[CFLAA] Split out more things from CFLSteens. NFC.

"More things" = StratifiedAttrs and various bits like interprocedural
summaries.

Patch by Jia Chen.

Differential Revision: http://reviews.llvm.org/D21964


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274592 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
George Burgess IV 2016-07-06 00:47:21 +00:00
parent 02af278314
commit cc48e0f82a
6 changed files with 322 additions and 196 deletions

View File

@ -0,0 +1,105 @@
#include "AliasAnalysisSummary.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
namespace cflaa {
namespace {
LLVM_CONSTEXPR unsigned AttrEscapedIndex = 0;
LLVM_CONSTEXPR unsigned AttrUnknownIndex = 1;
LLVM_CONSTEXPR unsigned AttrGlobalIndex = 2;
LLVM_CONSTEXPR unsigned AttrCallerIndex = 3;
LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 4;
LLVM_CONSTEXPR unsigned AttrLastArgIndex = NumAliasAttrs;
LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
// NOTE: These aren't AliasAttrs because bitsets don't have a constexpr
// ctor for some versions of MSVC that we support. We could maybe refactor,
// but...
using AliasAttr = unsigned;
LLVM_CONSTEXPR AliasAttr AttrNone = 0;
LLVM_CONSTEXPR AliasAttr AttrEscaped = 1 << AttrEscapedIndex;
LLVM_CONSTEXPR AliasAttr AttrUnknown = 1 << AttrUnknownIndex;
LLVM_CONSTEXPR AliasAttr AttrGlobal = 1 << AttrGlobalIndex;
LLVM_CONSTEXPR AliasAttr AttrCaller = 1 << AttrCallerIndex;
LLVM_CONSTEXPR AliasAttr ExternalAttrMask =
AttrEscaped | AttrUnknown | AttrGlobal;
}
AliasAttrs getAttrNone() { return AttrNone; }
AliasAttrs getAttrUnknown() { return AttrUnknown; }
bool hasUnknownAttr(AliasAttrs Attr) { return Attr.test(AttrUnknownIndex); }
AliasAttrs getAttrCaller() { return AttrCaller; }
bool hasCallerAttr(AliasAttrs Attr) { return Attr.test(AttrCaller); }
bool hasUnknownOrCallerAttr(AliasAttrs Attr) {
return Attr.test(AttrUnknownIndex) || Attr.test(AttrCallerIndex);
}
AliasAttrs getAttrEscaped() { return AttrEscaped; }
bool hasEscapedAttr(AliasAttrs Attr) { return Attr.test(AttrEscapedIndex); }
static AliasAttr argNumberToAttr(unsigned ArgNum) {
if (ArgNum >= AttrMaxNumArgs)
return AttrUnknown;
// N.B. MSVC complains if we use `1U` here, since AliasAttr' ctor takes
// an unsigned long long.
return AliasAttr(1ULL << (ArgNum + AttrFirstArgIndex));
}
AliasAttrs getGlobalOrArgAttrFromValue(const Value &Val) {
if (isa<GlobalValue>(Val))
return AttrGlobal;
if (auto *Arg = dyn_cast<Argument>(&Val))
// Only pointer arguments should have the argument attribute,
// because things can't escape through scalars without us seeing a
// cast, and thus, interaction with them doesn't matter.
if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
return argNumberToAttr(Arg->getArgNo());
return AttrNone;
}
bool isGlobalOrArgAttr(AliasAttrs Attr) {
return Attr.reset(AttrEscapedIndex)
.reset(AttrUnknownIndex)
.reset(AttrCallerIndex)
.any();
}
AliasAttrs getExternallyVisibleAttrs(AliasAttrs Attr) {
return Attr & AliasAttrs(ExternalAttrMask);
}
Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue IValue,
CallSite CS) {
auto Index = IValue.Index;
auto Value = (Index == 0) ? CS.getInstruction() : CS.getArgument(Index - 1);
if (Value->getType()->isPointerTy())
return InstantiatedValue{Value, IValue.DerefLevel};
return None;
}
Optional<InstantiatedRelation>
instantiateExternalRelation(ExternalRelation ERelation, CallSite CS) {
auto From = instantiateInterfaceValue(ERelation.From, CS);
if (!From)
return None;
auto To = instantiateInterfaceValue(ERelation.To, CS);
if (!To)
return None;
return InstantiatedRelation{*From, *To};
}
Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute EAttr,
CallSite CS) {
auto Value = instantiateInterfaceValue(EAttr.IValue, CS);
if (!Value)
return None;
return InstantiatedAttr{*Value, EAttr.Attr};
}
}
}

