CHECK: b1 e6 75 9b
if (p3) r17 = memuh(r21++#10)
# CHECK: b1 ee 75 9b
if (!p3) r17 = memuh(r21++#10)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 f6 75 9b
{ p3 = r5
if (p3.new) r17 = memuh(r21++#10) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 fe 75 9b
{ p3 = r5
if (!p3.new) r17 = memuh(r21++#10) }
# Load word
# CHECK: 91 ff 95 3a
r17 = memw(r21 + r31<<#3)
# CHECK: b1 c2 80 49
r17 = memw(#84)
# CHECK: 01 40 00 00
# CHECK-NEXT: 91 c2 80 49
r17 = memw(##84)
# CHECK: b1 c2 95 91
r17 = memw(r21 + #84)
# CHECK: b1 e0 95 99
r17 = memw(r21 ++ #20:circ(m1))
# CHECK: 11 e2 95 99
r17 = memw(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 95 9b
r17 = memw(r21 = ##31)
# CHECK: b1 c0 95 9b
r17 = memw(r21++#20)
# CHECK: 11 e0 95 9d
r17 = memw(r21++m1)
# CHECK: 11 e0 95 9f
r17 = memw(r21 ++ m1:brev)
# Load word conditionally
# CHECK: f1 ff 95 30
if (p3) r17 = memw(r21+r31<<#3)
# CHECK: f1 ff 95 31
if (!p3) r17 = memw(r21+r31<<#3)
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 95 32
{ p3 = r5
if (p3.new) r17 = memw(r21+r31<<#3) }
# CHECK: 03 40 45 85
# CHECK-NEXT: f1 ff 95 33
{ p3 = r5
if (!p3.new) r17 = memw(r21+r31<<#3) }
# CHECK: b1 da 95 41
if (p3) r17 = memw(r21 + #84)
# CHECK: b1 da 95 45
if (!p3) r17 = memw(r21 + #84)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 da 95 43
{ p3 = r5
if (p3.new) r17 = memw(r21 + #84) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 da 95 47
{ p3 = r5
if (!p3.new) r17 = memw(r21 + #84) }
# CHECK: b1 e6 95 9b
if (p3) r17 = memw(r21++#20)
# CHECK: b1 ee 95 9b
if (!p3) r17 = memw(r21++#20)
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 f6 95 9b
{ p3 = r5
if (p3.new) r17 = memw(r21++#20) }
# CHECK: 03 40 45 85
# CHECK-NEXT: b1 fe 95 9b
{ p3 = r5
if (!p3.new) r17 = memw(r21++#20) }
# Deallocate stack frame
# CHECK: 1e c0 1e 90
deallocframe
# Deallocate stack frame and return
# CHECK: 1e c0 1e 96
dealloc_return
# CHECK: 03 40 45 85
# CHECK-NEXT: 1e cb 1e 96
{ p3 = r5
if (p3.new) dealloc_return:nt }
# CHECK: 1e d3 1e 96
if (p3) dealloc_return
# CHECK: 03 40 45 85
# CHECK-NEXT: 1e db 1e 96
{ p3 = r5
if (p3.new) dealloc_return:t }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1e eb 1e 96
{ p3 = r5
if (!p3.new) dealloc_return:nt }
# CHECK: 1e f3 1e 96
if (!p3) dealloc_return
# CHECK: 03 40 45 85
# CHECK-NEXT: 1e fb 1e 96
{ p3 = r5
if (!p3.new) dealloc_return:t }
# Load and unpack bytes to halfwords
# CHECK: f1 c3 35 90
r17 = membh(r21 + #62)
# CHECK: f1 c3 75 90
r17 = memubh(r21 + #62)
# CHECK: f0 c3 b5 90
r17:16 = memubh(r21 + #124)
# CHECK: f0 c3 f5 90
r17:16 = membh(r21 + #124)
# CHECK: b1 e0 35 98
r17 = membh(r21 ++ #10:circ(m1))
# CHECK: 11 e2 35 98
r17 = membh(r21 ++ I:circ(m1))
# CHECK: b1 e0 75 98
r17 = memubh(r21 ++ #10:circ(m1))
# CHECK: 11 e2 75 98
r17 = memubh(r21 ++ I:circ(m1))
# CHECK: b0 e0 f5 98
r17:16 = membh(r21 ++ #20:circ(m1))
# CHECK: 10 e2 f5 98
r17:16 = membh(r21 ++ I:circ(m1))
# CHECK: b0 e0 b5 98
r17:16 = memubh(r21 ++ #20:circ(m1))
# CHECK: 10 e2 b5 98
r17:16 = memubh(r21 ++ I:circ(m1))
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 35 9a
r17 = membh(r21 = ##31)
# CHECK: b1 c0 35 9a
r17 = membh(r21++#10)
# CHECK: 00 40 00 00
# CHECK-NEXT: 71 d7 75 9a
r17 = memubh(r21 = ##31)
# CHECK: b1 c0 75 9a
r17 = memubh(r21++#10)
# CHECK: 00 40 00 00
# CHECK-NEXT: 70 d7 b5 9a
r17:16 = memubh(r21 = ##31)
# CHECK: b0 c0 b5 9a
r17:16 = memubh(r21++#20)
# CHECK: 00 40 00 00
# CHECK-NEXT: 70 d7 f5 9a
r17:16 = membh(r21 = ##31)
# CHECK: b0 c0 f5 9a
r17:16 = membh(r21++#20)
# CHECK: 00 40 00 00
# CHECK-NEXT: f1 f7 35 9c
r17 = membh(r21<<#3 + ##31)
# CHECK: 11 e0 35 9c
r17 = membh(r21++m1)
# CHECK: 00 40 00 00
# CHECK-NEXT: f1 f7 75 9c
r17 = memubh(r21<<#3 + ##31)
# CHECK: 11 e0 75 9c
r17 = memubh(r21++m1)
# CHECK: 00 40 00 00
# CHECK-NEXT: f0 f7 f5 9c
r17:16 = membh(r21<<#3 + ##31)
# CHECK: 10 e0 f5 9c
r17:16 = membh(r21++m1)
# CHECK: 00 40 00 00
# CHECK-NEXT: f0 f7 b5 9c
r17:16 = memubh(r21<<#3 + ##31)
# CHECK: 11 e0 35 9c
r17 = membh(r21++m1)
# CHECK: 11 e0 75 9c
r17 = memubh(r21++m1)
# CHECK: 10 e0 f5 9c
r17:16 = membh(r21++m1)
# CHECK: 10 e0 b5 9c
r17:16 = memubh(r21++m1)
# CHECK: 11 e0 35 9e
r17 = membh(r21 ++ m1:brev)
# CHECK: 11 e0 75 9e
r17 = memubh(r21 ++ m1:brev)
# CHECK: 10 e0 b5 9e
r17:16 = memubh(r21 ++ m1:brev)
# CHECK: 10 e0 f5 9e
r17:16 = membh(r21 ++ m1:brev)

View File

@ -0,0 +1,56 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.6 MEMOP
# Operation on memory byte
# CHECK: 95 d9 11 3e
memb(r17+#51) += r21
# CHECK: b5 d9 11 3e
memb(r17+#51) -= r21
# CHECK: d5 d9 11 3e
memb(r17+#51) &= r21
# CHECK: f5 d9 11 3e
memb(r17+#51) |= r21
# CHECK: 95 d9 11 3f
memb(r17+#51) += #21
# CHECK: b5 d9 11 3f
memb(r17+#51) -= #21
# CHECK: d5 d9 11 3f
memb(r17+#51) = clrbit(#21)
# CHECK: f5 d9 11 3f
memb(r17+#51) = setbit(#21)
# Operation on memory halfword
# CHECK: 95 d9 31 3e
memh(r17+#102) += r21
# CHECK: b5 d9 31 3e
memh(r17+#102) -= r21
# CHECK: d5 d9 31 3e
memh(r17+#102) &= r21
# CHECK: f5 d9 31 3e
memh(r17+#102) |= r21
# CHECK: 95 d9 31 3f
memh(r17+#102) += #21
# CHECK: b5 d9 31 3f
memh(r17+#102) -= #21
# CHECK: d5 d9 31 3f
memh(r17+#102) = clrbit(#21)
# CHECK: f5 d9 31 3f
memh(r17+#102) = setbit(#21)
# Operation on memory word
# CHECK: 95 d9 51 3e
memw(r17+#204) += r21
# CHECK: b5 d9 51 3e
memw(r17+#204) -= r21
# CHECK: d5 d9 51 3e
memw(r17+#204) &= r21
# CHECK: f5 d9 51 3e
memw(r17+#204) |= r21
# CHECK: 95 d9 51 3f
memw(r17+#204) += #21
# CHECK: b5 d9 51 3f
memw(r17+#204) -= #21
# CHECK: d5 d9 51 3f
memw(r17+#204) = clrbit(#21)
# CHECK: f5 d9 51 3f
memw(r17+#204) = setbit(#21)

View File

@ -0,0 +1,180 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.7.1 NV/J
# Jump to address conditioned on new register value
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 02 20
{ r17 = r17
if (cmp.eq(r17.new, r21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 02 20
{ r17 = r17
if (cmp.eq(r17.new, r21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 42 20
{ r17 = r17
if (!cmp.eq(r17.new, r21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 42 20
{ r17 = r17
if (!cmp.eq(r17.new, r21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 82 20
{ r17 = r17
if (cmp.gt(r17.new, r21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 82 20
{ r17 = r17
if (cmp.gt(r17.new, r21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 c2 20
{ r17 = r17
if (!cmp.gt(r17.new, r21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 c2 20
{ r17 = r17
if (!cmp.gt(r17.new, r21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 02 21
{ r17 = r17
if (cmp.gtu(r17.new, r21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 02 21
{ r17 = r17
if (cmp.gtu(r17.new, r21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 42 21
{ r17 = r17
if (!cmp.gtu(r17.new, r21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 42 21
{ r17 = r17
if (!cmp.gtu(r17.new, r21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 82 21
{ r17 = r17
if (cmp.gt(r21, r17.new)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 82 21
{ r17 = r17
if (cmp.gt(r21, r17.new)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 c2 21
{ r17 = r17
if (!cmp.gt(r21, r17.new)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 c2 21
{ r17 = r17
if (!cmp.gt(r21, r17.new)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 02 22
{ r17 = r17
if (cmp.gtu(r21, r17.new)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 02 22
{ r17 = r17
if (cmp.gtu(r21, r17.new)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 42 22
{ r17 = r17
if (!cmp.gtu(r21, r17.new)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 42 22
{ r17 = r17
if (!cmp.gtu(r21, r17.new)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 02 24
{ r17 = r17
if (cmp.eq(r17.new, #21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 02 24
{ r17 = r17
if (cmp.eq(r17.new, #21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 42 24
{ r17 = r17
if (!cmp.eq(r17.new, #21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 42 24
{ r17 = r17
if (!cmp.eq(r17.new, #21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 82 24
{ r17 = r17
if (cmp.gt(r17.new, #21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 82 24
{ r17 = r17
if (cmp.gt(r17.new, #21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 c2 24
{ r17 = r17
if (!cmp.gt(r17.new, #21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 c2 24
{ r17 = r17
if (!cmp.gt(r17.new, #21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 02 25
{ r17 = r17
if (cmp.gtu(r17.new, #21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 02 25
{ r17 = r17
if (cmp.gtu(r17.new, #21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 d5 42 25
{ r17 = r17
if (!cmp.gtu(r17.new, #21)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 f5 42 25
{ r17 = r17
if (!cmp.gtu(r17.new, #21)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 c0 82 25
{ r17 = r17
if (tstbit(r17.new, #0)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 e0 82 25
{ r17 = r17
if (tstbit(r17.new, #0)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 c0 c2 25
{ r17 = r17
if (!tstbit(r17.new, #0)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 e0 c2 25
{ r17 = r17
if (!tstbit(r17.new, #0)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 c0 02 26
{ r17 = r17
if (cmp.eq(r17.new, #-1)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 e0 02 26
{ r17 = r17
if (cmp.eq(r17.new, #-1)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 c0 42 26
{ r17 = r17
if (!cmp.eq(r17.new, #-1)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 e0 42 26
{ r17 = r17
if (!cmp.eq(r17.new, #-1)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 c0 82 26
{ r17 = r17
if (cmp.gt(r17.new, #-1)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 e0 82 26
{ r17 = r17
if (cmp.gt(r17.new, #-1)) jump:t 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 c0 c2 26
{ r17 = r17
if (!cmp.gt(r17.new, #-1)) jump:nt 0x0 }
# CHECK: 11 40 71 70
# CHECK-NEXT: 00 e0 c2 26
{ r17 = r17
if (!cmp.gt(r17.new, #-1)) jump:t 0x0 }

