mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-03 05:41:42 +00:00
Renamed files to have the `X86' prefix for uniqueness purposes.
All CVS history was renamed, the *,v were copied over. No worries. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15238 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b097f216b0
commit
c6d398abbb
@ -1,721 +0,0 @@
|
||||
//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the pass which converts floating point instructions from
|
||||
// virtual registers into register stack instructions. This pass uses live
|
||||
// variable information to indicate where the FPn registers are used and their
|
||||
// lifetimes.
|
||||
//
|
||||
// This pass is hampered by the lack of decent CFG manipulation routines for
|
||||
// machine code. In particular, this wants to be able to split critical edges
|
||||
// as necessary, traverse the machine basic block CFG in depth-first order, and
|
||||
// allow there to be multiple machine basic blocks for each LLVM basicblock
|
||||
// (needed for critical edge splitting).
|
||||
//
|
||||
// In particular, this pass currently barfs on critical edges. Because of this,
|
||||
// it requires the instruction selector to insert FP_REG_KILL instructions on
|
||||
// the exits of any basic block that has critical edges going from it, or which
|
||||
// branch to a critical basic block.
|
||||
//
|
||||
// FIXME: this is not implemented yet. The stackifier pass only works on local
|
||||
// basic blocks.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "fp"
|
||||
#include "X86.h"
|
||||
#include "X86InstrInfo.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/CodeGen/LiveVariables.h"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "Support/Debug.h"
|
||||
#include "Support/DepthFirstIterator.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include "Support/STLExtras.h"
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
|
||||
Statistic<> NumFP ("x86-codegen", "Number of floating point instructions");
|
||||
|
||||
struct FPS : public MachineFunctionPass {
|
||||
virtual bool runOnMachineFunction(MachineFunction &MF);
|
||||
|
||||
virtual const char *getPassName() const { return "X86 FP Stackifier"; }
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequired<LiveVariables>();
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
}
|
||||
private:
|
||||
LiveVariables *LV; // Live variable info for current function...
|
||||
MachineBasicBlock *MBB; // Current basic block
|
||||
unsigned Stack[8]; // FP<n> Registers in each stack slot...
|
||||
unsigned RegMap[8]; // Track which stack slot contains each register
|
||||
unsigned StackTop; // The current top of the FP stack.
|
||||
|
||||
void dumpStack() const {
|
||||
std::cerr << "Stack contents:";
|
||||
for (unsigned i = 0; i != StackTop; ++i) {
|
||||
std::cerr << " FP" << Stack[i];
|
||||
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
|
||||
}
|
||||
std::cerr << "\n";
|
||||
}
|
||||
private:
|
||||
// getSlot - Return the stack slot number a particular register number is
|
||||
// in...
|
||||
unsigned getSlot(unsigned RegNo) const {
|
||||
assert(RegNo < 8 && "Regno out of range!");
|
||||
return RegMap[RegNo];
|
||||
}
|
||||
|
||||
// getStackEntry - Return the X86::FP<n> register in register ST(i)
|
||||
unsigned getStackEntry(unsigned STi) const {
|
||||
assert(STi < StackTop && "Access past stack top!");
|
||||
return Stack[StackTop-1-STi];
|
||||
}
|
||||
|
||||
// getSTReg - Return the X86::ST(i) register which contains the specified
|
||||
// FP<RegNo> register
|
||||
unsigned getSTReg(unsigned RegNo) const {
|
||||
return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
|
||||
}
|
||||
|
||||
// pushReg - Push the specified FP<n> register onto the stack
|
||||
void pushReg(unsigned Reg) {
|
||||
assert(Reg < 8 && "Register number out of range!");
|
||||
assert(StackTop < 8 && "Stack overflow!");
|
||||
Stack[StackTop] = Reg;
|
||||
RegMap[Reg] = StackTop++;
|
||||
}
|
||||
|
||||
bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
|
||||
void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
|
||||
if (!isAtTop(RegNo)) {
|
||||
unsigned Slot = getSlot(RegNo);
|
||||
unsigned STReg = getSTReg(RegNo);
|
||||
unsigned RegOnTop = getStackEntry(0);
|
||||
|
||||
// Swap the slots the regs are in
|
||||
std::swap(RegMap[RegNo], RegMap[RegOnTop]);
|
||||
|
||||
// Swap stack slot contents
|
||||
assert(RegMap[RegOnTop] < StackTop);
|
||||
std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
|
||||
|
||||
// Emit an fxch to update the runtime processors version of the state
|
||||
BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
|
||||
NumFXCH++;
|
||||
}
|
||||
}
|
||||
|
||||
void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
|
||||
unsigned STReg = getSTReg(RegNo);
|
||||
pushReg(AsReg); // New register on top of stack
|
||||
|
||||
BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
|
||||
}
|
||||
|
||||
// popStackAfter - Pop the current value off of the top of the FP stack
|
||||
// after the specified instruction.
|
||||
void popStackAfter(MachineBasicBlock::iterator &I);
|
||||
|
||||
// freeStackSlotAfter - Free the specified register from the register stack,
|
||||
// so that it is no longer in a register. If the register is currently at
|
||||
// the top of the stack, we just pop the current instruction, otherwise we
|
||||
// store the current top-of-stack into the specified slot, then pop the top
|
||||
// of stack.
|
||||
void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
|
||||
|
||||
bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
|
||||
|
||||
void handleZeroArgFP(MachineBasicBlock::iterator &I);
|
||||
void handleOneArgFP(MachineBasicBlock::iterator &I);
|
||||
void handleOneArgFPRW(MachineBasicBlock::iterator &I);
|
||||
void handleTwoArgFP(MachineBasicBlock::iterator &I);
|
||||
void handleCompareFP(MachineBasicBlock::iterator &I);
|
||||
void handleCondMovFP(MachineBasicBlock::iterator &I);
|
||||
void handleSpecialFP(MachineBasicBlock::iterator &I);
|
||||
};
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
|
||||
|
||||
/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
|
||||
/// register references into FP stack references.
|
||||
///
|
||||
bool FPS::runOnMachineFunction(MachineFunction &MF) {
|
||||
LV = &getAnalysis<LiveVariables>();
|
||||
StackTop = 0;
|
||||
|
||||
// Process the function in depth first order so that we process at least one
|
||||
// of the predecessors for every reachable block in the function.
