mirror of
https://github.com/RPCS3/llvm.git
synced 2024-11-28 06:00:30 +00:00
Add a loop vectorizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166112 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
9d57cdfa17
commit
d15c0c7ac1
@ -261,6 +261,7 @@ void initializeVirtRegRewriterPass(PassRegistry&);
|
||||
void initializeInstSimplifierPass(PassRegistry&);
|
||||
void initializeUnpackMachineBundlesPass(PassRegistry&);
|
||||
void initializeFinalizeMachineBundlesPass(PassRegistry&);
|
||||
void initializeLoopVectorizePass(PassRegistry&);
|
||||
void initializeBBVectorizePass(PassRegistry&);
|
||||
void initializeMachineFunctionPrinterPassPass(PassRegistry&);
|
||||
}
|
||||
|
@ -156,6 +156,7 @@ namespace {
|
||||
(void) llvm::createCorrelatedValuePropagationPass();
|
||||
(void) llvm::createMemDepPrinter();
|
||||
(void) llvm::createInstructionSimplifierPass();
|
||||
(void) llvm::createLoopVectorizePass();
|
||||
(void) llvm::createBBVectorizePass();
|
||||
|
||||
(void)new llvm::IntervalPartition();
|
||||
|
@ -106,6 +106,12 @@ struct VectorizeConfig {
|
||||
BasicBlockPass *
|
||||
createBBVectorizePass(const VectorizeConfig &C = VectorizeConfig());
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// LoopVectorize - Create a loop vectorization pass.
|
||||
//
|
||||
Pass * createLoopVectorizePass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// @brief Vectorize the BasicBlock.
|
||||
///
|
||||
|
@ -176,6 +176,12 @@ void PassManagerBuilder::populateModulePassManager(PassManagerBase &MPM) {
|
||||
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
|
||||
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
|
||||
MPM.add(createLoopDeletionPass()); // Delete dead loops
|
||||
|
||||
if (Vectorize) {
|
||||
MPM.add(createLoopVectorizePass());
|
||||
MPM.add(createLICMPass());
|
||||
}
|
||||
|
||||
if (!DisableUnrollLoops)
|
||||
MPM.add(createLoopUnrollPass()); // Unroll small loops
|
||||
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
|
||||
|
@ -1,6 +1,7 @@
|
||||
add_llvm_library(LLVMVectorize
|
||||
BBVectorize.cpp
|
||||
Vectorize.cpp
|
||||
LoopVectorize.cpp
|
||||
)
|
||||
|
||||
add_dependencies(LLVMVectorize intrinsics_gen)
|
||||
|
801
lib/Transforms/Vectorize/LoopVectorize.cpp
Normal file
801
lib/Transforms/Vectorize/LoopVectorize.cpp
Normal file
@ -0,0 +1,801 @@
|
||||
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This is a simple loop vectorizer. We currently only support single block
|
||||
// loops. We have a very simple and restrictive legality check: we need to read
|
||||
// and write from disjoint memory locations. We still don't have a cost model.
|
||||
// This pass has three parts:
|
||||
// 1. The main loop pass that drives the different parts.
|
||||
// 2. LoopVectorizationLegality - A helper class that checks for the legality
|
||||
// of the vectorization.
|
||||
// 3. SingleBlockLoopVectorizer - A helper class that performs the actual
|
||||
// widening of instructions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
#define LV_NAME "loop-vectorize"
|
||||
#define DEBUG_TYPE LV_NAME
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/LLVMContext.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Value.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/StringExtras.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/AliasSetTracker.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/DataLayout.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include <algorithm>
|
||||
using namespace llvm;
|
||||
|
||||
static cl::opt<unsigned>
|
||||
DefaultVectorizationFactor("default-loop-vectorize-width",
|
||||
cl::init(4), cl::Hidden,
|
||||
cl::desc("Set the default loop vectorization width"));
|
||||
|
||||
namespace {
|
||||
|
||||
/// Vectorize a simple loop. This class performs the widening of simple single
|
||||
/// basic block loops into vectors. It does not perform any
|
||||
/// vectorization-legality checks, and just does it. It widens the vectors
|
||||
/// to a given vectorization factor (VF).