View File

@ -0,0 +1,158 @@
//=====- CFLSummary.h - Abstract stratified sets implementation. --------=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines various utility types and functions useful to
/// summary-based alias analysis.
///
/// Summary-based analysis, also known as bottom-up analysis, is a style of
/// interprocedrual static analysis that tries to analyze the callees before the
/// callers get analyzed. The key idea of summary-based analysis is to first
/// process each function indepedently, outline its behavior in a condensed
/// summary, and then instantiate the summary at the callsite when the said
/// function is called elsewhere. This is often in contrast to another style
/// called top-down analysis, in which callers are always analyzed first before
/// the callees.
///
/// In a summary-based analysis, functions must be examined independently and
/// out-of-context. We have no information on the state of the memory, the
/// arguments, the global values, and anything else external to the function. To
/// carry out the analysis conservative assumptions have to be made about those
/// external states. In exchange for the potential loss of precision, the
/// summary we obtain this way is highly reusable, which makes the analysis
/// easier to scale to large programs even if carried out context-sensitively.
///
/// Currently, all CFL-based alias analyses adopt the summary-based approach
/// and therefore heavily rely on this header.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#include "llvm/ADT/Optional.h"
#include "llvm/IR/CallSite.h"
#include <bitset>
namespace llvm {
namespace cflaa {
//===----------------------------------------------------------------------===//
// AliasAttr related stuffs
//===----------------------------------------------------------------------===//
/// The number of attributes that AliasAttr should contain. Attributes are
/// described below, and 32 was an arbitrary choice because it fits nicely in 32
/// bits (because we use a bitset for AliasAttr).
static const unsigned NumAliasAttrs = 32;
/// These are attributes that an alias analysis can use to mark certain special
/// properties of a given pointer. Refer to the related functions below to see
/// what kinds of attributes are currently defined.
typedef std::bitset<NumAliasAttrs> AliasAttrs;
/// Attr represent whether the said pointer comes from an unknown source
/// (such as opaque memory or an integer cast).
AliasAttrs getAttrNone();
/// AttrUnknown represent whether the said pointer comes from a source not known
/// to alias analyses (such as opaque memory or an integer cast).
AliasAttrs getAttrUnknown();
bool hasUnknownAttr(AliasAttrs);
/// AttrCaller represent whether the said pointer comes from a source not known
/// to the current function but known to the caller. Values pointed to by the
/// arguments of the current function have this attribute set
AliasAttrs getAttrCaller();
bool hasCallerAttr(AliasAttrs);
bool hasUnknownOrCallerAttr(AliasAttrs);
/// AttrEscaped represent whether the said pointer comes from a known source but
/// escapes to the unknown world (e.g. casted to an integer, or passed as an
/// argument to opaque function). Unlike non-escaped pointers, escaped ones may
/// alias pointers coming from unknown sources.
AliasAttrs getAttrEscaped();
bool hasEscapedAttr(AliasAttrs);
/// AttrGlobal represent whether the said pointer is a global value.
/// AttrArg represent whether the said pointer is an argument, and if so, what
/// index the argument has.
AliasAttrs getGlobalOrArgAttrFromValue(const Value &);
bool isGlobalOrArgAttr(AliasAttrs);
/// Given an AliasAttrs, return a new AliasAttrs that only contains attributes
/// meaningful to the caller. This function is primarily used for
/// interprocedural analysis
/// Currently, externally visible AliasAttrs include AttrUnknown, AttrGlobal,
/// and AttrEscaped
AliasAttrs getExternallyVisibleAttrs(AliasAttrs);
//===----------------------------------------------------------------------===//
// Function summary related stuffs
//===----------------------------------------------------------------------===//
/// We use InterfaceValue to describe parameters/return value, as well as
/// potential memory locations that are pointed to by parameters/return value,
/// of a function.
/// Index is an integer which represents a single parameter or a return value.
/// When the index is 0, it refers to the return value. Non-zero index i refers
/// to the i-th parameter.
/// DerefLevel indicates the number of dereferences one must perform on the
/// parameter/return value to get this InterfaceValue.
struct InterfaceValue {
unsigned Index;
unsigned DerefLevel;
};
inline bool operator==(InterfaceValue lhs, InterfaceValue rhs) {
return lhs.Index == rhs.Index && lhs.DerefLevel == rhs.DerefLevel;
}
inline bool operator!=(InterfaceValue lhs, InterfaceValue rhs) {
return !(lhs == rhs);
}
/// We use ExternalRelation to describe an externally visible aliasing relations
/// between parameters/return value of a function.
struct ExternalRelation {
InterfaceValue From, To;
};
/// We use ExternalAttribute to describe an externally visible AliasAttrs
/// for parameters/return value.
struct ExternalAttribute {
InterfaceValue IValue;
AliasAttrs Attr;
};
/// This is the result of instantiating InterfaceValue at a particular callsite
struct InstantiatedValue {
Value *Val;
unsigned DerefLevel;
};
Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue, CallSite);
/// This is the result of instantiating ExternalRelation at a particular
/// callsite
struct InstantiatedRelation {
InstantiatedValue From, To;
};
Optional<InstantiatedRelation> instantiateExternalRelation(ExternalRelation,
CallSite);
/// This is the result of instantiating ExternalAttribute at a particular
/// callsite
struct InstantiatedAttr {
InstantiatedValue IValue;
AliasAttrs Attr;
};
Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute,
CallSite);
}
}
#endif