|
||||
std::set<MachineBasicBlock*> Processed;
|
||||
MachineBasicBlock *Entry = MF.begin();
|
||||
|
||||
bool Changed = false;
|
||||
for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
|
||||
I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
|
||||
I != E; ++I)
|
||||
Changed |= processBasicBlock(MF, **I);
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
/// processBasicBlock - Loop over all of the instructions in the basic block,
|
||||
/// transforming FP instructions into their stack form.
|
||||
///
|
||||
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
|
||||
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
|
||||
bool Changed = false;
|
||||
MBB = &BB;
|
||||
|
||||
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
|
||||
MachineInstr *MI = I;
|
||||
unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
|
||||
if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
|
||||
continue; // Efficiently ignore non-fp insts!
|
||||
|
||||
MachineInstr *PrevMI = 0;
|
||||
if (I != BB.begin())
|
||||
PrevMI = prior(I);
|
||||
|
||||
++NumFP; // Keep track of # of pseudo instrs
|
||||
DEBUG(std::cerr << "\nFPInst:\t";
|
||||
MI->print(std::cerr, &(MF.getTarget())));
|
||||
|
||||
// Get dead variables list now because the MI pointer may be deleted as part
|
||||
// of processing!
|
||||
LiveVariables::killed_iterator IB = LV->dead_begin(MI);
|
||||
LiveVariables::killed_iterator IE = LV->dead_end(MI);
|
||||
|
||||
DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
|
||||
LiveVariables::killed_iterator I = LV->killed_begin(MI);
|
||||
LiveVariables::killed_iterator E = LV->killed_end(MI);
|
||||
if (I != E) {
|
||||
std::cerr << "Killed Operands:";
|
||||
for (; I != E; ++I)
|
||||
std::cerr << " %" << MRI->getName(I->second);
|
||||
std::cerr << "\n";
|
||||
});
|
||||
|
||||
switch (Flags & X86II::FPTypeMask) {
|
||||
case X86II::ZeroArgFP: handleZeroArgFP(I); break;
|
||||
case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
|
||||
case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
|
||||
case X86II::TwoArgFP: handleTwoArgFP(I); break;
|
||||
case X86II::CompareFP: handleCompareFP(I); break;
|
||||
case X86II::CondMovFP: handleCondMovFP(I); break;
|
||||
case X86II::SpecialFP: handleSpecialFP(I); break;
|
||||
default: assert(0 && "Unknown FP Type!");
|
||||
}
|
||||
|
||||
// Check to see if any of the values defined by this instruction are dead
|
||||
// after definition. If so, pop them.
|
||||
for (; IB != IE; ++IB) {
|
||||
unsigned Reg = IB->second;
|
||||
if (Reg >= X86::FP0 && Reg <= X86::FP6) {
|
||||
DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
|
||||
freeStackSlotAfter(I, Reg-X86::FP0);
|
||||
}
|
||||
}
|
||||
|
||||
// Print out all of the instructions expanded to if -debug
|
||||
DEBUG(
|
||||
MachineBasicBlock::iterator PrevI(PrevMI);
|
||||
if (I == PrevI) {
|
||||
std::cerr << "Just deleted pseudo instruction\n";
|
||||
} else {
|
||||
MachineBasicBlock::iterator Start = I;
|
||||
// Rewind to first instruction newly inserted.
|
||||
while (Start != BB.begin() && prior(Start) != PrevI) --Start;
|
||||
std::cerr << "Inserted instructions:\n\t";
|
||||
Start->print(std::cerr, &MF.getTarget());
|
||||
while (++Start != next(I));
|
||||
}
|
||||
dumpStack();
|
||||
);
|
||||
|
||||
Changed = true;
|
||||
}
|
||||
|
||||
assert(StackTop == 0 && "Stack not empty at end of basic block?");
|
||||
return Changed;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Efficient Lookup Table Support
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
struct TableEntry {
|
||||
unsigned from;
|
||||
unsigned to;
|
||||
bool operator<(const TableEntry &TE) const { return from < TE.from; }
|
||||
bool operator<(unsigned V) const { return from < V; }
|
||||
};
|
||||
}
|
||||
|
||||
static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
|
||||
for (unsigned i = 0; i != NumEntries-1; ++i)
|
||||
if (!(Table[i] < Table[i+1])) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
|
||||
const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
|
||||
if (I != Table+N && I->from == Opcode)
|
||||
return I->to;
|
||||
return -1;
|
||||
}
|
||||
|
||||
#define ARRAY_SIZE(TABLE) \
|
||||
(sizeof(TABLE)/sizeof(TABLE[0]))
|
||||
|
||||
#ifdef NDEBUG
|
||||
#define ASSERT_SORTED(TABLE)
|
||||
#else
|
||||
#define ASSERT_SORTED(TABLE) \
|
||||
{ static bool TABLE##Checked = false; \
|
||||
if (!TABLE##Checked) \
|
||||
assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
|
||||
"All lookup tables must be sorted for efficient access!"); \
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Helper Methods
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// PopTable - Sorted map of instructions to their popping version. The first
|
||||
// element is an instruction, the second is the version which pops.
|
||||
//
|
||||
static const TableEntry PopTable[] = {
|
||||
{ X86::FADDrST0 , X86::FADDPrST0 },
|
||||
|
||||
{ X86::FDIVRrST0, X86::FDIVRPrST0 },
|
||||
{ X86::FDIVrST0 , X86::FDIVPrST0 },
|
||||
|
||||
{ X86::FIST16m , X86::FISTP16m },
|
||||
{ X86::FIST32m , X86::FISTP32m },
|
||||
|
||||
{ X86::FMULrST0 , X86::FMULPrST0 },
|
||||
|
||||
{ X86::FST32m , X86::FSTP32m },
|
||||
{ X86::FST64m , X86::FSTP64m },
|
||||
{ X86::FSTrr , X86::FSTPrr },
|
||||
|
||||
{ X86::FSUBRrST0, X86::FSUBRPrST0 },
|
||||
{ X86::FSUBrST0 , X86::FSUBPrST0 },
|
||||
|
||||
{ X86::FUCOMIr , X86::FUCOMIPr },
|
||||
|
||||
{ X86::FUCOMPr , X86::FUCOMPPr },
|
||||
{ X86::FUCOMr , X86::FUCOMPr },
|
||||
};
|
||||
|
||||
/// popStackAfter - Pop the current value off of the top of the FP stack after
|
||||
/// the specified instruction. This attempts to be sneaky and combine the pop
|
||||
/// into the instruction itself if possible. The iterator is left pointing to
|
||||
/// the last instruction, be it a new pop instruction inserted, or the old
|
||||
/// instruction if it was modified in place.