|
||||
class SingleBlockLoopVectorizer {
|
||||
public:
|
||||
|
||||
/// Ctor.
|
||||
SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li,
|
||||
unsigned VecWidth):
|
||||
Orig(OrigLoop), SE(Se), LI(Li), VF(VecWidth),
|
||||
Builder(0), Induction(0), OldInduction(0) { }
|
||||
|
||||
~SingleBlockLoopVectorizer() {
|
||||
delete Builder;
|
||||
}
|
||||
|
||||
// Perform the actual loop widening (vectorization).
|
||||
void vectorize() {
|
||||
///Create a new empty loop. Unlink the old loop and connect the new one.
|
||||
copyEmptyLoop();
|
||||
/// Widen each instruction in the old loop to a new one in the new loop.
|
||||
vectorizeLoop();
|
||||
// Delete the old loop.
|
||||
deleteOldLoop();
|
||||
}
|
||||
|
||||
private:
|
||||
/// Create an empty loop, based on the loop ranges of the old loop.
|
||||
void copyEmptyLoop();
|
||||
/// Copy and widen the instructions from the old loop.
|
||||
void vectorizeLoop();
|
||||
/// Delete the old loop.
|
||||
void deleteOldLoop();
|
||||
|
||||
/// This instruction is un-vectorizable. Implement it as a sequence
|
||||
/// of scalars.
|
||||
void scalarizeInstruction(Instruction *Instr);
|
||||
|
||||
/// Create a broadcast instruction. This method generates a broadcast
|
||||
/// instruction (shuffle) for loop invariant values and for the induction
|
||||
/// value. If this is the induction variable then we extend it to N, N+1, ...
|
||||
/// this is needed because each iteration in the loop corresponds to a SIMD
|
||||
/// element.
|
||||
Value *getBroadcastInstrs(Value *V);
|
||||
|
||||
/// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
|
||||
/// for each element in the vector. Starting from zero.
|
||||
Value *getConsecutiveVector(Value* Val);
|
||||
|
||||
/// Check that the GEP operands are all uniform except for the last index
|
||||
/// which has to be the induction variable.
|
||||
bool isConsecutiveGep(GetElementPtrInst *Gep);
|
||||
|
||||
/// When we go over instructions in the basic block we rely on previous
|
||||
/// values within the current basic block or on loop invariant values.
|
||||
/// When we widen (vectorize) values we place them in the map. If the values
|
||||
/// are not within the map, they have to be loop invariant, so we simply
|
||||
/// broadcast them into a vector.
|
||||
Value *getVectorValue(Value *V);
|
||||
|
||||
/// The original loop.
|
||||
Loop *Orig;
|
||||
// Scev analysis to use.
|
||||
ScalarEvolution *SE;
|
||||
// Loop Info.
|
||||
LoopInfo *LI;
|
||||
// The vectorization factor to use.
|
||||
unsigned VF;
|
||||
|
||||
// The builder that we use
|
||||
IRBuilder<> *Builder;
|
||||
|
||||
// --- Vectorization state ---
|
||||
|
||||
/// The new Induction variable which was added to the new block.
|
||||
Instruction *Induction;
|
||||
/// The induction variable of the old basic block.
|
||||
Instruction *OldInduction;
|
||||
// Maps scalars to widened vectors.
|
||||
DenseMap<Value*, Value*> WidenMap;
|
||||
};
|
||||
|
||||
|
||||
/// Perform the vectorization legality check. This class does not look at the
|
||||
/// profitability of vectorization, only the legality. At the moment the checks
|
||||
/// are very simple and focus on single basic block loops with a constant
|
||||
/// iteration count and no reductions.
|
||||
class LoopVectorizationLegality {
|
||||
public:
|
||||
LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
|
||||
TheLoop(Lp), SE(Se), DL(Dl) { }
|
||||
|
||||
/// Returns the maximum vectorization factor that we *can* use to vectorize
|
||||
/// this loop. This does not mean that it is profitable to vectorize this
|
||||
/// loop, only that it is legal to do so. This may be a large number. We
|
||||
/// can vectorize to any SIMD width below this number.