View File

@ -0,0 +1,290 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.7.2 NV/ST
# Store new-value byte
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 82 f5 b1 3b
{ r31 = r31
memb(r17 + r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 11 c2 a0 48
{ r31 = r31
memb(#17) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 15 c2 b1 a1
{ r31 = r31
memb(r17+#21) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 02 e2 b1 a9
{ r31 = r31
memb(r17 ++ I:circ(m1)) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 28 e2 b1 a9
{ r31 = r31
memb(r17 ++ #5:circ(m1)) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 28 c2 b1 ab
{ r31 = r31
memb(r17++#5) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 00 e2 b1 ad
{ r31 = r31
memb(r17++m1) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 00 e2 b1 af
{ r31 = r31
memb(r17 ++ m1:brev) = r31.new }
# Store new-value byte conditionally
# CHECK: 1f 40 7f 70
# CHECK-NEXT: e2 f5 b1 34
{ r31 = r31
if (p3) memb(r17+r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: e2 f5 b1 35
{ r31 = r31
if (!p3) memb(r17+r21<<#3) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: e2 f5 b1 36
{ p3 = r5
r31 = r31
if (p3.new) memb(r17+r21<<#3) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: e2 f5 b1 37
{ p3 = r5
r31 = r31
if (!p3.new) memb(r17+r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ab c2 b1 40
{ r31 = r31
if (p3) memb(r17+#21) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ab c2 b1 44
{ r31 = r31
if (!p3) memb(r17+#21) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab c2 b1 42
{ p3 = r5
r31 = r31
if (p3.new) memb(r17+#21) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab c2 b1 46
{ p3 = r5
r31 = r31
if (!p3.new) memb(r17+#21) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 2b e2 b1 ab
{ r31 = r31
if (p3) memb(r17++#5) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 2f e2 b1 ab
{ r31 = r31
if (!p3) memb(r17++#5) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab e2 b1 ab
{ p3 = r5
r31 = r31
if (p3.new) memb(r17++#5) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: af e2 b1 ab
{ p3 = r5
r31 = r31
if (!p3.new) memb(r17++#5) = r31.new }
# Store new-value halfword
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 8a f5 b1 3b
{ r31 = r31
memh(r17 + r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 15 ca a0 48
{ r31 = r31
memh(#42) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 15 ca b1 a1
{ r31 = r31
memh(r17+#42) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 02 ea b1 a9
{ r31 = r31
memh(r17 ++ I:circ(m1)) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 28 ea b1 a9
{ r31 = r31
memh(r17 ++ #10:circ(m1)) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 28 ca b1 ab
{ r31 = r31
memh(r17++#10) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 00 ea b1 ad
{ r31 = r31
memh(r17++m1) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 00 ea b1 af
{ r31 = r31
memh(r17 ++ m1:brev) = r31.new }
# Store new-value halfword conditionally
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ea f5 b1 34
{ r31 = r31
if (p3) memh(r17+r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ea f5 b1 35
{ r31 = r31
if (!p3) memh(r17+r21<<#3) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ea f5 b1 36
{ p3 = r5
r31 = r31
if (p3.new) memh(r17+r21<<#3) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ea f5 b1 37
{ p3 = r5
r31 = r31
if (!p3.new) memh(r17+r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ab ca b1 40
{ r31 = r31
if (p3) memh(r17+#42) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ab ca b1 44
{ r31 = r31
if (!p3) memh(r17+#42) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab ca b1 42
{ p3 = r5
r31 = r31
if (p3.new) memh(r17+#42) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab ca b1 46
{ p3 = r5
r31 = r31
if (!p3.new) memh(r17+#42) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 2b ea b1 ab
{ r31 = r31
if (p3) memh(r17++#10) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 2f ea b1 ab
{ r31 = r31
if (!p3) memh(r17++#10) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab ea b1 ab
{ p3 = r5
r31 = r31
if (p3.new) memh(r17++#10) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: af ea b1 ab
{ p3 = r5
r31 = r31
if (!p3.new) memh(r17++#10) = r31.new }
# Store new-value word
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 92 f5 b1 3b
{ r31 = r31
memw(r17 + r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 15 d2 a0 48
{ r31 = r31
memw(#84) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 15 d2 b1 a1
{ r31 = r31
memw(r17+#84) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 02 f2 b1 a9
{ r31 = r31
memw(r17 ++ I:circ(m1)) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 28 f2 b1 a9
{ r31 = r31
memw(r17 ++ #20:circ(m1)) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 28 d2 b1 ab
{ r31 = r31
memw(r17++#20) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 00 f2 b1 ad
{ r31 = r31
memw(r17++m1) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 00 f2 b1 af
{ r31 = r31
memw(r17 ++ m1:brev) = r31.new }
# Store new-value word conditionally
# CHECK: 1f 40 7f 70
# CHECK-NEXT: f2 f5 b1 34
{ r31 = r31
if (p3) memw(r17+r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: f2 f5 b1 35
{ r31 = r31
if (!p3) memw(r17+r21<<#3) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: f2 f5 b1 36
{ p3 = r5
r31 = r31
if (p3.new) memw(r17+r21<<#3) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: f2 f5 b1 37
{ p3 = r5
r31 = r31
if (!p3.new) memw(r17+r21<<#3) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ab d2 b1 40
{ r31 = r31
if (p3) memw(r17+#84) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: ab d2 b1 44
{ r31 = r31
if (!p3) memw(r17+#84) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab d2 b1 42
{ p3 = r5
r31 = r31
if (p3.new) memw(r17+#84) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab d2 b1 46
{ p3 = r5
r31 = r31
if (!p3.new) memw(r17+#84) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 2b f2 b1 ab
{ r31 = r31
if (p3) memw(r17++#20) = r31.new }
# CHECK: 1f 40 7f 70
# CHECK-NEXT: 2f f2 b1 ab
{ r31 = r31
if (!p3) memw(r17++#20) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: ab f2 b1 ab
{ p3 = r5
r31 = r31
if (p3.new) memw(r17++#20) = r31.new }
# CHECK: 03 40 45 85
# CHECK-NEXT: 1f 40 7f 70
# CHECK-NEXT: af f2 b1 ab
{ p3 = r5
r31 = r31
if (!p3.new) memw(r17++#20) = r31.new }