|
||||
///
|
||||
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
|
||||
ASSERT_SORTED(PopTable);
|
||||
assert(StackTop > 0 && "Cannot pop empty stack!");
|
||||
RegMap[Stack[--StackTop]] = ~0; // Update state
|
||||
|
||||
// Check to see if there is a popping version of this instruction...
|
||||
int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
|
||||
if (Opcode != -1) {
|
||||
I->setOpcode(Opcode);
|
||||
if (Opcode == X86::FUCOMPPr)
|
||||
I->RemoveOperand(0);
|
||||
|
||||
} else { // Insert an explicit pop
|
||||
I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
|
||||
}
|
||||
}
|
||||
|
||||
/// freeStackSlotAfter - Free the specified register from the register stack, so
|
||||
/// that it is no longer in a register. If the register is currently at the top
|
||||
/// of the stack, we just pop the current instruction, otherwise we store the
|
||||
/// current top-of-stack into the specified slot, then pop the top of stack.
|
||||
void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
|
||||
if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
|
||||
popStackAfter(I);
|
||||
return;
|
||||
}
|
||||
|
||||
// Otherwise, store the top of stack into the dead slot, killing the operand
|
||||
// without having to add in an explicit xchg then pop.
|
||||
//
|
||||
unsigned STReg = getSTReg(FPRegNo);
|
||||
unsigned OldSlot = getSlot(FPRegNo);
|
||||
unsigned TopReg = Stack[StackTop-1];
|
||||
Stack[OldSlot] = TopReg;
|
||||
RegMap[TopReg] = OldSlot;
|
||||
RegMap[FPRegNo] = ~0;
|
||||
Stack[--StackTop] = ~0;
|
||||
I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
|
||||
}
|
||||
|
||||
|
||||
static unsigned getFPReg(const MachineOperand &MO) {
|
||||
assert(MO.isRegister() && "Expected an FP register!");
|
||||
unsigned Reg = MO.getReg();
|
||||
assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
|
||||
return Reg - X86::FP0;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Instruction transformation implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
|
||||
///
|
||||
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
|
||||
MachineInstr *MI = I;
|
||||
unsigned DestReg = getFPReg(MI->getOperand(0));
|
||||
MI->RemoveOperand(0); // Remove the explicit ST(0) operand
|
||||
|
||||
// Result gets pushed on the stack...
|
||||
pushReg(DestReg);
|
||||
}
|
||||
|
||||
/// handleOneArgFP - fst <mem>, ST(0)
|
||||
///
|
||||
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
|
||||
MachineInstr *MI = I;
|
||||
assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
|
||||
"Can only handle fst* & ftst instructions!");
|
||||
|
||||
// Is this the last use of the source register?
|
||||
unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
|
||||
bool KillsSrc = false;
|
||||
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
||||
E = LV->killed_end(MI); KI != E; ++KI)
|
||||
KillsSrc |= KI->second == X86::FP0+Reg;
|
||||
|
||||
// FSTP80r and FISTP64r are strange because there are no non-popping versions.
|
||||
// If we have one _and_ we don't want to pop the operand, duplicate the value
|
||||
// on the stack instead of moving it. This ensure that popping the value is
|
||||
// always ok.
|
||||
//
|
||||
if ((MI->getOpcode() == X86::FSTP80m ||
|
||||
MI->getOpcode() == X86::FISTP64m) && !KillsSrc) {
|
||||
duplicateToTop(Reg, 7 /*temp register*/, I);
|
||||
} else {
|
||||
moveToTop(Reg, I); // Move to the top of the stack...
|
||||
}
|
||||
MI->RemoveOperand(MI->getNumOperands()-1); // Remove explicit ST(0) operand
|
||||
|
||||
if (MI->getOpcode() == X86::FSTP80m || MI->getOpcode() == X86::FISTP64m) {
|
||||
assert(StackTop > 0 && "Stack empty??");
|
||||
--StackTop;
|
||||
} else if (KillsSrc) { // Last use of operand?
|
||||
popStackAfter(I);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// handleOneArgFPRW: Handle instructions that read from the top of stack and
|
||||
/// replace the value with a newly computed value. These instructions may have
|
||||
/// non-fp operands after their FP operands.
|
||||
///
|
||||
/// Examples:
|
||||
/// R1 = fchs R2
|
||||
/// R1 = fadd R2, [mem]
|
||||
///
|
||||
void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
|
||||
MachineInstr *MI = I;
|
||||
assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
|
||||
|
||||
// Is this the last use of the source register?
|
||||
unsigned Reg = getFPReg(MI->getOperand(1));
|
||||
bool KillsSrc = false;
|
||||
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
||||
E = LV->killed_end(MI); KI != E; ++KI)
|
||||
KillsSrc |= KI->second == X86::FP0+Reg;
|
||||
|
||||
if (KillsSrc) {
|
||||
// If this is the last use of the source register, just make sure it's on
|
||||
// the top of the stack.
|
||||
moveToTop(Reg, I);
|
||||
assert(StackTop > 0 && "Stack cannot be empty!");
|
||||
--StackTop;
|
||||
pushReg(getFPReg(MI->getOperand(0)));
|
||||
} else {
|
||||
// If this is not the last use of the source register, _copy_ it to the top
|
||||
// of the stack.
|
||||
duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
|
||||
}
|
||||
|
||||
MI->RemoveOperand(1); // Drop the source operand.
|
||||
MI->RemoveOperand(0); // Drop the destination operand.