View File

@ -15,14 +15,11 @@
#ifndef LLVM_ANALYSIS_CFLGRAPH_H
#define LLVM_ANALYSIS_CFLGRAPH_H
#include "StratifiedSets.h"
#include "AliasAnalysisSummary.h"
#include "llvm/ADT/STLExtras.h"
namespace llvm {
class Value;
namespace cflaa {
/// Edges can be one of four "weights" -- each weight must have an inverse
/// weight (Assign has Assign; Reference has Dereference).
enum class EdgeType {
@ -62,7 +59,7 @@ class CFLGraph {
struct NodeInfo {
EdgeList Edges;
StratifiedAttrs Attr;
AliasAttrs Attr;
};
typedef DenseMap<Node, NodeInfo> NodeMap;
@ -104,10 +101,12 @@ public:
const_node_iterator;
bool addNode(Node N) {
return NodeImpls.insert(std::make_pair(N, NodeInfo{EdgeList(), 0})).second;
return NodeImpls
.insert(std::make_pair(N, NodeInfo{EdgeList(), getAttrNone()}))
.second;
}
void addAttr(Node N, StratifiedAttrs Attr) {
void addAttr(Node N, AliasAttrs Attr) {
auto *Info = getNode(N);
assert(Info != nullptr);
Info->Attr |= Attr;
@ -123,7 +122,7 @@ public:
ToInfo->Edges.push_back(Edge{flipWeight(Type), From});
}
StratifiedAttrs attrFor(Node N) const {
AliasAttrs attrFor(Node N) const {
auto *Info = getNode(N);
assert(Info != nullptr);
return Info->Attr;