View File

@ -0,0 +1,435 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.8 ST
# XFAIL: *
# Store doubleword
# CHECK: 9e f5 d1 3b
memd(r17 + r21<<#3) = r31:30
# CHECK: 28 d4 c0 48
memd(#320) = r21:20
# CHECK: 02 40 00 00
# CHECK-NEXT: 28 d4 c0 48
memd(##168) = r21:20
memd(r17+#168) = r21:20
# CHECK: 02 f4 d1 a9
memd(r17 ++ I:circ(m1)) = r21:20
# CHECK: 28 f4 d1 a9
memd(r17 ++ #40:circ(m1)) = r21:20
# CHECK: 28 d4 d1 ab
memd(r17++#40) = r21:20
# CHECK: 00 40 00 00
# CHECK-NEXT: d5 fe d1 ad
memd(r17<<#3 + ##21) = r31:30
memd(r17++m1) = r21:20
# CHECK: 00 f4 d1 af
memd(r17 ++ m1:brev) = r21:20
# Store doubleword conditionally
# CHECK: fe f5 d1 34
if (p3) memd(r17+r21<<#3) = r31:30
# CHECK: fe f5 d1 35
if (!p3) memd(r17+r21<<#3) = r31:30
# CHECK: 03 40 45 85
# CHECK-NEXT: fe f5 d1 36
{ p3 = r5
if (p3.new) memd(r17+r21<<#3) = r31:30 }
# CHECK: 03 40 45 85
# CHECK-NEXT: fe f5 d1 37
{ p3 = r5
if (!p3.new) memd(r17+r21<<#3) = r31:30 }
# CHECK: ab de d1 40
if (p3) memd(r17+#168) = r31:30
# CHECK: ab de d1 44
if (!p3) memd(r17+#168) = r31:30
# CHECK: 03 40 45 85
# CHECK-NEXT: ab de d1 42
{ p3 = r5
if (p3.new) memd(r17+#168) = r31:30 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ab de d1 46
{ p3 = r5
if (!p3.new) memd(r17+#168) = r31:30 }
# CHECK: 2b f4 d1 ab
if (p3) memd(r17++#40) = r21:20
# CHECK: 2f f4 d1 ab
if (!p3) memd(r17++#40) = r21:20
# CHECK: 03 40 45 85
# CHECK-NEXT: ab f4 d1 ab
{ p3 = r5
if (p3.new) memd(r17++#40) = r21:20 }
# CHECK: 03 40 45 85
# CHECK-NEXT: af f4 d1 ab
{ p3 = r5
if (!p3.new) memd(r17++#40) = r21:20 }
# CHECK: 02 40 00 00
# CHECK-NEXT: c3 d4 c2 af
if (p3) memd(##168) = r21:20
# CHECK: 02 40 00 00
# CHECK-NEXT: c7 d4 c2 af
if (!p3) memd(##168) = r21:20
# CHECK: 03 40 45 85
# CHECK-NEXT: 02 40 00 00
# CHECK-NEXT: c3 f4 c2 af
{ p3 = r5
if (p3.new) memd(##168) = r21:20 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 02 40 00 00
# CHECK-NEXT: c7 f4 c2 af
{ p3 = r5
if (!p3.new) memd(##168) = r21:20 }
# Store byte
# CHECK: 9f f5 11 3b
memb(r17 + r21<<#3) = r31
# CHECK: 9f ca 11 3c
memb(r17+#21)=#31
# CHECK: 15 d5 00 48
memb(#21) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: 15 d5 00 48
memb(##21) = r21
# CHECK: 15 d5 11 a1
memb(r17+#21) = r21
# CHECK: 02 f5 11 a9
memb(r17 ++ I:circ(m1)) = r21
# CHECK: 28 f5 11 a9
memb(r17 ++ #5:circ(m1)) = r21
# CHECK: 28 d5 11 ab
memb(r17++#5) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: d5 ff 11 ad
memb(r17<<#3 + ##21) = r31
# CHECK: 00 f5 11 ad
memb(r17++m1) = r21
# CHECK: 00 f5 11 af
memb(r17 ++ m1:brev) = r21
# Store byte conditionally
# CHECK: ff f5 11 34
if (p3) memb(r17+r21<<#3) = r31
# CHECK: ff f5 11 35
if (!p3) memb(r17+r21<<#3) = r31
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 11 36
{ p3 = r5
if (p3.new) memb(r17+r21<<#3) = r31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 11 37
{ p3 = r5
if (!p3.new) memb(r17+r21<<#3) = r31 }
# CHECK: ff ca 11 38
if (p3) memb(r17+#21)=#31
# CHECK: ff ca 91 38
if (!p3) memb(r17+#21)=#31
# CHECK: 03 40 45 85
# CHECK-NEXT: ff ca 11 39
{ p3 = r5
if (p3.new) memb(r17+#21)=#31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff ca 91 39
{ p3 = r5
if (!p3.new) memb(r17+#21)=#31 }
# CHECK: ab df 11 40
if (p3) memb(r17+#21) = r31
# CHECK: ab df 11 44
if (!p3) memb(r17+#21) = r31
# CHECK: 03 40 45 85
# CHECK-NEXT: ab df 11 42
{ p3 = r5
if (p3.new) memb(r17+#21) = r31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ab df 11 46
{ p3 = r5
if (!p3.new) memb(r17+#21) = r31 }
# CHECK: 2b f5 11 ab
if (p3) memb(r17++#5) = r21
# CHECK: 2f f5 11 ab
if (!p3) memb(r17++#5) = r21
# CHECK: 03 40 45 85
# CHECK-NEXT: ab f5 11 ab
{ p3 = r5
if (p3.new) memb(r17++#5) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: af f5 11 ab
{ p3 = r5
if (!p3.new) memb(r17++#5) = r21 }
# CHECK: 00 40 00 00
# CHECK-NEXT: ab d5 01 af
if (p3) memb(##21) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: af d5 01 af
if (!p3) memb(##21) = r21
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 40 00 00
# CHECK-NEXT: ab f5 01 af
{ p3 = r5
if (p3.new) memb(##21) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 40 00 00
# CHECK-NEXT: af f5 01 af
{ p3 = r5
if (!p3.new) memb(##21) = r21 }
# Store halfword
# CHECK: 9f f5 51 3b
memh(r17 + r21<<#3) = r31
# CHECK: 9f f5 71 3b
memh(r17 + r21<<#3) = r31.h
# CHECK: 95 cf 31 3c
memh(r17+#62)=#21
# CHECK: 00 40 00 00
# CHECK-NEXT: 2a d5 40 48
memh(##42) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: 2a d5 60 48
memh(##42) = r21.h
# CHECK: 2a d5 40 48
memh(#84) = r21
# CHECK: 2a d5 60 48
memh(#84) = r21.h
# CHECK: 15 df 51 a1
memh(r17+#42) = r31
# CHECK: 15 df 71 a1
memh(r17+#42) = r31.h
# CHECK: 02 f5 51 a9
memh(r17 ++ I:circ(m1)) = r21
# CHECK: 28 f5 51 a9
memh(r17 ++ #10:circ(m1)) = r21
# CHECK: 02 f5 71 a9
memh(r17 ++ I:circ(m1)) = r21.h
# CHECK: 28 f5 71 a9
memh(r17 ++ #10:circ(m1)) = r21.h
# CHECK: 28 d5 51 ab
memh(r17++#10) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: d5 ff 51 ad
memh(r17<<#3 + ##21) = r31
# CHECK: 28 d5 71 ab
memh(r17++#10) = r21.h
# CHECK: 00 40 00 00
# CHECK-NEXT: d5 ff 71 ad
memh(r17<<#3 + ##21) = r31.h
# CHECK: 00 f5 51 ad
memh(r17++m1) = r21
# CHECK: 00 f5 71 ad
memh(r17++m1) = r21.h
# CHECK: 00 f5 51 af
memh(r17 ++ m1:brev) = r21
# CHECK: 00 f5 71 af
memh(r17 ++ m1:brev) = r21.h
# Store halfword conditionally
# CHECK: ff f5 51 34
if (p3) memh(r17+r21<<#3) = r31
# CHECK: ff f5 71 34
if (p3) memh(r17+r21<<#3) = r31.h
# CHECK: ff f5 51 35
if (!p3) memh(r17+r21<<#3) = r31
# CHECK: ff f5 71 35
if (!p3) memh(r17+r21<<#3) = r31.h
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 51 36
{ p3 = r5
if (p3.new) memh(r17+r21<<#3) = r31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 71 36
{ p3 = r5
if (p3.new) memh(r17+r21<<#3) = r31.h }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 51 37
{ p3 = r5
if (!p3.new) memh(r17+r21<<#3) = r31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 71 37
{ p3 = r5
if (!p3.new) memh(r17+r21<<#3) = r31.h }
# CHECK: f5 cf 31 38
if (p3) memh(r17+#62)=#21
# CHECK: f5 cf b1 38
if (!p3) memh(r17+#62)=#21
# CHECK: 03 40 45 85
# CHECK-NEXT: f5 cf 31 39
{ p3 = r5
if (p3.new) memh(r17+#62)=#21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: f5 cf b1 39
{ p3 = r5
if (!p3.new) memh(r17+#62)=#21 }
# CHECK: fb d5 51 40
if (p3) memh(r17+#62) = r21
# CHECK: fb d5 71 40
if (p3) memh(r17+#62) = r21.h
# CHECK: fb d5 51 44
if (!p3) memh(r17+#62) = r21
# CHECK: fb d5 71 44
if (!p3) memh(r17+#62) = r21.h
# CHECK: 03 40 45 85
# CHECK-NEXT: fb d5 51 42
{ p3 = r5
if (p3.new) memh(r17+#62) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: fb d5 71 42
{ p3 = r5
if (p3.new) memh(r17+#62) = r21.h }
# CHECK: 03 40 45 85
# CHECK-NEXT: fb d5 51 46
{ p3 = r5
if (!p3.new) memh(r17+#62) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: fb d5 71 46
{ p3 = r5
if (!p3.new) memh(r17+#62) = r21.h }
# CHECK: 2b f5 51 ab
if (p3) memh(r17++#10) = r21
# CHECK: 2f f5 51 ab
if (!p3) memh(r17++#10) = r21
# CHECK: 03 40 45 85
# CHECK-NEXT: ab f5 51 ab
{ p3 = r5
if (p3.new) memh(r17++#10) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: af f5 51 ab
{ p3 = r5
if (!p3.new) memh(r17++#10) = r21 }
# CHECK: 2b f5 71 ab
if (p3) memh(r17++#10) = r21.h
# CHECK: 2f f5 71 ab
if (!p3) memh(r17++#10) = r21.h
# CHECK: 03 40 45 85
# CHECK-NEXT: ab f5 71 ab
{ p3 = r5
if (p3.new) memh(r17++#10) = r21.h }
# CHECK: 03 40 45 85
# CHECK-NEXT: af f5 71 ab
{ p3 = r5
if (!p3.new) memh(r17++#10) = r21.h }
# CHECK: 00 40 00 00
# CHECK-NEXT: d3 d5 42 af
if (p3) memh(##42) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: d3 d5 62 af
if (p3) memh(##42) = r21.h
# CHECK: 00 40 00 00
# CHECK-NEXT: d7 d5 42 af
if (!p3) memh(##42) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: d7 d5 62 af
if (!p3) memh(##42) = r21.h
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 40 00 00
# CHECK-NEXT: d3 f5 42 af
{ p3 = r5
if (p3.new) memh(##42) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 40 00 00
# CHECK-NEXT: d3 f5 62 af
{ p3 = r5
if (p3.new) memh(##42) = r21.h }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 40 00 00
# CHECK-NEXT: d7 f5 42 af
{ p3 = r5
if (!p3.new) memh(##42) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 00 40 00 00
# CHECK-NEXT: d7 f5 62 af
{ p3 = r5
if (!p3.new) memh(##42) = r21.h }
# Store word
# CHECK: 9f f5 91 3b
memw(r17 + r21<<#3) = r31
# CHECK: 9f ca 51 3c
memw(r17+#84)=#31
# CHECK: 15 df 80 48
memw(#84) = r31
# CHECK: 01 40 00 00
# CHECK-NEXT: 14 d5 80 48
memw(##84) = r21
# CHECK: 9f ca 51 3c
memw(r17+#84)=#31
# CHECK: 15 df 91 a1
memw(r17+#84) = r31
# CHECK: 02 f5 91 a9
memw(r17 ++ I:circ(m1)) = r21
# CHECK: 28 f5 91 a9
memw(r17 ++ #20:circ(m1)) = r21
# CHECK: 28 d5 91 ab
memw(r17++#20) = r21
# CHECK: 00 40 00 00
# CHECK-NEXT: d5 ff 91 ad
memw(r17<<#3 + ##21) = r31
# CHECK: 00 f5 91 ad
memw(r17++m1) = r21
# CHECK: 00 f5 91 af
memw(r17 ++ m1:brev) = r21
# Store word conditionally
# CHECK: ff f5 91 34
if (p3) memw(r17+r21<<#3) = r31
# CHECK: ff f5 91 35
if (!p3) memw(r17+r21<<#3) = r31
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 91 36
{ p3 = r5
if (p3.new) memw(r17+r21<<#3) = r31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff f5 91 37
{ p3 = r5
if (!p3.new) memw(r17+r21<<#3) = r31 }
# CHECK: ff ca 51 38
if (p3) memw(r17+#84)=#31
# CHECK: ff ca d1 38
if (!p3) memw(r17+#84)=#31
# CHECK: 03 40 45 85
# CHECK-NEXT: ff ca 51 39
{ p3 = r5
if (p3.new) memw(r17+#84)=#31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ff ca d1 39
{ p3 = r5
if (!p3.new) memw(r17+#84)=#31 }
# CHECK: ab df 91 40
if (p3) memw(r17+#84) = r31
# CHECK: ab df 91 44
if (!p3) memw(r17+#84) = r31
# CHECK: 03 40 45 85
# CHECK-NEXT: ab df 91 42
{ p3 = r5
if (p3.new) memw(r17+#84) = r31 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ab df 91 46
{ p3 = r5
if (!p3.new) memw(r17+#84) = r31 }
# CHECK: 2b f5 91 ab
if (p3) memw(r17++#20) = r21
# CHECK: 2f f5 91 ab
if (!p3) memw(r17++#20) = r21
# CHECK: 03 40 45 85
# CHECK-NEXT: af f5 91 ab
{ p3 = r5
if (!p3.new) memw(r17++#20) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: ab f5 91 ab
{ p3 = r5
if (p3.new) memw(r17++#20) = r21 }
# CHECK: 01 40 00 00
# CHECK-NEXT: a3 d5 81 af
if (p3) memw(##84) = r21
# CHECK: 01 40 00 00
# CHECK-NEXT: a7 d5 81 af
if (!p3) memw(##84) = r21
# CHECK: 03 40 45 85
# CHECK-NEXT: 01 40 00 00
# CHECK-NEXT: a3 f5 81 af
{ p3 = r5
if (p3.new) memw(##84) = r21 }
# CHECK: 03 40 45 85
# CHECK-NEXT: 01 40 00 00
# CHECK-NEXT: a7 f5 81 af
{ p3 = r5
if (!p3.new) memw(##84) = r21 }
# Allocate stack frame
# CHECK: 1f c0 9d a0
allocframe(#248)

View File

@ -0,0 +1,26 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.9.1 SYSTEM/USER
# Load locked
# CHECK: 11 c0 15 92
r17 = memw_locked(r21)
# CHECK: 10 d0 15 92
r17:16 = memd_locked(r21)
# Store conditional
# CHECK: 03 d5 b1 a0
memw_locked(r17, p3) = r21
# CHECK: 03 d4 f1 a0
memd_locked(r17, p3) = r21:20
# Memory barrier
# CHECK: 00 c0 00 a8
barrier
# Data cache prefetch
# CHECK: 15 c0 11 94
dcfetch(r17 + #168)
# Send value to ETM trace
# CHECK: 00 c0 51 62
trace(r17)