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Define tables of various ways to map pseudo instructions
|
||||
//
|
||||
|
||||
// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
|
||||
static const TableEntry ForwardST0Table[] = {
|
||||
{ X86::FpADD , X86::FADDST0r },
|
||||
{ X86::FpDIV , X86::FDIVST0r },
|
||||
{ X86::FpMUL , X86::FMULST0r },
|
||||
{ X86::FpSUB , X86::FSUBST0r },
|
||||
};
|
||||
|
||||
// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
|
||||
static const TableEntry ReverseST0Table[] = {
|
||||
{ X86::FpADD , X86::FADDST0r }, // commutative
|
||||
{ X86::FpDIV , X86::FDIVRST0r },
|
||||
{ X86::FpMUL , X86::FMULST0r }, // commutative
|
||||
{ X86::FpSUB , X86::FSUBRST0r },
|
||||
};
|
||||
|
||||
// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
|
||||
static const TableEntry ForwardSTiTable[] = {
|
||||
{ X86::FpADD , X86::FADDrST0 }, // commutative
|
||||
{ X86::FpDIV , X86::FDIVRrST0 },
|
||||
{ X86::FpMUL , X86::FMULrST0 }, // commutative
|
||||
{ X86::FpSUB , X86::FSUBRrST0 },
|
||||
};
|
||||
|
||||
// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
|
||||
static const TableEntry ReverseSTiTable[] = {
|
||||
{ X86::FpADD , X86::FADDrST0 },
|
||||
{ X86::FpDIV , X86::FDIVrST0 },
|
||||
{ X86::FpMUL , X86::FMULrST0 },
|
||||
{ X86::FpSUB , X86::FSUBrST0 },
|
||||
};
|
||||
|
||||
|
||||
/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
|
||||
/// instructions which need to be simplified and possibly transformed.
|
||||
///
|
||||
/// Result: ST(0) = fsub ST(0), ST(i)
|
||||
/// ST(i) = fsub ST(0), ST(i)
|
||||
/// ST(0) = fsubr ST(0), ST(i)
|
||||
/// ST(i) = fsubr ST(0), ST(i)
|
||||
///
|
||||
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
|
||||
ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
|
||||
ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
|
||||
MachineInstr *MI = I;
|
||||
|
||||
unsigned NumOperands = MI->getNumOperands();
|
||||
assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
|
||||
unsigned Dest = getFPReg(MI->getOperand(0));
|
||||
unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
|
||||
unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
|
||||
bool KillsOp0 = false, KillsOp1 = false;
|
||||
|
||||
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
||||
E = LV->killed_end(MI); KI != E; ++KI) {
|
||||
KillsOp0 |= (KI->second == X86::FP0+Op0);
|
||||
KillsOp1 |= (KI->second == X86::FP0+Op1);
|
||||
}
|
||||
|
||||
unsigned TOS = getStackEntry(0);
|
||||
|
||||
// One of our operands must be on the top of the stack. If neither is yet, we
|
||||
// need to move one.
|
||||
if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
|
||||
// We can choose to move either operand to the top of the stack. If one of
|
||||
// the operands is killed by this instruction, we want that one so that we
|
||||
// can update right on top of the old version.
|
||||
if (KillsOp0) {
|
||||
moveToTop(Op0, I); // Move dead operand to TOS.
|
||||
TOS = Op0;
|
||||
} else if (KillsOp1) {
|
||||
moveToTop(Op1, I);
|
||||
TOS = Op1;
|
||||
} else {
|
||||
// All of the operands are live after this instruction executes, so we
|
||||
// cannot update on top of any operand. Because of this, we must
|
||||
// duplicate one of the stack elements to the top. It doesn't matter
|
||||
// which one we pick.
|
||||
//
|
||||
duplicateToTop(Op0, Dest, I);
|
||||
Op0 = TOS = Dest;
|
||||
KillsOp0 = true;
|
||||
}
|
||||
} else if (!KillsOp0 && !KillsOp1) {
|
||||
// If we DO have one of our operands at the top of the stack, but we don't
|
||||
// have a dead operand, we must duplicate one of the operands to a new slot
|
||||
// on the stack.
|
||||
duplicateToTop(Op0, Dest, I);
|
||||
Op0 = TOS = Dest;
|
||||
KillsOp0 = true;
|
||||
}
|
||||
|
||||
// Now we know that one of our operands is on the top of the stack, and at
|
||||
// least one of our operands is killed by this instruction.
|
||||
assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
|
||||
"Stack conditions not set up right!");
|
||||
|
||||
// We decide which form to use based on what is on the top of the stack, and
|
||||
// which operand is killed by this instruction.
|
||||
const TableEntry *InstTable;
|
||||
bool isForward = TOS == Op0;
|
||||
bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
|
||||
if (updateST0) {
|
||||
if (isForward)
|
||||
InstTable = ForwardST0Table;
|
||||
else
|
||||
InstTable = ReverseST0Table;
|
||||
} else {
|
||||
if (isForward)
|
||||
InstTable = ForwardSTiTable;
|
||||
else
|
||||
InstTable = ReverseSTiTable;
|
||||
}
|
||||
|
||||
int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
|
||||
assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
|
||||
|
||||
// NotTOS - The register which is not on the top of stack...
|
||||
unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
|
||||
|
||||
// Replace the old instruction with a new instruction
|
||||
MBB->remove(I++);
|
||||
I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
|
||||
|
||||
// If both operands are killed, pop one off of the stack in addition to
|
||||
// overwriting the other one.
|
||||
if (KillsOp0 && KillsOp1 && Op0 != Op1) {
|
||||
assert(!updateST0 && "Should have updated other operand!");
|
||||
popStackAfter(I); // Pop the top of stack
|
||||
}
|
||||
|
||||
// Update stack information so that we know the destination register is now on
|
||||
// the stack.
|
||||
unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
|
||||
assert(UpdatedSlot < StackTop && Dest < 7);
|
||||
Stack[UpdatedSlot] = Dest;
|
||||
RegMap[Dest] = UpdatedSlot;
|
||||
delete MI; // Remove the old instruction
|
||||
}
|
||||
|
||||
/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
|
||||
/// register arguments and no explicit destinations.
|
||||
///
|
||||
void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
|
||||
ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
|
||||
ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
|
||||
MachineInstr *MI = I;
|
||||
|
||||
unsigned NumOperands = MI->getNumOperands();
|
||||
assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
|
||||
unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
|
||||
unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
|
||||
bool KillsOp0 = false, KillsOp1 = false;
|
||||
|
||||
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
||||
E = LV->killed_end(MI); KI != E; ++KI) {
|
||||
KillsOp0 |= (KI->second == X86::FP0+Op0);
|
||||
KillsOp1 |= (KI->second == X86::FP0+Op1);
|
||||
}
|
||||
|
||||
// Make sure the first operand is on the top of stack, the other one can be
|
||||
// anywhere.