View File

@ -37,6 +37,7 @@
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "CFLGraph.h"
#include "StratifiedSets.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
@ -67,39 +68,6 @@ CFLSteensAAResult::CFLSteensAAResult(CFLSteensAAResult &&Arg)
: AAResultBase(std::move(Arg)), TLI(Arg.TLI) {}
CFLSteensAAResult::~CFLSteensAAResult() {}
/// We use InterfaceValue to describe parameters/return value, as well as
/// potential memory locations that are pointed to by parameters/return value,
/// of a function.
/// Index is an integer which represents a single parameter or a return value.
/// When the index is 0, it refers to the return value. Non-zero index i refers
/// to the i-th parameter.
/// DerefLevel indicates the number of dereferences one must perform on the
/// parameter/return value to get this InterfaceValue.
struct InterfaceValue {
unsigned Index;
unsigned DerefLevel;
};
bool operator==(InterfaceValue lhs, InterfaceValue rhs) {
return lhs.Index == rhs.Index && lhs.DerefLevel == rhs.DerefLevel;
}
bool operator!=(InterfaceValue lhs, InterfaceValue rhs) {
return !(lhs == rhs);
}
/// We use ExternalRelation to describe an externally visible aliasing relations
/// between parameters/return value of a function.
struct ExternalRelation {
InterfaceValue From, To;
};
/// We use ExternalAttribute to describe an externally visible StratifiedAttrs
/// for parameters/return value.
struct ExternalAttribute {
InterfaceValue IValue;
StratifiedAttrs Attr;
};
/// Information we have about a function and would like to keep around.
class CFLSteensAAResult::FunctionInfo {
StratifiedSets<Value *> Sets;
@ -135,26 +103,6 @@ const StratifiedIndex StratifiedLink::SetSentinel =
std::numeric_limits<StratifiedIndex>::max();
namespace {
/// StratifiedInfo Attribute things.
LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs;
LLVM_CONSTEXPR unsigned AttrEscapedIndex = 0;
LLVM_CONSTEXPR unsigned AttrUnknownIndex = 1;
LLVM_CONSTEXPR unsigned AttrGlobalIndex = 2;
LLVM_CONSTEXPR unsigned AttrCallerIndex = 3;
LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 4;
LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex;
LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex;
// NOTE: These aren't StratifiedAttrs because bitsets don't have a constexpr
// ctor for some versions of MSVC that we support. We could maybe refactor,
// but...
using StratifiedAttr = unsigned;
LLVM_CONSTEXPR StratifiedAttr AttrEscaped = 1 << AttrEscapedIndex;
LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex;
LLVM_CONSTEXPR StratifiedAttr AttrGlobal = 1 << AttrGlobalIndex;
LLVM_CONSTEXPR StratifiedAttr AttrCaller = 1 << AttrCallerIndex;
LLVM_CONSTEXPR StratifiedAttr ExternalAttrMask =
AttrEscaped | AttrUnknown | AttrGlobal;
/// The maximum number of arguments we can put into a summary.
LLVM_CONSTEXPR unsigned MaxSupportedArgsInSummary = 50;
@ -163,23 +111,6 @@ LLVM_CONSTEXPR unsigned MaxSupportedArgsInSummary = 50;
/// represent that locally.
enum class Level { Same, Above, Below };
// This is the result of instantiating InterfaceValue at a particular callsite
struct InterprocNode {
Value *Val;
unsigned DerefLevel;
};
// Interprocedural assignment edges that CFLGraph may not easily model
struct InterprocEdge {
InterprocNode From, To;
};
// Interprocedural attribute tagging that CFLGraph may not easily model
struct InterprocAttr {
InterprocNode Node;