View File

@ -0,0 +1,395 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.1 XTYPE/ALU
# Absolute value doubleword
# CHECK: d0 c0 94 80
r17:16 = abs(r21:20)
# CHECK: 91 c0 95 8c
r17 = abs(r21)
# CHECK: b1 c0 95 8c
r17 = abs(r21):sat
# Add and accumulate
# CHECK: ff d1 35 db
r17 = add(r21, add(r31, #23))
# CHECK: ff d1 b5 db
r17 = add(r21, sub(#23, r31))
# CHECK: f1 c2 15 e2
r17 += add(r21, #23)
# CHECK: f1 c2 95 e2
r17 -= add(r21, #23)
# CHECK: 31 df 15 ef
r17 += add(r21, r31)
# CHECK: 31 df 95 ef
r17 -= add(r21, r31)
# Add doublewords
# CHECK: f0 de 14 d3
r17:16 = add(r21:20, r31:30)
# CHECK: b0 de 74 d3
r17:16 = add(r21:20, r31:30):sat
# CHECK: d0 de 74 d3
r17:16 = add(r21:20, r31:30):raw:lo
# CHECK: f0 de 74 d3
r17:16 = add(r21:20, r31:30):raw:hi
# Add halfword
# CHECK: 11 d5 1f d5
r17 = add(r21.l, r31.l)
# CHECK: 51 d5 1f d5
r17 = add(r21.l, r31.h)
# CHECK: 91 d5 1f d5
r17 = add(r21.l, r31.l):sat
# CHECK: d1 d5 1f d5
r17 = add(r21.l, r31.h):sat
# CHECK: 11 d5 5f d5
r17 = add(r21.l, r31.l):<<16
# CHECK: 31 d5 5f d5
r17 = add(r21.l, r31.h):<<16
# CHECK: 51 d5 5f d5
r17 = add(r21.h, r31.l):<<16
# CHECK: 71 d5 5f d5
r17 = add(r21.h, r31.h):<<16
# CHECK: 91 d5 5f d5
r17 = add(r21.l, r31.l):sat:<<16
# CHECK: b1 d5 5f d5
r17 = add(r21.l, r31.h):sat:<<16
# CHECK: d1 d5 5f d5
r17 = add(r21.h, r31.l):sat:<<16
# CHECK: f1 d5 5f d5
r17 = add(r21.h, r31.h):sat:<<16
# Add or subtract doublewords with carry
# CHECK: 70 de d4 c2
r17:16 = add(r21:20, r31:30, p3):carry
# CHECK: 70 de f4 c2
r17:16 = sub(r21:20, r31:30, p3):carry
# Logical doublewords
# CHECK: 90 c0 94 80
r17:16 = not(r21:20)
# CHECK: 10 de f4 d3
r17:16 = and(r21:20, r31:30)
# CHECK: 30 d4 fe d3
r17:16 = and(r21:20, ~r31:30)
# CHECK: 50 de f4 d3
r17:16 = or(r21:20, r31:30)
# CHECK: 70 d4 fe d3
r17:16 = or(r21:20, ~r31:30)
# CHECK: 90 de f4 d3
r17:16 = xor(r21:20, r31:30)
# Logical-logical doublewords
# CHECK: 10 de 94 ca
r17:16 ^= xor(r21:20, r31:30)
# Logical-logical words
# CHECK: f1 c3 15 da
r17 |= and(r21, #31)
# CHECK: f5 c3 51 da
r17 = or(r21, and(r17, #31))
# CHECK: f1 c3 95 da
r17 |= or(r21, #31)
# CHECK: 11 df 35 ef
r17 |= and(r21, ~r31)
# CHECK: 31 df 35 ef
r17 &= and(r21, ~r31)
# CHECK: 51 df 35 ef
r17 ^= and(r21, ~r31)
# CHECK: 11 df 55 ef
r17 &= and(r21, r31)
# CHECK: 31 df 55 ef
r17 &= or(r21, r31)
# CHECK: 51 df 55 ef
r17 &= xor(r21, r31)
# CHECK: 71 df 55 ef
r17 |= and(r21, r31)
# CHECK: 71 df 95 ef
r17 ^= xor(r21, r31)
# CHECK: 11 df d5 ef
r17 |= or(r21, r31)
# CHECK: 31 df d5 ef
r17 |= xor(r21, r31)
# CHECK: 51 df d5 ef
r17 ^= and(r21, r31)
# CHECK: 71 df d5 ef
r17 ^= or(r21, r31)
# Maximum words
# CHECK: 11 df d5 d5
r17 = max(r21, r31)
# CHECK: 91 df d5 d5
r17 = maxu(r21, r31)
# Maximum doublewords
# CHECK: 90 de d4 d3
r17:16 = max(r21:20, r31:30)
# CHECK: b0 de d4 d3
r17:16 = maxu(r21:20, r31:30)
# Minimum words
# CHECK: 11 d5 bf d5
r17 = min(r21, r31)
# CHECK: 91 d5 bf d5
r17 = minu(r21, r31)
# Minimum doublewords
# CHECK: d0 d4 be d3
r17:16 = min(r21:20, r31:30)
# CHECK: f0 d4 be d3
r17:16 = minu(r21:20, r31:30)
# Module wrap
# CHECK: f1 df f5 d3
r17 = modwrap(r21, r31)
# Negate
# CHECK: b0 c0 94 80
r17:16 = neg(r21:20)
# CHECK: d1 c0 95 8c
r17 = neg(r21):sat
# Round
# CHECK: 31 c0 d4 88
r17 = round(r21:20):sat
# CHECK: 11 df f5 8c
r17 = cround(r21, #31)
# CHECK: 91 df f5 8c
r17 = round(r21, #31)
# CHECK: d1 df f5 8c
r17 = round(r21, #31):sat
# CHECK: 11 df d5 c6
r17 = cround(r21, r31)
# CHECK: 91 df d5 c6
r17 = round(r21, r31)
# CHECK: d1 df d5 c6
r17 = round(r21, r31):sat
# Subtract doublewords
# CHECK: f0 d4 3e d3
r17:16 = sub(r21:20, r31:30)
# Subtract and accumulate words
# CHECK: 71 d5 1f ef
r17 += sub(r21, r31)
# Subtract halfword
# CHECK: 11 d5 3f d5
r17 = sub(r21.l, r31.l)
# CHECK: 51 d5 3f d5
r17 = sub(r21.l, r31.h)
# CHECK: 91 d5 3f d5
r17 = sub(r21.l, r31.l):sat
# CHECK: d1 d5 3f d5
r17 = sub(r21.l, r31.h):sat
# CHECK: 11 d5 7f d5
r17 = sub(r21.l, r31.l):<<16
# CHECK: 31 d5 7f d5
r17 = sub(r21.l, r31.h):<<16
# CHECK: 51 d5 7f d5
r17 = sub(r21.h, r31.l):<<16
# CHECK: 71 d5 7f d5
r17 = sub(r21.h, r31.h):<<16
# CHECK: 91 d5 7f d5
r17 = sub(r21.l, r31.l):sat:<<16
# CHECK: b1 d5 7f d5
r17 = sub(r21.l, r31.h):sat:<<16
# CHECK: d1 d5 7f d5
r17 = sub(r21.h, r31.l):sat:<<16
# CHECK: f1 d5 7f d5
r17 = sub(r21.h, r31.h):sat:<<16
# Sign extend word to doubleword
# CHECK: 10 c0 55 84
r17:16 = sxtw(r21)
# Vector absolute value halfwords
# CHECK: 90 c0 54 80
r17:16 = vabsh(r21:20)
# CHECK: b0 c0 54 80
r17:16 = vabsh(r21:20):sat
# Vector absolute value words
# CHECK: d0 c0 54 80
r17:16 = vabsw(r21:20)
# CHECK: f0 c0 54 80
r17:16 = vabsw(r21:20):sat
# Vector absolute difference halfwords
# CHECK: 10 d4 7e e8
r17:16 = vabsdiffh(r21:20, r31:30)
# Vector absolute difference words
# CHECK: 10 d4 3e e8
r17:16 = vabsdiffw(r21:20, r31:30)
# Vector add halfwords
# CHECK: 50 de 14 d3
r17:16 = vaddh(r21:20, r31:30)
# CHECK: 70 de 14 d3
r17:16 = vaddh(r21:20, r31:30):sat
# CHECK: 90 de 14 d3
r17:16 = vadduh(r21:20, r31:30):sat
# Vector add halfwords with saturate and pack to unsigned bytes
# CHECK: 31 de 54 c1
r17 = vaddhub(r21:20, r31:30):sat
# Vector reduce add unsigned bytes
# CHECK: 30 de 54 e8
r17:16 = vraddub(r21:20, r31:30)
# CHECK: 30 de 54 ea
r17:16 += vraddub(r21:20, r31:30)
# Vector reduce add halfwords
# CHECK: 31 de 14 e9
r17 = vradduh(r21:20, r31:30)
# CHECK: f1 de 34 e9
r17 = vraddh(r21:20, r31:30)
# Vector add bytes
# CHECK: 10 de 14 d3
r17:16 = vaddub(r21:20, r31:30)
# CHECK: 30 de 14 d3
r17:16 = vaddub(r21:20, r31:30):sat
# Vector add words
# CHECK: b0 de 14 d3
r17:16 = vaddw(r21:20, r31:30)
# CHECK: d0 de 14 d3
r17:16 = vaddw(r21:20, r31:30):sat
# Vector average halfwords
# CHECK: 50 de 54 d3
r17:16 = vavgh(r21:20, r31:30)
# CHECK: 70 de 54 d3
r17:16 = vavgh(r21:20, r31:30):rnd
# CHECK: 90 de 54 d3
r17:16 = vavgh(r21:20, r31:30):crnd
# CHECK: b0 de 54 d3
r17:16 = vavguh(r21:20, r31:30)
# CHECK: d0 de 54 d3
r17:16 = vavguh(r21:20, r31:30):rnd
# CHECK: 10 d4 9e d3
r17:16 = vnavgh(r21:20, r31:30)
# CHECK: 30 d4 9e d3
r17:16 = vnavgh(r21:20, r31:30):rnd:sat
# CHECK: 50 d4 9e d3
r17:16 = vnavgh(r21:20, r31:30):crnd:sat
# Vector average unsigned bytes
# CHECK: 10 de 54 d3
r17:16 = vavgub(r21:20, r31:30)
# CHECK: 30 de 54 d3
r17:16 = vavgub(r21:20, r31:30):rnd
# Vector average words
# CHECK: 10 de 74 d3
r17:16 = vavgw(r21:20, r31:30)
# CHECK: 30 de 74 d3
r17:16 = vavgw(r21:20, r31:30):rnd
# CHECK: 50 de 74 d3
r17:16 = vavgw(r21:20, r31:30):crnd
# CHECK: 70 de 74 d3
r17:16 = vavguw(r21:20, r31:30)
# CHECK: 90 de 74 d3
r17:16 = vavguw(r21:20, r31:30):rnd
# CHECK: 70 d4 9e d3
r17:16 = vnavgw(r21:20, r31:30)
# CHECK: 90 d4 9e d3
r17:16 = vnavgw(r21:20, r31:30):rnd:sat
# CHECK: d0 d4 9e d3
r17:16 = vnavgw(r21:20, r31:30):crnd:sat
# Vector conditional negate
# CHECK: 50 df d4 c3
r17:16 = vcnegh(r21:20, r31)
# CHECK: f0 ff 34 cb
r17:16 += vrcnegh(r21:20, r31)
# Vector maximum bytes
# CHECK: 10 d4 de d3
r17:16 = vmaxub(r21:20, r31:30)
# CHECK: d0 d4 de d3
r17:16 = vmaxb(r21:20, r31:30)
# Vector maximum halfwords
# CHECK: 30 d4 de d3
r17:16 = vmaxh(r21:20, r31:30)
# CHECK: 50 d4 de d3
r17:16 = vmaxuh(r21:20, r31:30)
# Vector reduce maximum halfwords
# CHECK: 3f d0 34 cb
r17:16 = vrmaxh(r21:20, r31)
# CHECK: 3f f0 34 cb
r17:16 = vrmaxuh(r21:20, r31)
# Vector reduce maximum words
# CHECK: 5f d0 34 cb
r17:16 = vrmaxw(r21:20, r31)
# CHECK: 5f f0 34 cb
r17:16 = vrmaxuw(r21:20, r31)
# Vector maximum words
# CHECK: b0 d4 be d3
r17:16 = vmaxuw(r21:20, r31:30)
# CHECK: 70 d4 de d3
r17:16 = vmaxw(r21:20, r31:30)
# Vector minimum bytes
# CHECK: 10 d4 be d3
r17:16 = vminub(r21:20, r31:30)
# CHECK: f0 d4 de d3
r17:16 = vminb(r21:20, r31:30)
# Vector minimum halfwords
# CHECK: 30 d4 be d3
r17:16 = vminh(r21:20, r31:30)
# CHECK: 50 d4 be d3
r17:16 = vminuh(r21:20, r31:30)
# Vector reduce minimum halfwords
# CHECK: bf d0 34 cb
r17:16 = vrminh(r21:20, r31)
# CHECK: bf f0 34 cb
r17:16 = vrminuh(r21:20, r31)
# Vector reduce minimum words
# CHECK: df d0 34 cb
r17:16 = vrminw(r21:20, r31)
# CHECK: df f0 34 cb
r17:16 = vrminuw(r21:20, r31)
# Vector minimum words
# CHECK: 70 d4 be d3
r17:16 = vminw(r21:20, r31:30)
# CHECK: 90 d4 be d3
r17:16 = vminuw(r21:20, r31:30)
# Vector sum of absolute differences unsigned bytes
# CHECK: 50 de 54 e8
r17:16 = vrsadub(r21:20, r31:30)
# CHECK: 50 de 54 ea
r17:16 += vrsadub(r21:20, r31:30)
# Vector subtract halfwords
# CHECK: 50 d4 3e d3
r17:16 = vsubh(r21:20, r31:30)
# CHECK: 70 d4 3e d3
r17:16 = vsubh(r21:20, r31:30):sat
# CHECK: 90 d4 3e d3
r17:16 = vsubuh(r21:20, r31:30):sat
# Vector subtract bytes
# CHECK: 10 d4 3e d3
r17:16 = vsubub(r21:20, r31:30)
# CHECK: 30 d4 3e d3
r17:16 = vsubub(r21:20, r31:30):sat
# Vector subtract words
# CHECK: b0 d4 3e d3
r17:16 = vsubw(r21:20, r31:30)
# CHECK: d0 d4 3e d3
r17:16 = vsubw(r21:20, r31:30):sat