|
||||
moveToTop(Op0, I);
|
||||
|
||||
MI->getOperand(0).setReg(getSTReg(Op1));
|
||||
MI->RemoveOperand(1);
|
||||
|
||||
// If any of the operands are killed by this instruction, free them.
|
||||
if (KillsOp0) freeStackSlotAfter(I, Op0);
|
||||
if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
|
||||
}
|
||||
|
||||
/// handleCondMovFP - Handle two address conditional move instructions. These
|
||||
/// instructions move a st(i) register to st(0) iff a condition is true. These
|
||||
/// instructions require that the first operand is at the top of the stack, but
|
||||
/// otherwise don't modify the stack at all.
|
||||
void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
|
||||
MachineInstr *MI = I;
|
||||
|
||||
unsigned Op0 = getFPReg(MI->getOperand(0));
|
||||
unsigned Op1 = getFPReg(MI->getOperand(1));
|
||||
|
||||
// The first operand *must* be on the top of the stack.
|
||||
moveToTop(Op0, I);
|
||||
|
||||
// Change the second operand to the stack register that the operand is in.
|
||||
MI->RemoveOperand(0);
|
||||
MI->getOperand(0).setReg(getSTReg(Op1));
|
||||
|
||||
// If we kill the second operand, make sure to pop it from the stack.
|
||||
if (Op0 != Op1)
|
||||
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
||||
E = LV->killed_end(MI); KI != E; ++KI)
|
||||
if (KI->second == X86::FP0+Op1) {
|
||||
// Get this value off of the register stack.
|
||||
freeStackSlotAfter(I, Op1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// handleSpecialFP - Handle special instructions which behave unlike other
|
||||
/// floating point instructions. This is primarily intended for use by pseudo
|
||||
/// instructions.
|
||||
///
|
||||
void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
|
||||
MachineInstr *MI = I;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown SpecialFP instruction!");
|
||||
case X86::FpGETRESULT: // Appears immediately after a call returning FP type!
|
||||
assert(StackTop == 0 && "Stack should be empty after a call!");
|
||||
pushReg(getFPReg(MI->getOperand(0)));
|
||||
break;
|
||||
case X86::FpSETRESULT:
|
||||
assert(StackTop == 1 && "Stack should have one element on it to return!");
|
||||
--StackTop; // "Forget" we have something on the top of stack!
|
||||
break;
|
||||
case X86::FpMOV: {
|
||||
unsigned SrcReg = getFPReg(MI->getOperand(1));
|
||||
unsigned DestReg = getFPReg(MI->getOperand(0));
|
||||
bool KillsSrc = false;
|
||||
for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
|
||||
E = LV->killed_end(MI); KI != E; ++KI)
|
||||
KillsSrc |= KI->second == X86::FP0+SrcReg;
|
||||
|
||||
if (KillsSrc) {
|
||||
// If the input operand is killed, we can just change the owner of the
|
||||
// incoming stack slot into the result.
|
||||
unsigned Slot = getSlot(SrcReg);
|
||||
assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
|
||||
Stack[Slot] = DestReg;
|
||||
RegMap[DestReg] = Slot;
|
||||
|
||||
} else {
|
||||
// For FMOV we just duplicate the specified value to a new stack slot.
|
||||
// This could be made better, but would require substantial changes.
|
||||
duplicateToTop(SrcReg, DestReg, I);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
I = MBB->erase(I); // Remove the pseudo instruction
|
||||
--I;
|
||||
}
|
@ -1,124 +0,0 @@
|
||||
//===-- InstSelectPattern.cpp - A pattern matching inst selector for X86 --===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines a pattern matching instruction selector for X86.
|
||||
//
|
||||
// FIXME: we could allocate one big array of unsigneds to use as the backing
|
||||
// store for all of the nodes costs arrays.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/CodeGen/SelectionDAG.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/CodeGen/MachineFrameInfo.h"
|
||||
#include "llvm/CodeGen/SSARegMap.h"
|
||||
#include "X86RegisterInfo.h"
|
||||
#include <iostream>
|
||||
|
||||
// Include the generated instruction selector...
|
||||
#include "X86GenInstrSelector.inc"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
struct ISel : public FunctionPass, SelectionDAGTargetBuilder {
|
||||
TargetMachine &TM;
|
||||
ISel(TargetMachine &tm) : TM(tm) {}
|
||||
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
||||
|
||||
bool runOnFunction(Function &Fn) {
|
||||
MachineFunction &MF = MachineFunction::construct(&Fn, TM);
|
||||
SelectionDAG DAG(MF, TM, *this);
|
||||
|
||||
std::cerr << "\n\n\n=== "
|
||||
<< DAG.getMachineFunction().getFunction()->getName() << "\n";
|
||||
|
||||
DAG.dump();
|
||||
X86ISel(DAG).generateCode();
|
||||
std::cerr << "\n\n\n";
|
||||
return true;
|
||||
}
|
||||
|
||||
public: // Implementation of the SelectionDAGTargetBuilder class...
|
||||
/// expandArguments - Add nodes to the DAG to indicate how to load arguments
|
||||
/// off of the X86 stack.
|
||||
void expandArguments(SelectionDAG &SD);
|
||||
void expandCall(SelectionDAG &SD, CallInst &CI);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
void ISel::expandArguments(SelectionDAG &SD) {
|
||||
|
||||
// Add DAG nodes to load the arguments... On entry to a function on the X86,
|
||||
// the stack frame looks like this:
|
||||
//
|
||||
// [ESP] -- return address
|
||||
// [ESP + 4] -- first argument (leftmost lexically)
|
||||
// [ESP + 8] -- second argument, if first argument is four bytes in size
|
||||
// ...