|
||||
unsigned getLoopMaxVF();
|
||||
|
||||
private:
|
||||
/// Check if a single basic block loop is vectorizable.
|
||||
/// At this point we know that this is a loop with a constant trip count
|
||||
/// and we only need to check individual instructions.
|
||||
bool canVectorizeBlock(BasicBlock &BB);
|
||||
|
||||
// Check if a pointer value is known to be disjoint.
|
||||
// Example: Alloca, Global, NoAlias.
|
||||
bool isKnownDisjoint(Value* Val);
|
||||
|
||||
/// The loop that we evaluate.
|
||||
Loop *TheLoop;
|
||||
/// Scev analysis.
|
||||
ScalarEvolution *SE;
|
||||
/// DataLayout analysis.
|
||||
DataLayout *DL;
|
||||
};
|
||||
|
||||
struct LoopVectorize : public LoopPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
|
||||
LoopVectorize() : LoopPass(ID) {
|
||||
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
AliasAnalysis *AA;
|
||||
ScalarEvolution *SE;
|
||||
DataLayout *DL;
|
||||
LoopInfo *LI;
|
||||
|
||||
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
// Only vectorize innermost loops.
|
||||
if (!L->empty())
|
||||
return false;
|
||||
|
||||
AA = &getAnalysis<AliasAnalysis>();
|
||||
SE = &getAnalysis<ScalarEvolution>();
|
||||
DL = getAnalysisIfAvailable<DataLayout>();
|
||||
LI = &getAnalysis<LoopInfo>();
|
||||
|
||||
BasicBlock *Header = L->getHeader();
|
||||
DEBUG(dbgs() << "LV: Checking a loop in \"" <<
|
||||
Header->getParent()->getName() << "\"\n");
|
||||
|
||||
// Check if it is legal to vectorize the loop.
|
||||
LoopVectorizationLegality LVL(L, SE, DL);
|
||||
unsigned MaxVF = LVL.getLoopMaxVF();
|
||||
|
||||
// Check that we can vectorize using the chosen vectorization width.
|
||||
if ((MaxVF < DefaultVectorizationFactor) ||
|
||||
(MaxVF % DefaultVectorizationFactor)) {
|
||||
DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");
|
||||
|
||||
// If we decided that is is *legal* to vectorizer the loop. Do it.
|
||||
SingleBlockLoopVectorizer LB(L, SE, LI, DefaultVectorizationFactor);
|
||||
LB.vectorize();
|
||||
|
||||
// The loop is now vectorized. Remove it from LMP.
|
||||
LPM.deleteLoopFromQueue(L);
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
LoopPass::getAnalysisUsage(AU);
|
||||
AU.addRequiredID(LoopSimplifyID);
|
||||
AU.addRequired<AliasAnalysis>();
|
||||
AU.addRequired<LoopInfo>();
|
||||
AU.addRequired<ScalarEvolution>();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
|
||||
// Instructions that access the old induction variable
|
||||
// actually want to get the new one.
|
||||
if (V == OldInduction)
|
||||
V = Induction;
|
||||
// Create the types.
|
||||
LLVMContext &C = V->getContext();
|
||||
Type *VTy = VectorType::get(V->getType(), VF);
|
||||
Type *I32 = IntegerType::getInt32Ty(C);
|
||||
Constant *Zero = ConstantInt::get(I32, 0);
|
||||
Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
|
||||
Value *UndefVal = UndefValue::get(VTy);
|
||||
// Insert the value into a new vector.
|
||||
Value *SingleElem = Builder->CreateInsertElement(UndefVal, V, Zero);
|
||||
// Broadcast the scalar into all locations in the vector.