View File

@ -0,0 +1,118 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.2 XTYPE/BIT
# Count leading
# CHECK: 11 c0 54 88
r17 = clb(r21:20)
# CHECK: 51 c0 54 88
r17 = cl0(r21:20)
# CHECK: 91 c0 54 88
r17 = cl1(r21:20)
# CHECK: 11 c0 74 88
r17 = normamt(r21:20)
# CHECK: 51 d7 74 88
r17 = add(clb(r21:20), #23)
# CHECK: 11 d7 35 8c
r17 = add(clb(r21), #23)
# CHECK: 91 c0 15 8c
r17 = clb(r21)
# CHECK: b1 c0 15 8c
r17 = cl0(r21)
# CHECK: d1 c0 15 8c
r17 = cl1(r21)
# CHECK: f1 c0 15 8c
r17 = normamt(r21)
# Count population
# CHECK: 71 c0 74 88
r17 = popcount(r21:20)
# Count trailing
# CHECK: 51 c0 f4 88
r17 = ct0(r21:20)
# CHECK: 91 c0 f4 88
r17 = ct1(r21:20)
# CHECK: 91 c0 55 8c
r17 = ct0(r21)
# CHECK: b1 c0 55 8c
r17 = ct1(r21)
# Extract bitfield
# CHECK: f0 df 54 81
r17:16 = extractu(r21:20, #31, #23)
# CHECK: f0 df 54 8a
r17:16 = extract(r21:20, #31, #23)
# CHECK: f1 df 55 8d
r17 = extractu(r21, #31, #23)
# CHECK: f1 df d5 8d
r17 = extract(r21, #31, #23)
# CHECK: 10 de 14 c1
r17:16 = extractu(r21:20, r31:30)
# CHECK: 90 de d4 c1
r17:16 = extract(r21:20, r31:30)
# CHECK: 11 de 15 c9
r17 = extractu(r21, r31:30)
# CHECK: 51 de 15 c9
r17 = extract(r21, r31:30)
# Insert bitfield
# CHECK: f0 df 54 83
r17:16 = insert(r21:20, #31, #23)
# CHECK: f1 df 55 8f
r17 = insert(r21, #31, #23)
# CHECK: 11 de 15 c8
r17 = insert(r21, r31:30)
# CHECK: 10 de 14 ca
r17:16 = insert(r21:20, r31:30)
# Interleave/deinterleave
# CHECK: 90 c0 d4 80
r17:16 = deinterleave(r21:20)
# CHECK: b0 c0 d4 80
r17:16 = interleave(r21:20)
# Linear feedback-shift iteration
# CHECK: d0 de 94 c1
r17:16 = lfs(r21:20, r31:30)
# Masked parity
# CHECK: 11 de 14 d0
r17 = parity(r21:20, r31:30)
# CHECK: 11 df f5 d5
r17 = parity(r21, r31)
# Bit reverse
# CHECK: d0 c0 d4 80
r17:16 = brev(r21:20)
# CHECK: d1 c0 55 8c
r17 = brev(r21)
# Set/clear/toggle bit
# CHECK: 11 df d5 8c
r17 = setbit(r21, #31)
# CHECK: 31 df d5 8c
r17 = clrbit(r21, #31)
# CHECK: 51 df d5 8c
r17 = togglebit(r21, #31)
# CHECK: 11 df 95 c6
r17 = setbit(r21, r31)
# CHECK: 51 df 95 c6
r17 = clrbit(r21, r31)
# CHECK: 91 df 95 c6
r17 = togglebit(r21, r31)
# Split bitfield
# CHECK: 90 df d5 88
r17:16 = bitsplit(r21, #31)
# CHECK: 10 df 35 d4
r17:16 = bitsplit(r21, r31)
# Table index
# CHECK: f1 cd 15 87
r17 = tableidxb(r21, #7, #13):raw
# CHECK: f1 cd 55 87
r17 = tableidxh(r21, #7, #13):raw
# CHECK: f1 cd 95 87
r17 = tableidxw(r21, #7, #13):raw
# CHECK: f1 cd d5 87
r17 = tableidxd(r21, #7, #13):raw

View File

@ -0,0 +1,128 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.3 XTYPE/COMPLEX
# Complex add/sub halfwords
# CHECK: 90 de 54 c1
r17:16 = vxaddsubh(r21:20, r31:30):sat
# CHECK: d0 de 54 c1
r17:16 = vxsubaddh(r21:20, r31:30):sat
# CHECK: 10 de d4 c1
r17:16 = vxaddsubh(r21:20, r31:30):rnd:>>1:sat
# CHECK: 50 de d4 c1
r17:16 = vxsubaddh(r21:20, r31:30):rnd:>>1:sat
# Complex add/sub words
# CHECK: 10 de 54 c1
r17:16 = vxaddsubw(r21:20, r31:30):sat
# CHECK: 50 de 54 c1
r17:16 = vxsubaddw(r21:20, r31:30):sat
# Complex multiply
# CHECK: d0 df 15 e5
r17:16 = cmpy(r21, r31):sat
# CHECK: d0 df 95 e5
r17:16 = cmpy(r21, r31):<<1:sat
# CHECK: d0 df 55 e5
r17:16 = cmpy(r21, r31*):sat
# CHECK: d0 df d5 e5
r17:16 = cmpy(r21, r31*):<<1:sat
# CHECK: d0 df 15 e7
r17:16 += cmpy(r21, r31):sat
# CHECK: d0 df 95 e7
r17:16 += cmpy(r21, r31):<<1:sat
# CHECK: f0 df 15 e7
r17:16 -= cmpy(r21, r31):sat
# CHECK: f0 df 95 e7
r17:16 -= cmpy(r21, r31):<<1:sat
# CHECK: d0 df 55 e7
r17:16 += cmpy(r21, r31*):sat
# CHECK: d0 df d5 e7
r17:16 += cmpy(r21, r31*):<<1:sat
# CHECK: f0 df 55 e7
r17:16 -= cmpy(r21, r31*):sat
# CHECK: f0 df d5 e7
r17:16 -= cmpy(r21, r31*):<<1:sat
# Complex multiply real or imaginary
# CHECK: 30 df 15 e5
r17:16 = cmpyi(r21, r31)
# CHECK: 50 df 15 e5
r17:16 = cmpyr(r21, r31)
# CHECK: 30 df 15 e7
r17:16 += cmpyi(r21, r31)
# CHECK: 50 df 15 e7
r17:16 += cmpyr(r21, r31)
# Complex multiply with round and pack
# CHECK: d1 df 35 ed
r17 = cmpy(r21, r31):rnd:sat
# CHECK: d1 df b5 ed
r17 = cmpy(r21, r31):<<1:rnd:sat
# CHECK: d1 df 75 ed
r17 = cmpy(r21, r31*):rnd:sat
# CHECK: d1 df f5 ed
r17 = cmpy(r21, r31*):<<1:rnd:sat
# Complex multiply 32x16
# CHECK: 91 df 14 c5
r17 = cmpyiwh(r21:20, r31):<<1:rnd:sat
# CHECK: b1 df 14 c5
r17 = cmpyiwh(r21:20, r31*):<<1:rnd:sat
# CHECK: d1 df 14 c5
r17 = cmpyrwh(r21:20, r31):<<1:rnd:sat
# CHECK: f1 df 14 c5
r17 = cmpyrwh(r21:20, r31*):<<1:rnd:sat
# Vector complex multiply real or imaginary
# CHECK: d0 de 34 e8
r17:16 = vcmpyr(r21:20, r31:30):sat
# CHECK: d0 de b4 e8
r17:16 = vcmpyr(r21:20, r31:30):<<1:sat
# CHECK: d0 de 54 e8
r17:16 = vcmpyi(r21:20, r31:30):sat
# CHECK: d0 de d4 e8
r17:16 = vcmpyi(r21:20, r31:30):<<1:sat
# CHECK: 90 de 34 ea
r17:16 += vcmpyr(r21:20, r31:30):sat
# CHECK: 90 de 54 ea
r17:16 += vcmpyi(r21:20, r31:30):sat
# Vector complex conjugate
# CHECK: f0 c0 94 80
r17:16 = vconj(r21:20):sat
# Vector complex rotate
# CHECK: 10 df d4 c3
r17:16 = vcrotate(r21:20, r31)
# Vector reduce complex multiply real or imaginary
# CHECK: 10 de 14 e8
r17:16 = vrcmpyi(r21:20, r31:30)
# CHECK: 30 de 14 e8
r17:16 = vrcmpyr(r21:20, r31:30)
# CHECK: 10 de 54 e8
r17:16 = vrcmpyi(r21:20, r31:30*)
# CHECK: 30 de 74 e8
r17:16 = vrcmpyr(r21:20, r31:30*)
# Vector reduce complex multiply by scalar
# CHECK: 90 de b4 e8
r17:16 = vrcmpys(r21:20, r31:30):<<1:sat:raw:hi
# CHECK: 90 de f4 e8
r17:16 = vrcmpys(r21:20, r31:30):<<1:sat:raw:lo
# CHECK: 90 de b4 ea
r17:16 += vrcmpys(r21:20, r31:30):<<1:sat:raw:hi
# CHECK: 90 de f4 ea
r17:16 += vrcmpys(r21:20, r31:30):<<1:sat:raw:lo
# Vector reduce complex multiply by scalar with round and pack
# CHECK: d1 de b4 e9
r17 = vrcmpys(r21:20, r31:30):<<1:rnd:sat:raw:hi
# CHECK: f1 de b4 e9
r17 = vrcmpys(r21:20, r31:30):<<1:rnd:sat:raw:lo
# Vector reduce complex rotate
# CHECK: f0 ff d4 c3
r17:16 = vrcrotate(r21:20, r31, #3)
# CHECK: 30 ff b4 cb
r17:16 += vrcrotate(r21:20, r31, #3)

View File

@ -0,0 +1,146 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.4 XTYPE/FP
# Floating point addition
# CHECK: 11 df 15 eb
r17 = sfadd(r21, r31)
# Classify floating-point value
# CHECK: 03 d5 f1 85
p3 = sfclass(r17, #21)
# CHECK: b3 c2 90 dc
p3 = dfclass(r17:16, #21)
# Compare floating-point value
# CHECK: 03 d5 f1 c7
p3 = sfcmp.ge(r17, r21)
# CHECK: 23 d5 f1 c7
p3 = sfcmp.uo(r17, r21)
# CHECK: 63 d5 f1 c7
p3 = sfcmp.eq(r17, r21)
# CHECK: 83 d5 f1 c7
p3 = sfcmp.gt(r17, r21)
# CHECK: 03 d4 f0 d2
p3 = dfcmp.eq(r17:16, r21:20)
# CHECK: 23 d4 f0 d2
p3 = dfcmp.gt(r17:16, r21:20)
# CHECK: 43 d4 f0 d2
p3 = dfcmp.ge(r17:16, r21:20)
# CHECK: 63 d4 f0 d2
p3 = dfcmp.uo(r17:16, r21:20)
# Convert floating-point value to other format
# CHECK: 10 c0 95 84
r17:16 = convert_sf2df(r21)
# CHECK: 31 c0 14 88
r17 = convert_df2sf(r21:20)
# Convert integer to floating-point value
# CHECK: 50 c0 f4 80
r17:16 = convert_ud2df(r21:20)
# CHECK: 70 c0 f4 80
r17:16 = convert_d2df(r21:20)
# CHECK: 30 c0 95 84
r17:16 = convert_uw2df(r21)
# CHECK: 50 c0 95 84
r17:16 = convert_w2df(r21)
# CHECK: 31 c0 34 88
r17 = convert_ud2sf(r21:20)
# CHECK: 31 c0 54 88
r17 = convert_d2sf(r21:20)
# CHECK: 11 c0 35 8b
r17 = convert_uw2sf(r21)
# CHECK: 11 c0 55 8b
r17 = convert_w2sf(r21)
# Convert floating-point value to integer
# CHECK: 10 c0 f4 80
r17:16 = convert_df2d(r21:20)
# CHECK: 30 c0 f4 80
r17:16 = convert_df2ud(r21:20)
# CHECK: d0 c0 f4 80
r17:16 = convert_df2d(r21:20):chop
# CHECK: f0 c0 f4 80
r17:16 = convert_df2ud(r21:20):chop
# CHECK: 70 c0 95 84
r17:16 = convert_sf2ud(r21)
# CHECK: 90 c0 95 84
r17:16 = convert_sf2d(r21)
# CHECK: b0 c0 95 84
r17:16 = convert_sf2ud(r21):chop
# CHECK: d0 c0 95 84
r17:16 = convert_sf2d(r21):chop
# CHECK: 31 c0 74 88
r17 = convert_df2uw(r21:20)
# CHECK: 31 c0 94 88
r17 = convert_df2w(r21:20)
# CHECK: 31 c0 b4 88
r17 = convert_df2uw(r21:20):chop
# CHECK: 31 c0 f4 88
r17 = convert_df2w(r21:20):chop
# CHECK: 11 c0 75 8b
r17 = convert_sf2uw(r21)
# CHECK: 31 c0 75 8b
r17 = convert_sf2uw(r21):chop
# CHECK: 11 c0 95 8b
r17 = convert_sf2w(r21)
# CHECK: 31 c0 95 8b
r17 = convert_sf2w(r21):chop
# Floating point extreme value assistance
# CHECK: 11 c0 b5 8b
r17 = sffixupr(r21)
# CHECK: 11 df d5 eb
r17 = sffixupn(r21, r31)
# CHECK: 31 df d5 eb
r17 = sffixupd(r21, r31)
# Floating point fused multiply-add
# CHECK: 91 df 15 ef
r17 += sfmpy(r21, r31)
# CHECK: b1 df 15 ef
r17 -= sfmpy(r21, r31)
# Floating point fused multiply-add with scaling
# CHECK: f1 df 75 ef
r17 += sfmpy(r21, r31, p3):scale
# Floating point reciprocal square root approximation
# CHECK: 71 c0 f5 8b
r17, p3 = sfinvsqrta(r21)
# Floating point fused multiply-add for library routines
# CHECK: d1 df 15 ef
r17 += sfmpy(r21, r31):lib
# CHECK: f1 df 15 ef
r17 -= sfmpy(r21, r31):lib
# Create floating-point constant
# CHECK: b1 c2 00 d6
r17 = sfmake(#21):pos
# CHECK: b1 c2 40 d6
r17 = sfmake(#21):neg
# CHECK: b0 c2 00 d9
r17:16 = dfmake(#21):pos
# CHECK: b0 c2 40 d9
r17:16 = dfmake(#21):neg
# Floating point maximum
# CHECK: 11 df 95 eb
r17 = sfmax(r21, r31)
# Floating point minimum
# CHECK: 31 df 95 eb
r17 = sfmin(r21, r31)
# Floating point multiply
# CHECK: 11 df 55 eb
r17 = sfmpy(r21, r31)
# Floating point reciprocal approximation
# CHECK: f1 df f5 eb
r17, p3 = sfrecipa(r21, r31)
# Floating point subtraction
# CHECK: 31 df 15 eb
r17 = sfsub(r21, r31)