StratifiedAttrs Attr;
};
/// Gets the edges our graph should have, based on an Instruction*
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
CFLSteensAAResult &AA;
@ -189,8 +120,8 @@ class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
SmallVectorImpl<Value *> &ReturnValues;
SmallPtrSetImpl<Value *> &Externals;
SmallPtrSetImpl<Value *> &Escapes;
SmallVectorImpl<InterprocEdge> &InterprocEdges;
SmallVectorImpl<InterprocAttr> &InterprocAttrs;
SmallVectorImpl<InstantiatedRelation> &InstantiatedRelations;
SmallVectorImpl<InstantiatedAttr> &InstantiatedAttrs;
static bool hasUsefulEdges(ConstantExpr *CE) {
// ConstantExpr doesn't have terminators, invokes, or fences, so only needs
@ -210,7 +141,7 @@ class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
visitConstantExpr(CExpr);
}
void addNodeWithAttr(Value *Val, StratifiedAttrs Attr) {
void addNodeWithAttr(Value *Val, AliasAttrs Attr) {
addNode(Val);
Graph.addAttr(Val, Attr);
}
@ -229,11 +160,12 @@ public:
CFLGraph &Graph, SmallVectorImpl<Value *> &ReturnValues,
SmallPtrSetImpl<Value *> &Externals,
SmallPtrSetImpl<Value *> &Escapes,
SmallVectorImpl<InterprocEdge> &InterprocEdges,
SmallVectorImpl<InterprocAttr> &InterprocAttrs)
SmallVectorImpl<InstantiatedRelation> &InstantiatedRelations,
SmallVectorImpl<InstantiatedAttr> &InstantiatedAttrs)
: AA(AA), TLI(TLI), Graph(Graph), ReturnValues(ReturnValues),
Externals(Externals), Escapes(Escapes), InterprocEdges(InterprocEdges),
InterprocAttrs(InterprocAttrs) {}
Externals(Externals), Escapes(Escapes),
InstantiatedRelations(InstantiatedRelations),
InstantiatedAttrs(InstantiatedAttrs) {}
void visitInstruction(Instruction &) {
llvm_unreachable("Unsupported instruction encountered");
@ -250,12 +182,12 @@ public:
void visitPtrToIntInst(PtrToIntInst &Inst) {
auto *Ptr = Inst.getOperand(0);
addNodeWithAttr(Ptr, AttrEscaped);
addNodeWithAttr(Ptr, getAttrEscaped());
}
void visitIntToPtrInst(IntToPtrInst &Inst) {
auto *Ptr = &Inst;
addNodeWithAttr(Ptr, AttrUnknown);
addNodeWithAttr(Ptr, getAttrUnknown());
}
void visitCastInst(CastInst &Inst) {
@ -325,7 +257,7 @@ public:
// 2. Increments (stores to) *Ptr by some target-specific amount.
// For now, we'll handle this like a landingpad instruction (by placing the
// result in its own group, and having that group alias externals).
addNodeWithAttr(&Inst, AttrUnknown);
addNodeWithAttr(&Inst, getAttrUnknown());
}
static bool isFunctionExternal(Function *Fn) {
@ -350,35 +282,22 @@ public:
return false;
}
auto InstantiateInterfaceIndex = [&CS](unsigned Index) {
auto Value =
(Index == 0) ? CS.getInstruction() : CS.getArgument(Index - 1);
return Value->getType()->isPointerTy() ? Value : nullptr;
};
for (auto *Fn : Fns) {
auto &FnInfo = AA.ensureCached(Fn);
assert(FnInfo.hasValue());
auto &RetParamRelations = FnInfo->getRetParamRelations();
for (auto &Relation : RetParamRelations) {
auto FromVal = InstantiateInterfaceIndex(Relation.From.Index);
auto ToVal = InstantiateInterfaceIndex(Relation.To.Index);
if (FromVal && ToVal) {
auto FromLevel = Relation.From.DerefLevel;
auto ToLevel = Relation.To.DerefLevel;
InterprocEdges.push_back(
InterprocEdge{InterprocNode{FromVal, FromLevel},
InterprocNode{ToVal, ToLevel}});
}
auto IRelation = instantiateExternalRelation(Relation, CS);
if (IRelation.hasValue())
InstantiatedRelations.push_back(*IRelation);
}
auto &RetParamAttributes = FnInfo->getRetParamAttributes();