|
||||
//
|
||||
MachineFunction &F = SD.getMachineFunction();
|
||||
MachineFrameInfo *MFI = F.getFrameInfo();
|
||||
const Function &Fn = *F.getFunction();
|
||||
|
||||
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
||||
for (Function::const_aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
|
||||
MVT::ValueType ObjectVT = SD.getValueType(I->getType());
|
||||
unsigned ArgIncrement = 4;
|
||||
unsigned ObjSize;
|
||||
switch (ObjectVT) {
|
||||
default: assert(0 && "Unhandled argument type!");
|
||||
case MVT::i8: ObjSize = 1; break;
|
||||
case MVT::i16: ObjSize = 2; break;
|
||||
case MVT::i32: ObjSize = 4; break;
|
||||
case MVT::i64: ObjSize = ArgIncrement = 8; break;
|
||||
case MVT::f32: ObjSize = 4; break;
|
||||
case MVT::f64: ObjSize = ArgIncrement = 8; break;
|
||||
}
|
||||
// Create the frame index object for this incoming parameter...
|
||||
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
|
||||
|
||||
// Create the SelectionDAG nodes corresponding to a load from this parameter
|
||||
SelectionDAGNode *FIN = new SelectionDAGNode(ISD::FrameIndex, MVT::i32);
|
||||
FIN->addValue(new ReducedValue_FrameIndex_i32(FI));
|
||||
|
||||
SelectionDAGNode *Arg
|
||||
= new SelectionDAGNode(ISD::Load, ObjectVT, F.begin(), FIN);
|
||||
|
||||
// Add the SelectionDAGNodes to the SelectionDAG... note that there is no
|
||||
// reason to add chain nodes here. We know that no loads ore stores will
|
||||
// ever alias these loads, so we are free to perform the load at any time in
|
||||
// the function
|
||||
SD.addNode(FIN);
|
||||
SD.addNodeForValue(Arg, I);
|
||||
|
||||
ArgOffset += ArgIncrement; // Move on to the next argument...
|
||||
}
|
||||
|
||||
// If the function takes variable number of arguments, make a frame index for
|
||||
// the start of the first vararg value... for expansion of llvm.va_start.
|
||||
if (Fn.getFunctionType()->isVarArg())
|
||||
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
|
||||
}
|
||||
|
||||
void ISel::expandCall(SelectionDAG &SD, CallInst &CI) {
|
||||
assert(0 && "ISel::expandCall not implemented!");
|
||||
}
|
||||
|
||||
/// createX86PatternInstructionSelector - This pass converts an LLVM function
|
||||
/// into a machine code representation using pattern matching and a machine
|
||||
/// description file.
|
||||
///
|
||||
FunctionPass *llvm::createX86PatternInstructionSelector(TargetMachine &TM) {
|
||||
return new ISel(TM);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,515 +0,0 @@
|
||||
//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains a peephole optimizer for the X86.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/Target/MRegisterInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "Support/Statistic.h"
|
||||
#include "Support/STLExtras.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
Statistic<> NumPHOpts("x86-peephole",
|
||||
"Number of peephole optimization performed");
|
||||
Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded");
|
||||
struct PH : public MachineFunctionPass {
|
||||
virtual bool runOnMachineFunction(MachineFunction &MF);
|
||||
|
||||
bool PeepholeOptimize(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator &I);
|
||||
|
||||
virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
|
||||
};
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
|
||||
|
||||
bool PH::runOnMachineFunction(MachineFunction &MF) {
|
||||
bool Changed = false;
|
||||
|
||||
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
|
||||
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
|
||||
if (PeepholeOptimize(*BI, I)) {
|
||||
Changed = true;
|
||||
++NumPHOpts;
|
||||
} else
|
||||
++I;
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator &I) {
|
||||
assert(I != MBB.end());
|
||||
MachineBasicBlock::iterator NextI = next(I);
|
||||
|
||||
MachineInstr *MI = I;
|
||||
MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
|
||||
unsigned Size = 0;
|
||||
switch (MI->getOpcode()) {
|
||||
case X86::MOV8rr:
|
||||
case X86::MOV16rr:
|
||||
case X86::MOV32rr: // Destroy X = X copies...
|
||||
if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
|
||||
I = MBB.erase(I);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
// A large number of X86 instructions have forms which take an 8-bit
|
||||
// immediate despite the fact that the operands are 16 or 32 bits. Because
|
||||
// this can save three bytes of code size (and icache space), we want to
|
||||
// shrink them if possible.
|
||||
case X86::IMUL16rri: case X86::IMUL32rri:
|
||||
assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
|
||||
if (MI->getOperand(2).isImmediate()) {
|
||||
int Val = MI->getOperand(2).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break;
|
||||
case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
unsigned R1 = MI->getOperand(1).getReg();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
#if 0
|
||||
case X86::IMUL16rmi: case X86::IMUL32rmi:
|
||||
assert(MI->getNumOperands() == 6 && "These should all have 6 operands!");
|
||||
if (MI->getOperand(5).isImmediate()) {
|
||||
int Val = MI->getOperand(5).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::IMUL16rmi: Opcode = X86::IMUL16rmi8; break;
|
||||
case X86::IMUL32rmi: Opcode = X86::IMUL32rmi8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
unsigned R1 = MI->getOperand(1).getReg();
|
||||
unsigned Scale = MI->getOperand(2).getImmedValue();
|
||||
unsigned R2 = MI->getOperand(3).getReg();
|
||||
unsigned Offset = MI->getOperand(4).getImmedValue();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 5, R0).addReg(R1).addZImm(Scale).