View File

@ -0,0 +1,400 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.5 XTYPE/MPY
# Multiply and use lower result
# CHECK: b1 df 35 d7
r17 = add(#21, mpyi(r21, r31))
# CHECK: bf d1 35 d8
r17 = add(#21, mpyi(r21, #31))
# CHECK: b5 d1 3f df
r17 = add(r21, mpyi(#84, r31))
# CHECK: f5 f1 b5 df
r17 = add(r21, mpyi(r21, #31))
# CHECK: 15 d1 1f e3
r17 = add(r21, mpyi(r17, r31))
# CHECK: f1 c3 15 e0
r17 =+ mpyi(r21, #31)
# CHECK: f1 c3 95 e0
r17 =- mpyi(r21, #31)
# CHECK: f1 c3 15 e1
r17 += mpyi(r21, #31)
# CHECK: f1 c3 95 e1
r17 -= mpyi(r21, #31)
# CHECK: 11 df 15 ed
r17 = mpyi(r21, r31)
# CHECK: 11 df 15 ef
r17 += mpyi(r21, r31)
# Vector multiply word by signed half (32x16)
# CHECK: b0 de 14 e8
r17:16 = vmpyweh(r21:20, r31:30):sat
# CHECK: b0 de 94 e8
r17:16 = vmpyweh(r21:20, r31:30):<<1:sat
# CHECK: f0 de 14 e8
r17:16 = vmpywoh(r21:20, r31:30):sat
# CHECK: f0 de 94 e8
r17:16 = vmpywoh(r21:20, r31:30):<<1:sat
# CHECK: b0 de 34 e8
r17:16 = vmpyweh(r21:20, r31:30):rnd:sat
# CHECK: b0 de b4 e8
r17:16 = vmpyweh(r21:20, r31:30):<<1:rnd:sat
# CHECK: f0 de 34 e8
r17:16 = vmpywoh(r21:20, r31:30):rnd:sat
# CHECK: f0 de b4 e8
r17:16 = vmpywoh(r21:20, r31:30):<<1:rnd:sat
# CHECK: b0 de 14 ea
r17:16 += vmpyweh(r21:20, r31:30):sat
# CHECK: b0 de 94 ea
r17:16 += vmpyweh(r21:20, r31:30):<<1:sat
# CHECK: f0 de 14 ea
r17:16 += vmpywoh(r21:20, r31:30):sat
# CHECK: f0 de 94 ea
r17:16 += vmpywoh(r21:20, r31:30):<<1:sat
# CHECK: b0 de 34 ea
r17:16 += vmpyweh(r21:20, r31:30):rnd:sat
# CHECK: b0 de b4 ea
r17:16 += vmpyweh(r21:20, r31:30):<<1:rnd:sat
# CHECK: f0 de 34 ea
r17:16 += vmpywoh(r21:20, r31:30):rnd:sat
# CHECK: f0 de b4 ea
r17:16 += vmpywoh(r21:20, r31:30):<<1:rnd:sat
# Vector multiply word by unsigned half (32x16)
# CHECK: b0 de 54 e8
r17:16 = vmpyweuh(r21:20, r31:30):sat
# CHECK: b0 de d4 e8
r17:16 = vmpyweuh(r21:20, r31:30):<<1:sat
# CHECK: f0 de 54 e8
r17:16 = vmpywouh(r21:20, r31:30):sat
# CHECK: f0 de d4 e8
r17:16 = vmpywouh(r21:20, r31:30):<<1:sat
# CHECK: b0 de 74 e8
r17:16 = vmpyweuh(r21:20, r31:30):rnd:sat
# CHECK: b0 de f4 e8
r17:16 = vmpyweuh(r21:20, r31:30):<<1:rnd:sat
# CHECK: f0 de 74 e8
r17:16 = vmpywouh(r21:20, r31:30):rnd:sat
# CHECK: f0 de f4 e8
r17:16 = vmpywouh(r21:20, r31:30):<<1:rnd:sat
# CHECK: b0 de 54 ea
r17:16 += vmpyweuh(r21:20, r31:30):sat
# CHECK: b0 de d4 ea
r17:16 += vmpyweuh(r21:20, r31:30):<<1:sat
# CHECK: f0 de 54 ea
r17:16 += vmpywouh(r21:20, r31:30):sat
# CHECK: f0 de d4 ea
r17:16 += vmpywouh(r21:20, r31:30):<<1:sat
# CHECK: b0 de 74 ea
r17:16 += vmpyweuh(r21:20, r31:30):rnd:sat
# CHECK: b0 de f4 ea
r17:16 += vmpyweuh(r21:20, r31:30):<<1:rnd:sat
# CHECK: f0 de 74 ea
r17:16 += vmpywouh(r21:20, r31:30):rnd:sat
# CHECK: f0 de f4 ea
r17:16 += vmpywouh(r21:20, r31:30):<<1:rnd:sat
# Multiply signed halfwords
# CHECK: 10 df 95 e4
r17:16 = mpy(r21.l, r31.l):<<1
# CHECK: 30 df 95 e4
r17:16 = mpy(r21.l, r31.h):<<1
# CHECK: 50 df 95 e4
r17:16 = mpy(r21.h, r31.l):<<1
# CHECK: 70 df 95 e4
r17:16 = mpy(r21.h, r31.h):<<1
# CHECK: 10 df b5 e4
r17:16 = mpy(r21.l, r31.l):<<1:rnd
# CHECK: 30 df b5 e4
r17:16 = mpy(r21.l, r31.h):<<1:rnd
# CHECK: 50 df b5 e4
r17:16 = mpy(r21.h, r31.l):<<1:rnd
# CHECK: 70 df b5 e4
r17:16 = mpy(r21.h, r31.h):<<1:rnd
# CHECK: 10 df 95 e6
r17:16 += mpy(r21.l, r31.l):<<1
# CHECK: 30 df 95 e6
r17:16 += mpy(r21.l, r31.h):<<1
# CHECK: 50 df 95 e6
r17:16 += mpy(r21.h, r31.l):<<1
# CHECK: 70 df 95 e6
r17:16 += mpy(r21.h, r31.h):<<1
# CHECK: 10 df b5 e6
r17:16 -= mpy(r21.l, r31.l):<<1
# CHECK: 30 df b5 e6
r17:16 -= mpy(r21.l, r31.h):<<1
# CHECK: 50 df b5 e6
r17:16 -= mpy(r21.h, r31.l):<<1
# CHECK: 70 df b5 e6
r17:16 -= mpy(r21.h, r31.h):<<1
# CHECK: 11 df 95 ec
r17 = mpy(r21.l, r31.l):<<1
# CHECK: 31 df 95 ec
r17 = mpy(r21.l, r31.h):<<1
# CHECK: 51 df 95 ec
r17 = mpy(r21.h, r31.l):<<1
# CHECK: 71 df 95 ec
r17 = mpy(r21.h, r31.h):<<1
# CHECK: 91 df 95 ec
r17 = mpy(r21.l, r31.l):<<1:sat
# CHECK: b1 df 95 ec
r17 = mpy(r21.l, r31.h):<<1:sat
# CHECK: d1 df 95 ec
r17 = mpy(r21.h, r31.l):<<1:sat
# CHECK: f1 df 95 ec
r17 = mpy(r21.h, r31.h):<<1:sat
# CHECK: 11 df b5 ec
r17 = mpy(r21.l, r31.l):<<1:rnd
# CHECK: 31 df b5 ec
r17 = mpy(r21.l, r31.h):<<1:rnd
# CHECK: 51 df b5 ec
r17 = mpy(r21.h, r31.l):<<1:rnd
# CHECK: 71 df b5 ec
r17 = mpy(r21.h, r31.h):<<1:rnd
# CHECK: 91 df b5 ec
r17 = mpy(r21.l, r31.l):<<1:rnd:sat
# CHECK: b1 df b5 ec
r17 = mpy(r21.l, r31.h):<<1:rnd:sat
# CHECK: d1 df b5 ec
r17 = mpy(r21.h, r31.l):<<1:rnd:sat
# CHECK: f1 df b5 ec
r17 = mpy(r21.h, r31.h):<<1:rnd:sat
# CHECK: 11 df 95 ee
r17 += mpy(r21.l, r31.l):<<1
# CHECK: 31 df 95 ee
r17 += mpy(r21.l, r31.h):<<1
# CHECK: 51 df 95 ee
r17 += mpy(r21.h, r31.l):<<1
# CHECK: 71 df 95 ee
r17 += mpy(r21.h, r31.h):<<1
# CHECK: 91 df 95 ee
r17 += mpy(r21.l, r31.l):<<1:sat
# CHECK: b1 df 95 ee
r17 += mpy(r21.l, r31.h):<<1:sat
# CHECK: d1 df 95 ee
r17 += mpy(r21.h, r31.l):<<1:sat
# CHECK: f1 df 95 ee
r17 += mpy(r21.h, r31.h):<<1:sat
# CHECK: 11 df b5 ee
r17 -= mpy(r21.l, r31.l):<<1
# CHECK: 31 df b5 ee
r17 -= mpy(r21.l, r31.h):<<1
# CHECK: 51 df b5 ee
r17 -= mpy(r21.h, r31.l):<<1
# CHECK: 71 df b5 ee
r17 -= mpy(r21.h, r31.h):<<1
# CHECK: 91 df b5 ee
r17 -= mpy(r21.l, r31.l):<<1:sat
# CHECK: b1 df b5 ee
r17 -= mpy(r21.l, r31.h):<<1:sat
# CHECK: d1 df b5 ee
r17 -= mpy(r21.h, r31.l):<<1:sat
# CHECK: f1 df b5 ee
r17 -= mpy(r21.h, r31.h):<<1:sat
# Multiply unsigned halfwords
# CHECK: 10 df d5 e4
r17:16 = mpyu(r21.l, r31.l):<<1
# CHECK: 30 df d5 e4
r17:16 = mpyu(r21.l, r31.h):<<1
# CHECK: 50 df d5 e4
r17:16 = mpyu(r21.h, r31.l):<<1
# CHECK: 70 df d5 e4
r17:16 = mpyu(r21.h, r31.h):<<1
# CHECK: 10 df d5 e6
r17:16 += mpyu(r21.l, r31.l):<<1
# CHECK: 30 df d5 e6
r17:16 += mpyu(r21.l, r31.h):<<1
# CHECK: 50 df d5 e6
r17:16 += mpyu(r21.h, r31.l):<<1
# CHECK: 70 df d5 e6
r17:16 += mpyu(r21.h, r31.h):<<1
# CHECK: 10 df f5 e6
r17:16 -= mpyu(r21.l, r31.l):<<1
# CHECK: 30 df f5 e6
r17:16 -= mpyu(r21.l, r31.h):<<1
# CHECK: 50 df f5 e6
r17:16 -= mpyu(r21.h, r31.l):<<1
# CHECK: 70 df f5 e6
r17:16 -= mpyu(r21.h, r31.h):<<1
# CHECK: 11 df d5 ec
r17 = mpyu(r21.l, r31.l):<<1
# CHECK: 31 df d5 ec
r17 = mpyu(r21.l, r31.h):<<1
# CHECK: 51 df d5 ec
r17 = mpyu(r21.h, r31.l):<<1
# CHECK: 71 df d5 ec
r17 = mpyu(r21.h, r31.h):<<1
# CHECK: 11 df d5 ee
r17 += mpyu(r21.l, r31.l):<<1
# CHECK: 31 df d5 ee
r17 += mpyu(r21.l, r31.h):<<1
# CHECK: 51 df d5 ee
r17 += mpyu(r21.h, r31.l):<<1
# CHECK: 71 df d5 ee
r17 += mpyu(r21.h, r31.h):<<1
# CHECK: 11 df f5 ee
r17 -= mpyu(r21.l, r31.l):<<1
# CHECK: 31 df f5 ee
r17 -= mpyu(r21.l, r31.h):<<1
# CHECK: 51 df f5 ee
r17 -= mpyu(r21.h, r31.l):<<1
# CHECK: 71 df f5 ee
r17 -= mpyu(r21.h, r31.h):<<1
# Polynomial multiply words
# CHECK: f0 df 55 e5
r17:16 = pmpyw(r21, r31)
# CHECK: f0 df 35 e7
r17:16 ^= pmpyw(r21, r31)
# Vector reduce multiply word by signed half (32x16)
# CHECK: 50 de 34 e8
r17:16 = vrmpywoh(r21:20, r31:30)
# CHECK: 50 de b4 e8
r17:16 = vrmpywoh(r21:20, r31:30):<<1
# CHECK: 90 de 54 e8
r17:16 = vrmpyweh(r21:20, r31:30)
# CHECK: 90 de d4 e8
r17:16 = vrmpyweh(r21:20, r31:30):<<1
# CHECK: d0 de 74 ea
r17:16 += vrmpywoh(r21:20, r31:30)
# CHECK: d0 de f4 ea
r17:16 += vrmpywoh(r21:20, r31:30):<<1
# CHECK: d0 de 34 ea
r17:16 += vrmpyweh(r21:20, r31:30)
# CHECK: d0 de b4 ea
r17:16 += vrmpyweh(r21:20, r31:30):<<1
# Multiply and use upper result
# CHECK: 31 df 15 ed
r17 = mpy(r21, r31)
# CHECK: 31 df 35 ed
r17 = mpy(r21, r31):rnd
# CHECK: 31 df 55 ed
r17 = mpyu(r21, r31)
# CHECK: 31 df 75 ed
r17 = mpysu(r21, r31)
# CHECK: 11 df b5 ed
r17 = mpy(r21, r31.h):<<1:sat
# CHECK: 31 df b5 ed
r17 = mpy(r21, r31.l):<<1:sat
# CHECK: 91 df b5 ed
r17 = mpy(r21, r31.h):<<1:rnd:sat
# CHECK: 11 df f5 ed
r17 = mpy(r21, r31):<<1:sat
# CHECK: 91 df f5 ed
r17 = mpy(r21, r31.l):<<1:rnd:sat
# CHECK: 51 df b5 ed
r17 = mpy(r21, r31):<<1
# CHECK: 11 df 75 ef
r17 += mpy(r21, r31):<<1:sat
# CHECK: 31 df 75 ef
r17 -= mpy(r21, r31):<<1:sat
# Multiply and use full result
# CHECK: 10 df 15 e5
r17:16 = mpy(r21, r31)
# CHECK: 10 df 55 e5
r17:16 = mpyu(r21, r31)
# CHECK: 10 df 15 e7
r17:16 += mpy(r21, r31)
# CHECK: 10 df 35 e7
r17:16 -= mpy(r21, r31)
# CHECK: 10 df 55 e7
r17:16 += mpyu(r21, r31)
# CHECK: 10 df 75 e7
r17:16 -= mpyu(r21, r31)
# Vector dual multiply
# CHECK: 90 de 14 e8
r17:16 = vdmpy(r21:20, r31:30):sat
# CHECK: 90 de 94 e8
r17:16 = vdmpy(r21:20, r31:30):<<1:sat
# CHECK: 90 de 14 ea
r17:16 += vdmpy(r21:20, r31:30):sat
# CHECK: 90 de 94 ea
r17:16 += vdmpy(r21:20, r31:30):<<1:sat
# Vector dual multiply with round and pack
# CHECK: 11 de 14 e9
r17 = vdmpy(r21:20, r31:30):rnd:sat
# CHECK: 11 de 94 e9
r17 = vdmpy(r21:20, r31:30):<<1:rnd:sat
# Vector reduce multiply bytes
# CHECK: 30 de 94 e8
r17:16 = vrmpybu(r21:20, r31:30)
# CHECK: 30 de d4 e8
r17:16 = vrmpybsu(r21:20, r31:30)
# CHECK: 30 de 94 ea
r17:16 += vrmpybu(r21:20, r31:30)
# CHECK: 30 de d4 ea
r17:16 += vrmpybsu(r21:20, r31:30)
# Vector dual multiply signed by unsigned bytes
# CHECK: 30 de b4 e8
r17:16 = vdmpybsu(r21:20, r31:30):sat
# CHECK: 30 de 34 ea
r17:16 += vdmpybsu(r21:20, r31:30):sat
# Vector multiply even haldwords
# CHECK: d0 de 14 e8
r17:16 = vmpyeh(r21:20, r31:30):sat
# CHECK: d0 de 94 e8
r17:16 = vmpyeh(r21:20, r31:30):<<1:sat
# CHECK: 50 de 34 ea
r17:16 += vmpyeh(r21:20, r31:30)
# CHECK: d0 de 14 ea
r17:16 += vmpyeh(r21:20, r31:30):sat
# CHECK: d0 de 94 ea
r17:16 += vmpyeh(r21:20, r31:30):<<1:sat
# Vector multiply halfwords
# CHECK: b0 df 15 e5
r17:16 = vmpyh(r21, r31):sat
# CHECK: b0 df 95 e5
r17:16 = vmpyh(r21, r31):<<1:sat
# CHECK: 30 df 35 e7
r17:16 += vmpyh(r21, r31)
# CHECK: b0 df 15 e7
r17:16 += vmpyh(r21, r31):sat
# CHECK: b0 df 95 e7
r17:16 += vmpyh(r21, r31):<<1:sat
# Vector multiply halfwords with round and pack
# CHECK: f1 df 35 ed
r17 = vmpyh(r21, r31):rnd:sat
# CHECK: f1 df b5 ed
r17 = vmpyh(r21, r31):<<1:rnd:sat
# Vector multiply halfwords signed by unsigned
# CHECK: f0 df 15 e5
r17:16 = vmpyhsu(r21, r31):sat
# CHECK: f0 df 95 e5
r17:16 = vmpyhsu(r21, r31):<<1:sat
# CHECK: b0 df 75 e7
r17:16 += vmpyhsu(r21, r31):sat
# CHECK: b0 df f5 e7
r17:16 += vmpyhsu(r21, r31):<<1:sat
# Vector reduce multiply halfwords
# CHECK: 50 de 14 e8
r17:16 = vrmpyh(r21:20, r31:30)
# CHECK: 50 de 14 ea
r17:16 += vrmpyh(r21:20, r31:30)
# Vector multiply bytes
# CHECK: 30 df 55 e5
r17:16 = vmpybsu(r21, r31)
# CHECK: 30 df 95 e5
r17:16 = vmpybu(r21, r31)
# CHECK: 30 df 95 e7
r17:16 += vmpybu(r21, r31)
# CHECK: 30 df d5 e7
r17:16 += vmpybsu(r21, r31)
# Vector polynomial multiply halfwords
# CHECK: f0 df d5 e5
r17:16 = vpmpyh(r21, r31)
# CHECK: f0 df b5 e7
r17:16 ^= vpmpyh(r21, r31)