|
||||
Value *Shuf = Builder->CreateShuffleVector(SingleElem, UndefVal, Zeros,
|
||||
"broadcast");
|
||||
// We are accessing the induction variable. Make sure to promote the
|
||||
// index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
|
||||
if (V == Induction)
|
||||
return getConsecutiveVector(Shuf);
|
||||
return Shuf;
|
||||
}
|
||||
|
||||
Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
|
||||
assert(Val->getType()->isVectorTy() && "Must be a vector");
|
||||
assert(Val->getType()->getScalarType()->isIntegerTy() &&
|
||||
"Elem must be an integer");
|
||||
// Create the types.
|
||||
Type *ITy = Val->getType()->getScalarType();
|
||||
VectorType *Ty = cast<VectorType>(Val->getType());
|
||||
unsigned VLen = Ty->getNumElements();
|
||||
SmallVector<Constant*, 8> Indices;
|
||||
|
||||
// Create a vector of consecutive numbers from zero to VF.
|
||||
for (unsigned i = 0; i < VLen; ++i)
|
||||
Indices.push_back(ConstantInt::get(ITy, i));
|
||||
|
||||
// Add the consecutive indices to the vector value.
|
||||
Constant *Cv = ConstantVector::get(Indices);
|
||||
assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
|
||||
return Builder->CreateAdd(Val, Cv, "induction");
|
||||
}
|
||||
|
||||
|
||||
bool SingleBlockLoopVectorizer::isConsecutiveGep(GetElementPtrInst *Gep) {
|
||||
if (!Gep)
|
||||
return false;
|
||||
|
||||
unsigned NumOperands = Gep->getNumOperands();
|
||||
Value *LastIndex = Gep->getOperand(NumOperands - 1);
|
||||
|
||||
// Check that all of the gep indices are uniform except for the last.
|
||||
for (unsigned i = 0; i < NumOperands - 1; ++i)
|
||||
if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), Orig))
|
||||
return false;
|
||||
|
||||
// The last operand has to be the induction in order to emit
|
||||
// a wide load/store.
|
||||
const SCEV *Last = SE->getSCEV(LastIndex);
|
||||
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
|
||||
const SCEV *Step = AR->getStepRecurrence(*SE);
|
||||
|
||||
// The memory is consecutive because the last index is consecutive
|
||||
// and all other indices are loop invariant.
|
||||
if (Step->isOne())
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
|
||||
if (WidenMap.count(V))
|
||||
return WidenMap[V];
|
||||
return getBroadcastInstrs(V);
|
||||
}
|
||||
|
||||
void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
|
||||
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
|
||||
// Holds vector parameters or scalars, in case of uniform vals.
|
||||
SmallVector<Value*, 8> Params;
|
||||
|
||||
// Find all of the vectorized parameters.
|
||||
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
|
||||
Value *SrcOp = Instr->getOperand(op);
|
||||
|
||||
// If we are accessing the old induction variable, use the new one.
|
||||
if (SrcOp == OldInduction) {
|
||||
Params.push_back(getBroadcastInstrs(Induction));
|
||||
continue;
|
||||
}
|
||||
|
||||
// Try using previously calculated values.
|
||||
Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
|
||||
|
||||
// If the src is an instruction that appeared earlier in the basic block
|
||||
// then it should already be vectorized.
|
||||
if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
|
||||
assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
|
||||
// The parameter is a vector value from earlier.
|
||||
Params.push_back(WidenMap[SrcInst]);
|
||||
} else {
|
||||
// The parameter is a scalar from outside the loop. Maybe even a constant.
|
||||
Params.push_back(SrcOp);
|
||||
}
|
||||
}
|
||||
|
||||
assert(Params.size() == Instr->getNumOperands() &&
|
||||
"Invalid number of operands");
|
||||
|
||||
// Does this instruction return a value ?
|
||||
bool IsVoidRetTy = Instr->getType()->isVoidTy();
|
||||
Value *VecResults = 0;
|
||||
|
||||
// If we have a return value, create an empty vector. We place the scalarized
|
||||
// instructions in this vector.
|
||||
if (!IsVoidRetTy)
|
||||
VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
|
||||
|
||||
// For each scalar that we create.