for (auto &Attribute : RetParamAttributes) {
if (auto Val = InstantiateInterfaceIndex(Attribute.IValue.Index)) {
InterprocAttrs.push_back(InterprocAttr{
InterprocNode{Val, Attribute.IValue.DerefLevel}, Attribute.Attr});
}
auto IAttr = instantiateExternalAttribute(Attribute, CS);
if (IAttr.hasValue())
InstantiatedAttrs.push_back(*IAttr);
}
}
@ -422,7 +341,7 @@ public:
if (Inst->getType()->isPointerTy()) {
auto *Fn = CS.getCalledFunction();
if (Fn == nullptr || !Fn->doesNotAlias(0))
Graph.addAttr(Inst, AttrUnknown);
Graph.addAttr(Inst, getAttrUnknown());
}
}
@ -447,7 +366,7 @@ public:
// Exceptions come from "nowhere", from our analysis' perspective.
// So we place the instruction its own group, noting that said group may
// alias externals
addNodeWithAttr(&Inst, AttrUnknown);
addNodeWithAttr(&Inst, getAttrUnknown());
}
void visitInsertValueInst(InsertValueInst &Inst) {
@ -495,8 +414,8 @@ class CFLGraphBuilder {
// Auxiliary structures used by the builder
SmallPtrSet<Value *, 8> ExternalValues;
SmallPtrSet<Value *, 8> EscapedValues;
SmallVector<InterprocEdge, 8> InterprocEdges;
SmallVector<InterprocAttr, 8> InterprocAttrs;
SmallVector<InstantiatedRelation, 8> InstantiatedRelations;
SmallVector<InstantiatedAttr, 8> InstantiatedAttrs;
// Helper functions
@ -528,7 +447,7 @@ class CFLGraphBuilder {
return;
GetEdgesVisitor(Analysis, TLI, Graph, ReturnedValues, ExternalValues,
EscapedValues, InterprocEdges, InterprocAttrs)
EscapedValues, InstantiatedRelations, InstantiatedAttrs)
.visit(Inst);
}
@ -560,11 +479,11 @@ public:
const SmallPtrSet<Value *, 8> &getEscapedValues() const {
return EscapedValues;
}
const SmallVector<InterprocEdge, 8> &getInterprocEdges() const {
return InterprocEdges;
const SmallVector<InstantiatedRelation, 8> &getInstantiatedRelations() const {
return InstantiatedRelations;
}
const SmallVector<InterprocAttr, 8> &getInterprocAttrs() const {
return InterprocAttrs;
const SmallVector<InstantiatedAttr, 8> &getInstantiatedAttrs() const {
return InstantiatedAttrs;
}
};
}
@ -573,20 +492,6 @@ public:
// Function declarations that require types defined in the namespace above
//===----------------------------------------------------------------------===//
/// Given a StratifiedAttrs, returns true if it marks the corresponding values
/// as globals or arguments
static bool isGlobalOrArgAttr(StratifiedAttrs Attr);
/// Given a StratifiedAttrs, returns true if the corresponding values come from
/// an unknown source (such as opaque memory or an integer cast)
static bool isUnknownAttr(StratifiedAttrs Attr);
/// Given an argument number, returns the appropriate StratifiedAttr to set.
static StratifiedAttrs argNumberToAttr(unsigned ArgNum);
/// Given a Value, potentially return which StratifiedAttr it maps to.
static Optional<StratifiedAttrs> valueToAttr(Value *Val);
/// Gets the "Level" that one should travel in StratifiedSets
/// given an EdgeType.
static Level directionOfEdgeType(EdgeType);
@ -617,38 +522,6 @@ static bool getPossibleTargets(CallSite CS,
return false;
}
static bool isGlobalOrArgAttr(StratifiedAttrs Attr) {
return Attr.reset(AttrEscapedIndex)
.reset(AttrUnknownIndex)
.reset(AttrCallerIndex)
.any();
}
static bool isUnknownAttr(StratifiedAttrs Attr) {
return Attr.test(AttrUnknownIndex) || Attr.test(AttrCallerIndex);
}
static Optional<StratifiedAttrs> valueToAttr(Value *Val) {
if (isa<GlobalValue>(Val))