View File

@ -0,0 +1,104 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.6 XTYPE/PERM
# CABAC decode bin
# CHECK: d0 de d4 c1
r17:16 = decbin(r21:20, r31:30)
# Saturate
# CHECK: 11 c0 d4 88
r17 = sat(r21:20)
# CHECK: 91 c0 d5 8c
r17 = sath(r21)
# CHECK: b1 c0 d5 8c
r17 = satuh(r21)
# CHECK: d1 c0 d5 8c
r17 = satub(r21)
# CHECK: f1 c0 d5 8c
r17 = satb(r21)
# Swizzle bytes
# CHECK: f1 c0 95 8c
r17 = swiz(r21)
# Vector align
# CHECK: 70 d4 1e c2
r17:16 = valignb(r21:20, r31:30, p3)
# CHECK: 70 de 94 c2
r17:16 = vspliceb(r21:20, r31:30, p3)
# Vector round and pack
# CHECK: 91 c0 94 88
r17 = vrndwh(r21:20)
# CHECK: d1 c0 94 88
r17 = vrndwh(r21:20):sat
# Vector saturate and pack
# CHECK: 11 c0 14 88
r17 = vsathub(r21:20)
# CHECK: 51 c0 14 88
r17 = vsatwh(r21:20)
# CHECK: 91 c0 14 88
r17 = vsatwuh(r21:20)
# CHECK: d1 c0 14 88
r17 = vsathb(r21:20)
# CHECK: 11 c0 95 8c
r17 = vsathb(r21)
# CHECK: 51 c0 95 8c
r17 = vsathub(r21)
# Vector saturate without pack
# CHECK: 90 c0 14 80
r17:16 = vsathub(r21:20)
# CHECK: b0 c0 14 80
r17:16 = vsatwuh(r21:20)
# CHECK: d0 c0 14 80
r17:16 = vsatwh(r21:20)
# CHECK: f0 c0 14 80
r17:16 = vsathb(r21:20)
# Vector shuffle
# CHECK: 50 de 14 c1
r17:16 = shuffeb(r21:20, r31:30)
# CHECK: 90 d4 1e c1
r17:16 = shuffob(r21:20, r31:30)
# CHECK: d0 de 14 c1
r17:16 = shuffeh(r21:20, r31:30)
# CHECK: 10 d4 9e c1
r17:16 = shuffoh(r21:20, r31:30)
# Vector splat bytes
# CHECK: f1 c0 55 8c
r17 = vsplatb(r21)
# Vector splat halfwords
# CHECK: 50 c0 55 84
r17:16 = vsplath(r21)
# Vector splice
# CHECK: 70 de 94 c0
r17:16 = vspliceb(r21:20, r31:30, #3)
# CHECK: 70 de 94 c2
r17:16 = vspliceb(r21:20, r31:30, p3)
# Vector sign extend
# CHECK: 10 c0 15 84
r17:16 = vsxtbh(r21)
# CHECK: 90 c0 15 84
r17:16 = vsxthw(r21)
# Vector truncate
# CHECK: 11 c0 94 88
r17 = vtrunohb(r21:20)
# CHECK: 51 c0 94 88
r17 = vtrunehb(r21:20)
# CHECK: 50 de 94 c1
r17:16 = vtrunewh(r21:20, r31:30)
# CHECK: 90 de 94 c1
r17:16 = vtrunowh(r21:20, r31:30)
# Vector zero extend
# CHECK: 50 c0 15 84
r17:16 = vzxtbh(r21)
# CHECK: d0 c0 15 84
r17:16 = vzxthw(r21)