|
||||
for (unsigned i = 0; i < VF; ++i) {
|
||||
Instruction *Cloned = Instr->clone();
|
||||
if (!IsVoidRetTy)
|
||||
Cloned->setName(Instr->getName() + ".cloned");
|
||||
// Replace the operands of the cloned instrucions with extracted scalars.
|
||||
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
|
||||
Value *Op = Params[op];
|
||||
// Param is a vector. Need to extract the right lane.
|
||||
if (Op->getType()->isVectorTy())
|
||||
Op = Builder->CreateExtractElement(Op, Builder->getInt32(i));
|
||||
Cloned->setOperand(op, Op);
|
||||
}
|
||||
|
||||
// Place the clonsed scalar in the new loop.
|
||||
Builder->Insert(Cloned);
|
||||
|
||||
// If the original scalar returns a value we need to place it in a vector
|
||||
// so that future users will be able to use it.
|
||||
if (!IsVoidRetTy)
|
||||
VecResults = Builder->CreateInsertElement(VecResults, Cloned,
|
||||
Builder->getInt32(i));
|
||||
}
|
||||
|
||||
if (!IsVoidRetTy)
|
||||
WidenMap[Instr] = VecResults;
|
||||
}
|
||||
|
||||
void SingleBlockLoopVectorizer::copyEmptyLoop() {
|
||||
assert(Orig->getNumBlocks() == 1 && "Invalid loop");
|
||||
BasicBlock *PH = Orig->getLoopPreheader();
|
||||
BasicBlock *ExitBlock = Orig->getExitBlock();
|
||||
assert(ExitBlock && "Invalid loop exit");
|
||||
|
||||
// Create a new single-basic block loop.
|
||||
BasicBlock *BB = BasicBlock::Create(PH->getContext(), "vectorizedloop",
|
||||
PH->getParent(), ExitBlock);
|
||||
|
||||
// Find the induction variable.
|
||||
BasicBlock *OldBasicBlock = Orig->getHeader();
|
||||
PHINode *OldInd = dyn_cast<PHINode>(OldBasicBlock->begin());
|
||||
assert(OldInd && "We must have a single phi node.");
|
||||
Type *IdxTy = OldInd->getType();
|
||||
|
||||
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
|
||||
// inside the loop.
|
||||
Builder = new IRBuilder<>(BB);
|
||||
Builder->SetInsertPoint(BB);
|
||||
|
||||
// Generate the induction variable.
|
||||
PHINode *Phi = Builder->CreatePHI(IdxTy, 2, "index");
|
||||
Constant *Zero = ConstantInt::get(IdxTy, 0);
|
||||
Constant *Step = ConstantInt::get(IdxTy, VF);
|
||||
|
||||
// Find the loop boundaries.
|
||||
const SCEV *ExitCount = SE->getExitCount(Orig, Orig->getHeader());
|
||||
assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
|
||||
|
||||
// Get the trip count from the count by adding 1.
|
||||
ExitCount = SE->getAddExpr(ExitCount,
|
||||
SE->getConstant(ExitCount->getType(), 1));
|
||||
|
||||
// Expand the trip count and place the new instructions in the preheader.
|
||||
// Notice that the pre-header does not change, only the loop body.
|
||||
SCEVExpander Exp(*SE, "induction");
|
||||
Instruction *Loc = Orig->getLoopPreheader()->getTerminator();
|
||||
if (ExitCount->getType() != Phi->getType())
|
||||
ExitCount = SE->getSignExtendExpr(ExitCount, Phi->getType());
|
||||
Value *Count = Exp.expandCodeFor(ExitCount, Phi->getType(), Loc);
|
||||
|
||||
// Create i+1 and fill the PHINode.
|
||||
Value *Next = Builder->CreateAdd(Phi, Step, "index.next");
|
||||
Phi->addIncoming(Zero, PH);
|
||||
Phi->addIncoming(Next, BB);
|
||||
// Create the compare.