|
||||
addReg(R2).addSImm(Offset).addZImm((char)Val));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
#endif
|
||||
|
||||
case X86::ADD16ri: case X86::ADD32ri: case X86::ADC32ri:
|
||||
case X86::SUB16ri: case X86::SUB32ri: case X86::SBB32ri:
|
||||
case X86::AND16ri: case X86::AND32ri:
|
||||
case X86::OR16ri: case X86::OR32ri:
|
||||
case X86::XOR16ri: case X86::XOR32ri:
|
||||
assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
|
||||
if (MI->getOperand(1).isImmediate()) {
|
||||
int Val = MI->getOperand(1).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::ADD16ri: Opcode = X86::ADD16ri8; break;
|
||||
case X86::ADD32ri: Opcode = X86::ADD32ri8; break;
|
||||
case X86::ADC32ri: Opcode = X86::ADC32ri8; break;
|
||||
case X86::SUB16ri: Opcode = X86::SUB16ri8; break;
|
||||
case X86::SUB32ri: Opcode = X86::SUB32ri8; break;
|
||||
case X86::SBB32ri: Opcode = X86::SBB32ri8; break;
|
||||
case X86::AND16ri: Opcode = X86::AND16ri8; break;
|
||||
case X86::AND32ri: Opcode = X86::AND32ri8; break;
|
||||
case X86::OR16ri: Opcode = X86::OR16ri8; break;
|
||||
case X86::OR32ri: Opcode = X86::OR32ri8; break;
|
||||
case X86::XOR16ri: Opcode = X86::XOR16ri8; break;
|
||||
case X86::XOR32ri: Opcode = X86::XOR32ri8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef)
|
||||
.addZImm((char)Val));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
case X86::ADD16mi: case X86::ADD32mi: case X86::ADC32mi:
|
||||
case X86::SUB16mi: case X86::SUB32mi: case X86::SBB32mi:
|
||||
case X86::AND16mi: case X86::AND32mi:
|
||||
case X86::OR16mi: case X86::OR32mi:
|
||||
case X86::XOR16mi: case X86::XOR32mi:
|
||||
assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
|
||||
if (MI->getOperand(4).isImmediate()) {
|
||||
int Val = MI->getOperand(4).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::ADD16mi: Opcode = X86::ADD16mi8; break;
|
||||
case X86::ADD32mi: Opcode = X86::ADD32mi8; break;
|
||||
case X86::ADC32mi: Opcode = X86::ADC32mi8; break;
|
||||
case X86::SUB16mi: Opcode = X86::SUB16mi8; break;
|
||||
case X86::SUB32mi: Opcode = X86::SUB32mi8; break;
|
||||
case X86::SBB32mi: Opcode = X86::SBB32mi8; break;
|
||||
case X86::AND16mi: Opcode = X86::AND16mi8; break;
|
||||
case X86::AND32mi: Opcode = X86::AND32mi8; break;
|
||||
case X86::OR16mi: Opcode = X86::OR16mi8; break;
|
||||
case X86::OR32mi: Opcode = X86::OR32mi8; break;
|
||||
case X86::XOR16mi: Opcode = X86::XOR16mi8; break;
|
||||
case X86::XOR32mi: Opcode = X86::XOR32mi8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
unsigned Scale = MI->getOperand(1).getImmedValue();
|
||||
unsigned R1 = MI->getOperand(2).getReg();
|
||||
unsigned Offset = MI->getOperand(3).getImmedValue();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
|
||||
addReg(R1).addSImm(Offset).addZImm((char)Val));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
#if 0
|
||||
case X86::MOV32ri: Size++;
|
||||
case X86::MOV16ri: Size++;
|
||||
case X86::MOV8ri:
|
||||
// FIXME: We can only do this transformation if we know that flags are not
|
||||
// used here, because XOR clobbers the flags!
|
||||
if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
|
||||
int Val = MI->getOperand(1).getImmedValue();
|
||||
if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
|
||||
static const unsigned Opcode[] ={X86::XOR8rr,X86::XOR16rr,X86::XOR32rr};
|
||||
unsigned Reg = MI->getOperand(0).getReg();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg));
|
||||
return true;
|
||||
} else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
|
||||
// TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
|
||||
}
|
||||
}
|
||||
return false;
|
||||
#endif
|
||||
case X86::BSWAP32r: // Change bswap EAX, bswap EAX into nothing
|
||||
if (Next->getOpcode() == X86::BSWAP32r &&
|
||||
MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
|
||||
I = MBB.erase(MBB.erase(I));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
class UseDefChains : public MachineFunctionPass {
|
||||
std::vector<MachineInstr*> DefiningInst;
|
||||
public:
|
||||
// getDefinition - Return the machine instruction that defines the specified
|
||||
// SSA virtual register.
|
||||
MachineInstr *getDefinition(unsigned Reg) {
|
||||
assert(MRegisterInfo::isVirtualRegister(Reg) &&
|
||||
"use-def chains only exist for SSA registers!");
|
||||
assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
|
||||
"Unknown register number!");
|
||||
assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
|
||||
"Unknown register number!");
|
||||
return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
|
||||
}
|
||||
|
||||
// setDefinition - Update the use-def chains to indicate that MI defines
|
||||
// register Reg.
|
||||
void setDefinition(unsigned Reg, MachineInstr *MI) {
|
||||
if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
|
||||
DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
|
||||
DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
|
||||
}
|
||||
|
||||
// removeDefinition - Update the use-def chains to forget about Reg
|
||||
// entirely.
|
||||
void removeDefinition(unsigned Reg) {
|
||||
assert(getDefinition(Reg)); // Check validity
|
||||
DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
|
||||
}
|
||||
|
||||
virtual bool runOnMachineFunction(MachineFunction &MF) {
|
||||
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
|
||||
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
|
||||
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
||||
MachineOperand &MO = I->getOperand(i);
|
||||
if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
|
||||
MRegisterInfo::isVirtualRegister(MO.getReg()))
|
||||
setDefinition(MO.getReg(), I);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
virtual void releaseMemory() {
|
||||
std::vector<MachineInstr*>().swap(DefiningInst);
|
||||
}
|
||||
};
|
||||
|
||||
RegisterAnalysis<UseDefChains> X("use-def-chains",
|
||||
"use-def chain construction for machine code");
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
Statistic<> NumSSAPHOpts("x86-ssa-peephole",
|
||||
"Number of SSA peephole optimization performed");
|
||||
|
||||
/// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
|
||||
/// pass is really a bad idea: a better instruction selector should completely
|
||||
/// supersume it. However, that will take some time to develop, and the
|
||||
/// simple things this can do are important now.
|
||||
class SSAPH : public MachineFunctionPass {
|
||||
UseDefChains *UDC;
|
||||
public:
|
||||
virtual bool runOnMachineFunction(MachineFunction &MF);
|
||||
|
||||
bool PeepholeOptimize(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator &I);
|
||||
|
||||
virtual const char *getPassName() const {
|
||||
return "X86 SSA-based Peephole Optimizer";
|
||||
}
|
||||
|
||||
/// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
|
||||
/// opcode of the instruction, then return true.
|
||||
bool Propagate(MachineInstr *MI, unsigned DestOpNo,
|
||||
MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
|
||||
MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
|
||||
if (NewOpcode) MI->setOpcode(NewOpcode);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// OptimizeAddress - If we can fold the addressing arithmetic for this
|
||||
/// memory instruction into the instruction itself, do so and return true.