View File

@ -0,0 +1,136 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.7 XTYPE/PRED
# Bounds check
# CHECK: 83 f4 10 d2
p3 = boundscheck(r17:16, r21:20):raw:lo
# CHECK: a3 f4 10 d2
p3 = boundscheck(r17:16, r21:20):raw:hi
# Compare byte
# CHECK: 43 d5 d1 c7
p3 = cmpb.gt(r17, r21)
# CHECK: c3 d5 d1 c7
p3 = cmpb.eq(r17, r21)
# CHECK: e3 d5 d1 c7
p3 = cmpb.gtu(r17, r21)
# CHECK: a3 c2 11 dd
p3 = cmpb.eq(r17, #21)
# CHECK: a3 c2 31 dd
p3 = cmpb.gt(r17, #21)
# CHECK: a3 c2 51 dd
p3 = cmpb.gtu(r17, #21)
# Compare half
# CHECK: 63 d5 d1 c7
p3 = cmph.eq(r17, r21)
# CHECK: 83 d5 d1 c7
p3 = cmph.gt(r17, r21)
# CHECK: a3 d5 d1 c7
p3 = cmph.gtu(r17, r21)
# CHECK: ab c2 11 dd
p3 = cmph.eq(r17, #21)
# CHECK: ab c2 31 dd
p3 = cmph.gt(r17, #21)
# CHECK: ab c2 51 dd
p3 = cmph.gtu(r17, #21)
# Compare doublewords
# CHECK: 03 de 94 d2
p3 = cmp.eq(r21:20, r31:30)
# CHECK: 43 de 94 d2
p3 = cmp.gt(r21:20, r31:30)
# CHECK: 83 de 94 d2
p3 = cmp.gtu(r21:20, r31:30)
# Compare bitmask
# CHECK: 03 d5 91 85
p3 = bitsclr(r17, #21)
# CHECK: 03 d5 b1 85
p3 = !bitsclr(r17, #21)
# CHECK: 03 d5 51 c7
p3 = bitsset(r17, r21)
# CHECK: 03 d5 71 c7
p3 = !bitsset(r17, r21)
# CHECK: 03 d5 91 c7
p3 = bitsclr(r17, r21)
# CHECK: 03 d5 b1 c7
p3 = !bitsclr(r17, r21)
# mask generate from predicate
# CHECK: 10 c3 00 86
r17:16 = mask(p3)
# Check for TLB match
# CHECK: 63 f5 10 d2
p3 = tlbmatch(r17:16, r21)
# Predicate Transfer
# CHECK: 03 c0 45 85
p3 = r5
# CHECK: 05 c0 43 89
r5 = p3
# Test bit
# CHECK: 03 d5 11 85
p3 = tstbit(r17, #21)
# CHECK: 03 d5 31 85
p3 = !tstbit(r17, #21)
# CHECK: 03 d5 11 c7
p3 = tstbit(r17, r21)
# CHECK: 03 d5 31 c7
p3 = !tstbit(r17, r21)
# Vector compare halfwords
# CHECK: 63 de 14 d2
p3 = vcmph.eq(r21:20, r31:30)
# CHECK: 83 de 14 d2
p3 = vcmph.gt(r21:20, r31:30)
# CHECK: a3 de 14 d2
p3 = vcmph.gtu(r21:20, r31:30)
# CHECK: eb c3 14 dc
p3 = vcmph.eq(r21:20, #31)
# CHECK: eb c3 34 dc
p3 = vcmph.gt(r21:20, #31)
# CHECK: eb c3 54 dc
p3 = vcmph.gtu(r21:20, #31)
# Vector compare bytes for any match
# CHECK: 03 fe 14 d2
p3 = any8(vcmpb.eq(r21:20, r31:30))
# Vector compare bytes
# CHECK: 63 de 14 d2
p3 = vcmph.eq(r21:20, r31:30)
# CHECK: 83 de 14 d2
p3 = vcmph.gt(r21:20, r31:30)
# CHECK: a3 de 14 d2
p3 = vcmph.gtu(r21:20, r31:30)
# CHECK: eb c3 14 dc
p3 = vcmph.eq(r21:20, #31)
# CHECK: eb c3 34 dc
p3 = vcmph.gt(r21:20, #31)
# CHECK: eb c3 54 dc
p3 = vcmph.gtu(r21:20, #31)
# Vector compare words
# CHECK: 03 de 14 d2
p3 = vcmpw.eq(r21:20, r31:30)
# CHECK: 23 de 14 d2
p3 = vcmpw.gt(r21:20, r31:30)
# CHECK: 43 de 14 d2
p3 = vcmpw.gtu(r21:20, r31:30)
# CHECK: f3 c3 14 dc
p3 = vcmpw.eq(r21:20, #31)
# CHECK: f3 c3 34 dc
p3 = vcmpw.gt(r21:20, #31)
# CHECK: f3 c3 54 dc
p3 = vcmpw.gtu(r21:20, #31)
# Viterbi pack even and odd predicate bits
# CHECK: 11 c2 03 89
r17 = vitpack(p3, p2)
# Vector mux
# CHECK: 70 de 14 d1
r17:16 = vmux(p3, r21:20, r31:30)

View File

@ -0,0 +1,260 @@
# RUN: llvm-mc -triple=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
# Hexagon Programmer's Reference Manual 11.10.8 XTYPE/SHIFT
# Shift by immediate
# CHECK: 10 df 14 80
r17:16 = asr(r21:20, #31)
# CHECK: 30 df 14 80
r17:16 = lsr(r21:20, #31)
# CHECK: 50 df 14 80
r17:16 = asl(r21:20, #31)
# CHECK: 11 df 15 8c
r17 = asr(r21, #31)
# CHECK: 31 df 15 8c
r17 = lsr(r21, #31)
# CHECK: 51 df 15 8c
r17 = asl(r21, #31)
# Shift by immediate and accumulate
# CHECK: 10 df 14 82
r17:16 -= asr(r21:20, #31)
# CHECK: 30 df 14 82
r17:16 -= lsr(r21:20, #31)
# CHECK: 50 df 14 82
r17:16 -= asl(r21:20, #31)
# CHECK: 90 df 14 82
r17:16 += asr(r21:20, #31)
# CHECK: b0 df 14 82
r17:16 += lsr(r21:20, #31)
# CHECK: d0 df 14 82
r17:16 += asl(r21:20, #31)
# CHECK: 11 df 15 8e
r17 -= asr(r21, #31)
# CHECK: 31 df 15 8e
r17 -= lsr(r21, #31)
# CHECK: 51 df 15 8e
r17 -= asl(r21, #31)
# CHECK: 91 df 15 8e
r17 += asr(r21, #31)
# CHECK: b1 df 15 8e
r17 += lsr(r21, #31)
# CHECK: d1 df 15 8e
r17 += asl(r21, #31)
# CHECK: 4c f7 11 de
r17 = add(#21, asl(r17, #23))
# CHECK: 4e f7 11 de
r17 = sub(#21, asl(r17, #23))
# CHECK: 5c f7 11 de
r17 = add(#21, lsr(r17, #23))
# CHECK: 5e f7 11 de
r17 = sub(#21, lsr(r17, #23))
# Shift by immediate and add
# CHECK: f1 d5 1f c4
r17 = addasl(r21, r31, #7)
# Shift by immediate and logical
# CHECK: 10 df 54 82
r17:16 &= asr(r21:20, #31)
# CHECK: 30 df 54 82
r17:16 &= lsr(r21:20, #31)
# CHECK: 50 df 54 82
r17:16 &= asl(r21:20, #31)
# CHECK: 90 df 54 82
r17:16 |= asr(r21:20, #31)
# CHECK: b0 df 54 82
r17:16 |= lsr(r21:20, #31)
# CHECK: d0 df 54 82
r17:16 |= asl(r21:20, #31)
# CHECK: 30 df 94 82
r17:16 ^= lsr(r21:20, #31)
# CHECK: 50 df 94 82
r17:16 ^= asl(r21:20, #31)
# CHECK: 11 df 55 8e
r17 &= asr(r21, #31)
# CHECK: 31 df 55 8e
r17 &= lsr(r21, #31)
# CHECK: 51 df 55 8e
r17 &= asl(r21, #31)
# CHECK: 91 df 55 8e
r17 |= asr(r21, #31)
# CHECK: b1 df 55 8e
r17 |= lsr(r21, #31)
# CHECK: d1 df 55 8e
r17 |= asl(r21, #31)
# CHECK: 31 df 95 8e
r17 ^= lsr(r21, #31)
# CHECK: 51 df 95 8e
r17 ^= asl(r21, #31)
# CHECK: 48 ff 11 de
r17 = and(#21, asl(r17, #31))
# CHECK: 4a ff 11 de
r17 = or(#21, asl(r17, #31))
# CHECK: 58 ff 11 de
r17 = and(#21, lsr(r17, #31))
# CHECK: 5a ff 11 de
r17 = or(#21, lsr(r17, #31))
# Shift right by immediate with rounding
# CHECK: f0 df d4 80
r17:16 = asr(r21:20, #31):rnd
# CHECK: 11 df 55 8c
r17 = asr(r21, #31):rnd
# Shift left by immediate with saturation
# CHECK: 51 df 55 8c
r17 = asl(r21, #31):sat
# Shift by register
# CHECK: 10 df 94 c3
r17:16 = asr(r21:20, r31)
# CHECK: 50 df 94 c3
r17:16 = lsr(r21:20, r31)
# CHECK: 90 df 94 c3
r17:16 = asl(r21:20, r31)
# CHECK: d0 df 94 c3
r17:16 = lsl(r21:20, r31)
# CHECK: 11 df 55 c6
r17 = asr(r21, r31)
# CHECK: 51 df 55 c6
r17 = lsr(r21, r31)
# CHECK: 91 df 55 c6
r17 = asl(r21, r31)
# CHECK: d1 df 55 c6
r17 = lsl(r21, r31)
# CHECK: f1 df 8a c6
r17 = lsl(#21, r31)
# Shift by register and accumulate
# CHECK: 10 df 94 cb
r17:16 -= asr(r21:20, r31)
# CHECK: 50 df 94 cb
r17:16 -= lsr(r21:20, r31)
# CHECK: 90 df 94 cb
r17:16 -= asl(r21:20, r31)
# CHECK: d0 df 94 cb
r17:16 -= lsl(r21:20, r31)
# CHECK: 10 df d4 cb
r17:16 += asr(r21:20, r31)
# CHECK: 50 df d4 cb
r17:16 += lsr(r21:20, r31)
# CHECK: 90 df d4 cb
r17:16 += asl(r21:20, r31)
# CHECK: d0 df d4 cb
r17:16 += lsl(r21:20, r31)
# CHECK: 11 df 95 cc
r17 -= asr(r21, r31)
# CHECK: 51 df 95 cc
r17 -= lsr(r21, r31)
# CHECK: 91 df 95 cc
r17 -= asl(r21, r31)
# CHECK: d1 df 95 cc
r17 -= lsl(r21, r31)
# CHECK: 11 df d5 cc
r17 += asr(r21, r31)
# CHECK: 51 df d5 cc
r17 += lsr(r21, r31)
# CHECK: 91 df d5 cc
r17 += asl(r21, r31)
# CHECK: d1 df d5 cc
r17 += lsl(r21, r31)
# Shift by register and logical
# CHECK: 10 df 14 cb
r17:16 |= asr(r21:20, r31)
# CHECK: 50 df 14 cb
r17:16 |= lsr(r21:20, r31)
# CHECK: 90 df 14 cb
r17:16 |= asl(r21:20, r31)
# CHECK: d0 df 14 cb
r17:16 |= lsl(r21:20, r31)
# CHECK: 10 df 54 cb
r17:16 &= asr(r21:20, r31)
# CHECK: 50 df 54 cb
r17:16 &= lsr(r21:20, r31)
# CHECK: 90 df 54 cb
r17:16 &= asl(r21:20, r31)
# CHECK: d0 df 54 cb
r17:16 &= lsl(r21:20, r31)
# CHECK: 10 df 74 cb
r17:16 ^= asr(r21:20, r31)
# CHECK: 50 df 74 cb
r17:16 ^= lsr(r21:20, r31)
# CHECK: 90 df 74 cb
r17:16 ^= asl(r21:20, r31)
# CHECK: d0 df 74 cb
r17:16 ^= lsl(r21:20, r31)
# CHECK: 11 df 15 cc
r17 |= asr(r21, r31)
# CHECK: 51 df 15 cc
r17 |= lsr(r21, r31)
# CHECK: 91 df 15 cc
r17 |= asl(r21, r31)
# CHECK: d1 df 15 cc
r17 |= lsl(r21, r31)
# CHECK: 11 df 55 cc
r17 &= asr(r21, r31)
# CHECK: 51 df 55 cc
r17 &= lsr(r21, r31)
# CHECK: 91 df 55 cc
r17 &= asl(r21, r31)
# CHECK: d1 df 55 cc
r17 &= lsl(r21, r31)
# Shift by register with saturation
# CHECK: 11 df 15 c6
r17 = asr(r21, r31):sat
# CHECK: 91 df 15 c6
r17 = asl(r21, r31):sat
# Vector shift halfwords by immediate
# CHECK: 10 c5 94 80
r17:16 = vasrh(r21:20, #5)
# CHECK: 30 c5 94 80
r17:16 = vlsrh(r21:20, #5)
# CHECK: 50 c5 94 80
r17:16 = vaslh(r21:20, #5)
# Vector arithmetic shift halfwords with round
# CHECK: 10 c5 34 80
r17:16 = vasrh(r21:20, #5):raw
# Vector arithmetic shift halfwords with saturate and pack
# CHECK: 91 c5 74 88
r17 = vasrhub(r21:20, #5):raw
# CHECK: b1 c5 74 88
r17 = vasrhub(r21:20, #5):sat
# Vector shift halfwords by register
# CHECK: 10 df 54 c3
r17:16 = vasrh(r21:20, r31)
# CHECK: 50 df 54 c3
r17:16 = vlsrh(r21:20, r31)
# CHECK: 90 df 54 c3
r17:16 = vaslh(r21:20, r31)
# CHECK: d0 df 54 c3
r17:16 = vlslh(r21:20, r31)
# Vector shift words by immediate
# CHECK: 10 df 54 80
r17:16 = vasrw(r21:20, #31)
# CHECK: 30 df 54 80
r17:16 = vlsrw(r21:20, #31)
# CHECK: 50 df 54 80
r17:16 = vaslw(r21:20, #31)
# Vector shift words by register
# CHECK: 10 df 14 c3
r17:16 = vasrw(r21:20, r31)
# CHECK: 50 df 14 c3
r17:16 = vlsrw(r21:20, r31)
# CHECK: 90 df 14 c3
r17:16 = vaslw(r21:20, r31)
# CHECK: d0 df 14 c3
r17:16 = vlslw(r21:20, r31)
# Vector shift words with truncate and pack
# CHECK: 51 df d4 88
r17 = vasrw(r21:20, #31)
# CHECK: 51 df 14 c5
r17 = vasrw(r21:20, r31)