|
||||
Value *ICmp = Builder->CreateICmpEQ(Next, Count);
|
||||
Builder->CreateCondBr(ICmp, ExitBlock, BB);
|
||||
// Fix preheader.
|
||||
PH->getTerminator()->setSuccessor(0, BB);
|
||||
Builder->SetInsertPoint(BB->getFirstInsertionPt());
|
||||
|
||||
// Save the indiction variables.
|
||||
Induction = Phi;
|
||||
OldInduction = OldInd;
|
||||
}
|
||||
|
||||
void SingleBlockLoopVectorizer::vectorizeLoop() {
|
||||
BasicBlock &BB = *Orig->getHeader();
|
||||
|
||||
// For each instruction in the old loop.
|
||||
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
|
||||
Instruction *Inst = it;
|
||||
|
||||
switch (Inst->getOpcode()) {
|
||||
case Instruction::PHI:
|
||||
case Instruction::Br:
|
||||
// Nothing to do for PHIs and BR, since we already took care of the
|
||||
// loop control flow instructions.
|
||||
continue;
|
||||
|
||||
case Instruction::Add:
|
||||
case Instruction::FAdd:
|
||||
case Instruction::Sub:
|
||||
case Instruction::FSub:
|
||||
case Instruction::Mul:
|
||||
case Instruction::FMul:
|
||||
case Instruction::UDiv:
|
||||
case Instruction::SDiv:
|
||||
case Instruction::FDiv:
|
||||
case Instruction::URem:
|
||||
case Instruction::SRem:
|
||||
case Instruction::FRem:
|
||||
case Instruction::Shl:
|
||||
case Instruction::LShr:
|
||||
case Instruction::AShr:
|
||||
case Instruction::And:
|
||||
case Instruction::Or:
|
||||
case Instruction::Xor: {
|
||||
// Just widen binops.
|
||||
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
|
||||
Value *A = getVectorValue(Inst->getOperand(0));
|
||||
Value *B = getVectorValue(Inst->getOperand(1));
|
||||
// Use this vector value for all users of the original instruction.
|
||||
WidenMap[Inst] = Builder->CreateBinOp(BinOp->getOpcode(), A, B);
|
||||
break;
|
||||
}
|
||||
case Instruction::Select: {
|
||||
// Widen selects.
|
||||
Value *A = getVectorValue(Inst->getOperand(0));
|
||||
Value *B = getVectorValue(Inst->getOperand(1));
|
||||
Value *C = getVectorValue(Inst->getOperand(2));
|
||||
WidenMap[Inst] = Builder->CreateSelect(A, B, C);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::ICmp:
|
||||
case Instruction::FCmp: {
|
||||
// Widen compares. Generate vector compares.
|
||||
bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
|
||||
CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
|
||||
Value *A = getVectorValue(Inst->getOperand(0));
|
||||
Value *B = getVectorValue(Inst->getOperand(1));
|
||||
if (FCmp)
|
||||
WidenMap[Inst] = Builder->CreateFCmp(Cmp->getPredicate(), A, B);
|
||||
else
|
||||
WidenMap[Inst] = Builder->CreateICmp(Cmp->getPredicate(), A, B);
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::Store: {
|
||||
// Attempt to issue a wide store.
|
||||
StoreInst *SI = dyn_cast<StoreInst>(Inst);
|
||||
Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
|
||||
Value *Ptr = SI->getPointerOperand();
|
||||
unsigned Alignment = SI->getAlignment();
|
||||
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
|
||||
// This store does not use GEPs.
|
||||
if (!isConsecutiveGep(Gep)) {
|
||||
scalarizeInstruction(Inst);
|
||||
break;
|
||||
}
|
||||
|
||||
// Create the new GEP with the new induction variable.
|
||||
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
|
||||
unsigned NumOperands = Gep->getNumOperands();
|
||||
Gep2->setOperand(NumOperands - 1, Induction);
|
||||
Ptr = Builder->Insert(Gep2);
|
||||
Ptr = Builder->CreateBitCast(Ptr, StTy->getPointerTo());
|
||||
Value *Val = getVectorValue(SI->getValueOperand());
|
||||
Builder->CreateStore(Val, Ptr)->setAlignment(Alignment);
|
||||
break;
|
||||
}
|
||||
case Instruction::Load: {
|
||||
// Attempt to issue a wide load.