return StratifiedAttrs(AttrGlobal);
if (auto *Arg = dyn_cast<Argument>(Val))
// Only pointer arguments should have the argument attribute,
// because things can't escape through scalars without us seeing a
// cast, and thus, interaction with them doesn't matter.
if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy())
return argNumberToAttr(Arg->getArgNo());
return None;
}
static StratifiedAttrs argNumberToAttr(unsigned ArgNum) {
if (ArgNum >= AttrMaxNumArgs)
return AttrUnknown;
// N.B. MSVC complains if we use `1U` here, since StratifiedAttrs' ctor takes
// an unsigned long long.
return StratifiedAttrs(1ULL << (ArgNum + AttrFirstArgIndex));
}
static Level directionOfEdgeType(EdgeType Weight) {
switch (Weight) {
case EdgeType::Reference:
@ -715,7 +588,7 @@ CFLSteensAAResult::FunctionInfo::FunctionInfo(
auto &Link = Sets.getLink(SetIndex);
InterfaceMap.insert(std::make_pair(SetIndex, CurrValue));
auto ExternalAttrs = Link.Attrs & StratifiedAttrs(ExternalAttrMask);
auto ExternalAttrs = getExternallyVisibleAttrs(Link.Attrs);
if (ExternalAttrs.any())
RetParamAttributes.push_back(
ExternalAttribute{CurrValue, ExternalAttrs});
@ -796,18 +669,18 @@ CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
// Special handling for globals and arguments
for (auto *External : GraphBuilder.getExternalValues()) {
SetBuilder.add(External);
auto Attr = valueToAttr(External);
if (Attr.hasValue()) {
SetBuilder.noteAttributes(External, *Attr);
if (*Attr == AttrGlobal)
SetBuilder.addAttributesBelow(External, 1, AttrUnknown);
auto Attr = getGlobalOrArgAttrFromValue(*External);
if (Attr.any()) {
SetBuilder.noteAttributes(External, Attr);
if (isa<GlobalValue>(External))
SetBuilder.addAttributesBelow(External, 1, getAttrUnknown());
else
SetBuilder.addAttributesBelow(External, 1, AttrCaller);
SetBuilder.addAttributesBelow(External, 1, getAttrCaller());
}
}
// Special handling for interprocedural aliases
for (auto &Edge : GraphBuilder.getInterprocEdges()) {
for (auto &Edge : GraphBuilder.getInstantiatedRelations()) {
auto FromVal = Edge.From.Val;
auto ToVal = Edge.To.Val;
SetBuilder.add(FromVal);
@ -817,17 +690,17 @@ CFLSteensAAResult::FunctionInfo CFLSteensAAResult::buildSetsFrom(Function *Fn) {
}
// Special handling for interprocedural attributes
for (auto &IPAttr : GraphBuilder.getInterprocAttrs()) {
auto Val = IPAttr.Node.Val;
for (auto &IPAttr : GraphBuilder.getInstantiatedAttrs()) {
auto Val = IPAttr.IValue.Val;
SetBuilder.add(Val);
SetBuilder.addAttributesBelow(Val, IPAttr.Node.DerefLevel, IPAttr.Attr);
SetBuilder.addAttributesBelow(Val, IPAttr.IValue.DerefLevel, IPAttr.Attr);
}
// Special handling for opaque external functions
for (auto *Escape : GraphBuilder.getEscapedValues()) {
SetBuilder.add(Escape);
SetBuilder.noteAttributes(Escape, AttrEscaped);
SetBuilder.addAttributesBelow(Escape, 1, AttrUnknown);
SetBuilder.noteAttributes(Escape, getAttrEscaped());
SetBuilder.addAttributesBelow(Escape, 1, getAttrUnknown());
}
return FunctionInfo(*Fn, GraphBuilder.getReturnValues(), SetBuilder.build());
@ -923,7 +796,7 @@ AliasResult CFLSteensAAResult::query(const MemoryLocation &LocA,
return MayAlias;
if (AttrsA.none() || AttrsB.none())
return NoAlias;
if (isUnknownAttr(AttrsA) || isUnknownAttr(AttrsB))
if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB))
return MayAlias;
if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB))
return MayAlias;

