Split the estimate() interface into separate functions for each type. NFC.

It was hacky to use an opcode as a switch because it won't always match
(rsqrte != sqrte), and it looks like we'll need to add more special casing
per arch than I had hoped for. Eg, x86 will prefer a different NR estimate
implementation. ARM will want to use it's 'step' instructions. There also
don't appear to be any new estimate instructions in any arch in a long,
long time. Altivec vloge and vexpte may have been the first and last in
that field...



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218698 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2014-09-30 20:28:48 +00:00
parent 9952c922c2
commit cafc85bf1e
4 changed files with 61 additions and 34 deletions

View File

@ -2624,21 +2624,37 @@ public:
return SDValue();
}
/// Hooks for building estimates in place of, for example, slower divisions
/// and square roots. These are not builder functions themselves, just the
/// target-specific variables needed for building the estimate algorithm.
/// Return an estimate value for the input opcode and input operand.
/// The RefinementSteps output is the number of refinement iterations
/// required to generate a sufficient (though not necessarily IEEE-754
/// compliant) estimate for the value type.
/// Hooks for building estimates in place of slower divisions and square
/// roots.
/// Return a reciprocal square root estimate value for the input operand.
/// The RefinementSteps output is the number of Newton-Raphson refinement
/// iterations required to generate a sufficient (though not necessarily
/// IEEE-754 compliant) estimate for the value type.
/// A target may choose to implement its own refinement within this function.
/// If that's true, then return '0' as the number of RefinementSteps to avoid
/// any further refinement of the estimate.
/// An empty SDValue return means no estimate sequence can be created.
virtual SDValue getEstimate(unsigned Opcode, SDValue Operand,
virtual SDValue getRsqrtEstimate(SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
return SDValue();
}
/// Return a reciprocal estimate value for the input operand.
/// The RefinementSteps output is the number of Newton-Raphson refinement
/// iterations required to generate a sufficient (though not necessarily
/// IEEE-754 compliant) estimate for the value type.
/// A target may choose to implement its own refinement within this function.
/// If that's true, then return '0' as the number of RefinementSteps to avoid
/// any further refinement of the estimate.
/// An empty SDValue return means no estimate sequence can be created.
virtual SDValue getRecipEstimate(SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
return SDValue();
}
//===--------------------------------------------------------------------===//
// Legalization utility functions
//

View File

@ -11779,7 +11779,7 @@ SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op) {
TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
unsigned Iterations;
if (SDValue Est = TLI.getEstimate(ISD::FDIV, Op, DCI, Iterations)) {
if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal, we need to find the zero of the function:
// F(X) = A X - 1 [which has a zero at X = 1/A]
@ -11820,7 +11820,7 @@ SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op) {
// Expose the DAG combiner to the target combiner implementations.
TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
unsigned Iterations;
if (SDValue Est = TLI.getEstimate(ISD::FSQRT, Op, DCI, Iterations)) {
if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations)) {
// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
// For the reciprocal sqrt, we need to find the zero of the function:
// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]

View File

@ -7458,25 +7458,14 @@ PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDValue PPCTargetLowering::getEstimate(unsigned Opcode, SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
SDValue PPCTargetLowering::getRsqrtEstimate(SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
EVT VT = Operand.getValueType();
SDValue RV;
if (Opcode == ISD::FSQRT) {
if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
(VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX()))
RV = DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
} else if (Opcode == ISD::FDIV) {
if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
(VT == MVT::f64 && Subtarget.hasFRE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX()))
RV = DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
}
if (RV.getNode()) {
if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
(VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
// Convergence is quadratic, so we essentially double the number of digits
// correct after every iteration. For both FRE and FRSQRTE, the minimum
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
@ -7484,8 +7473,29 @@ SDValue PPCTargetLowering::getEstimate(unsigned Opcode, SDValue Operand,
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++RefinementSteps;
return DCI.DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
}
return RV;
return SDValue();
}
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
EVT VT = Operand.getValueType();
if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
(VT == MVT::f64 && Subtarget.hasFRE()) ||
(VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
(VT == MVT::v2f64 && Subtarget.hasVSX())) {
// Convergence is quadratic, so we essentially double the number of digits
// correct after every iteration. For both FRE and FRSQRTE, the minimum
// architected relative accuracy is 2^-5. When hasRecipPrec(), this is
// 2^-14. IEEE float has 23 digits and double has 52 digits.
RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
if (VT.getScalarType() == MVT::f64)
++RefinementSteps;
return DCI.DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
}
return SDValue();
}
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,

View File

@ -701,9 +701,10 @@ namespace llvm {
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue getEstimate(unsigned Opcode, SDValue Operand,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const override;
SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const override;
SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const override;
CCAssignFn *useFastISelCCs(unsigned Flag) const;
};