|
||||
bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
|
||||
|
||||
/// getDefininingInst - If the specified operand is a read of an SSA
|
||||
/// register, return the machine instruction defining it, otherwise, return
|
||||
/// null.
|
||||
MachineInstr *getDefiningInst(MachineOperand &MO) {
|
||||
if (MO.isDef() || !MO.isRegister() ||
|
||||
!MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
|
||||
return UDC->getDefinition(MO.getReg());
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequired<UseDefChains>();
|
||||
AU.addPreserved<UseDefChains>();
|
||||
MachineFunctionPass::getAnalysisUsage(AU);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
|
||||
|
||||
bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
|
||||
bool Changed = false;
|
||||
bool LocalChanged;
|
||||
|
||||
UDC = &getAnalysis<UseDefChains>();
|
||||
|
||||
do {
|
||||
LocalChanged = false;
|
||||
|
||||
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
|
||||
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
|
||||
if (PeepholeOptimize(*BI, I)) {
|
||||
LocalChanged = true;
|
||||
++NumSSAPHOpts;
|
||||
} else
|
||||
++I;
|
||||
Changed |= LocalChanged;
|
||||
} while (LocalChanged);
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
static bool isValidScaleAmount(unsigned Scale) {
|
||||
return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
|
||||
}
|
||||
|
||||
/// OptimizeAddress - If we can fold the addressing arithmetic for this
|
||||
/// memory instruction into the instruction itself, do so and return true.
|
||||
bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
|
||||
MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
|
||||
MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
|
||||
MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
|
||||
MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
|
||||
|
||||
unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
|
||||
unsigned Scale = ScaleOp.getImmedValue();
|
||||
unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
|
||||
|
||||
bool Changed = false;
|
||||
|
||||
// If the base register is unset, and the index register is set with a scale
|
||||
// of 1, move it to be the base register.
|
||||
if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
|
||||
Scale == 1 && IndexReg != 0) {
|
||||
BaseRegOp.setReg(IndexReg);
|
||||
IndexRegOp.setReg(0);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Attempt to fold instructions used by the base register into the instruction
|
||||
if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
|
||||
switch (DefInst->getOpcode()) {
|
||||
case X86::MOV32ri:
|
||||
// If there is no displacement set for this instruction set one now.
|
||||
// FIXME: If we can fold two immediates together, we should do so!
|
||||
if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
|
||||
if (DefInst->getOperand(1).isImmediate()) {
|
||||
BaseRegOp.setReg(0);
|
||||
return Propagate(MI, OpNo+3, DefInst, 1);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case X86::ADD32rr:
|
||||
// If the source is a register-register add, and we do not yet have an
|
||||
// index register, fold the add into the memory address.
|
||||
if (IndexReg == 0) {
|
||||
BaseRegOp = DefInst->getOperand(1);
|
||||
IndexRegOp = DefInst->getOperand(2);
|
||||
ScaleOp.setImmedValue(1);
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
|
||||
case X86::SHL32ri:
|
||||
// If this shift could be folded into the index portion of the address if
|
||||
// it were the index register, move it to the index register operand now,
|
||||
// so it will be folded in below.
|
||||
if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
|
||||
DefInst->getOperand(2).getImmedValue() < 4) {
|
||||
std::swap(BaseRegOp, IndexRegOp);
|
||||
ScaleOp.setImmedValue(1); Scale = 1;
|
||||
std::swap(IndexReg, BaseReg);
|
||||
Changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Attempt to fold instructions used by the index into the instruction
|
||||
if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
|
||||
switch (DefInst->getOpcode()) {
|
||||
case X86::SHL32ri: {
|
||||
// Figure out what the resulting scale would be if we folded this shift.
|
||||
unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
|
||||
if (isValidScaleAmount(ResScale)) {
|
||||
IndexRegOp = DefInst->getOperand(1);
|
||||
ScaleOp.setImmedValue(ResScale);
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator &I) {
|
||||
MachineBasicBlock::iterator NextI = next(I);
|
||||
|
||||
MachineInstr *MI = I;
|
||||
MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
|
||||
|
||||
bool Changed = false;
|
||||
|
||||
const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
|
||||
|
||||
// Scan the operands of this instruction. If any operands are
|
||||
// register-register copies, replace the operand with the source.
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
|
||||
// Is this an SSA register use?
|
||||
if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i))) {
|
||||
// If the operand is a vreg-vreg copy, it is always safe to replace the
|
||||
// source value with the input operand.
|
||||
unsigned Source, Dest;
|
||||
if (TII.isMoveInstr(*DefInst, Source, Dest)) {
|
||||
// Don't propagate physical registers into any instructions.
|
||||
if (DefInst->getOperand(1).isRegister() &&
|
||||
MRegisterInfo::isVirtualRegister(Source)) {
|
||||
MI->getOperand(i).setReg(Source);
|
||||
Changed = true;
|
||||
++NumPHMoves;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Perform instruction specific optimizations.
|
||||
switch (MI->getOpcode()) {
|
||||
|
||||
// Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
|
||||
case X86::MOV32mr: case X86::MOV16mr: case X86::MOV8mr:
|
||||
case X86::MOV32mi: case X86::MOV16mi: case X86::MOV8mi:
|
||||
// Check to see if we can fold the source instruction into this one...
|
||||
if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
|
||||
switch (SrcInst->getOpcode()) {
|
||||
// Fold the immediate value into the store, if possible.
|
||||
case X86::MOV8ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV8mi);
|
||||
case X86::MOV16ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV16mi);
|
||||
case X86::MOV32ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV32mi);
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
|
||||
// If we can optimize the addressing expression, do so now.
|
||||
if (OptimizeAddress(MI, 0))
|
||||
return true;
|
||||
break;
|
||||
|
||||
case X86::MOV32rm:
|
||||
case X86::MOV16rm:
|
||||
case X86::MOV8rm:
|
||||
// If we can optimize the addressing expression, do so now.
|
||||
if (OptimizeAddress(MI, 1))
|
||||
return true;
|
||||
break;
|
||||
|
||||
default: break;
|
||||
}
|
||||
|
||||
return Changed;
|
||||
}
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user