View File

@ -1,6 +1,7 @@
add_llvm_library(LLVMAnalysis
AliasAnalysis.cpp
AliasAnalysisEvaluator.cpp
AliasAnalysisSummary.cpp
AliasSetTracker.cpp
Analysis.cpp
AssumptionCache.cpp

View File

@ -10,6 +10,7 @@
#ifndef LLVM_ADT_STRATIFIEDSETS_H
#define LLVM_ADT_STRATIFIEDSETS_H
#include "AliasAnalysisSummary.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
@ -34,17 +35,6 @@ struct StratifiedInfo {
/// For field sensitivity, etc. we can tack fields on here.
};
/// The number of attributes that StratifiedAttrs should contain. Attributes are
/// described below, and 32 was an arbitrary choice because it fits nicely in 32
/// bits (because we use a bitset for StratifiedAttrs).
static const unsigned NumStratifiedAttrs = 32;
/// These are attributes that the users of StratifiedSets/StratifiedSetBuilders
/// may use for various purposes. These also have the special property of that
/// they are merged down. So, if set A is above set B, and one decides to set an
/// attribute in set A, then the attribute will automatically be set in set B.
typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
/// A "link" between two StratifiedSets.
struct StratifiedLink {
/// \brief This is a value used to signify "does not exist" where the
@ -62,7 +52,7 @@ struct StratifiedLink {
StratifiedIndex Below;
/// Attributes for these StratifiedSets.
StratifiedAttrs Attrs;
AliasAttrs Attrs;
StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
@ -243,14 +233,14 @@ template <typename T> class StratifiedSetsBuilder {
return Link.Above;
}
StratifiedAttrs &getAttrs() {
AliasAttrs getAttrs() {
assert(!isRemapped());
return Link.Attrs;
}
void setAttrs(const StratifiedAttrs &other) {
void setAttrs(AliasAttrs Other) {
assert(!isRemapped());
Link.Attrs |= other;
Link.Attrs |= Other;
}
bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
@ -396,9 +386,9 @@ public:
return addAtMerging(ToAdd, Below);
}
/// \brief Set the StratifiedAttrs of the set "Level"-levels below "Main". If
/// \brief Set the AliasAttrs of the set "Level"-levels below "Main". If
/// there is no set below "Main", create one for it.
void addAttributesBelow(const T &Main, unsigned Level, StratifiedAttrs Attr) {
void addAttributesBelow(const T &Main, unsigned Level, AliasAttrs Attr) {
assert(has(Main));
auto Index = *indexOf(Main);
auto *Link = &linksAt(Index);
@ -436,7 +426,7 @@ public:
merge(MainIndex, ToAddIndex);
}
void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
assert(has(Main));
auto *Info = *get(Main);
auto &Link = linksAt(Info->Index);
@ -538,7 +528,7 @@ private:
// match `LinksFrom.Below`
// > If both have links above, deal with those next.
while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
auto &FromAttrs = LinksFrom->getAttrs();
auto FromAttrs = LinksFrom->getAttrs();
LinksInto->setAttrs(FromAttrs);
// Remap needs to happen after getBelow(), but before