|
||||
LoadInst *LI = dyn_cast<LoadInst>(Inst);
|
||||
Type *RetTy = VectorType::get(LI->getType(), VF);
|
||||
Value *Ptr = LI->getPointerOperand();
|
||||
unsigned Alignment = LI->getAlignment();
|
||||
GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
|
||||
|
||||
// We don't have a gep. Scalarize the load.
|
||||
if (!isConsecutiveGep(Gep)) {
|
||||
scalarizeInstruction(Inst);
|
||||
break;
|
||||
}
|
||||
|
||||
// Create the new GEP with the new induction variable.
|
||||
GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
|
||||
unsigned NumOperands = Gep->getNumOperands();
|
||||
Gep2->setOperand(NumOperands - 1, Induction);
|
||||
Ptr = Builder->Insert(Gep2);
|
||||
Ptr = Builder->CreateBitCast(Ptr, RetTy->getPointerTo());
|
||||
LI = Builder->CreateLoad(Ptr);
|
||||
LI->setAlignment(Alignment);
|
||||
// Use this vector value for all users of the load.
|
||||
WidenMap[Inst] = LI;
|
||||
break;
|
||||
}
|
||||
case Instruction::ZExt:
|
||||
case Instruction::SExt:
|
||||
case Instruction::FPToUI:
|
||||
case Instruction::FPToSI:
|
||||
case Instruction::FPExt:
|
||||
case Instruction::PtrToInt:
|
||||
case Instruction::IntToPtr:
|
||||
case Instruction::SIToFP:
|
||||
case Instruction::UIToFP:
|
||||
case Instruction::Trunc:
|
||||
case Instruction::FPTrunc:
|
||||
case Instruction::BitCast: {
|
||||
/// Vectorize bitcasts.
|
||||
CastInst *CI = dyn_cast<CastInst>(Inst);
|
||||
Value *A = getVectorValue(Inst->getOperand(0));
|
||||
Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
|
||||
WidenMap[Inst] = Builder->CreateCast(CI->getOpcode(), A, DestTy);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
/// All other instructions are unsupported. Scalarize them.
|
||||
scalarizeInstruction(Inst);
|
||||
break;
|
||||
}// end of switch.
|
||||
}// end of for_each instr.
|
||||
}
|
||||
|
||||
void SingleBlockLoopVectorizer::deleteOldLoop() {
|
||||
// The original basic block.
|
||||
BasicBlock *BB = Orig->getHeader();
|
||||
SE->forgetLoop(Orig);
|
||||
|
||||
LI->removeBlock(BB);
|
||||
Orig->addBasicBlockToLoop(Induction->getParent(), LI->getBase());
|
||||
|
||||
// Remove the old loop block.
|
||||
DeleteDeadBlock(BB);
|
||||
}
|
||||
|
||||
unsigned LoopVectorizationLegality::getLoopMaxVF() {
|
||||
if (!TheLoop->getLoopPreheader()) {
|
||||
assert(false && "No preheader!!");
|
||||
DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// We can only vectorize single basic block loops.
|
||||
unsigned NumBlocks = TheLoop->getNumBlocks();
|
||||
if (NumBlocks != 1) {
|
||||
DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// We need to have a loop header.
|
||||
BasicBlock *BB = TheLoop->getHeader();
|
||||
DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
|
||||
|
||||
// Find the max vectorization factor.
|
||||
unsigned MaxVF = SE->getSmallConstantTripMultiple(TheLoop, BB);
|
||||
|
||||
|
||||
// Perform an early check. Do not scan the block if we did not find a loop.
|
||||
if (MaxVF < 2) {
|
||||
DEBUG(dbgs() << "LV: Can't find a vectorizable loop structure\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Go over each instruction and look at memory deps.
|
||||
if (!canVectorizeBlock(*BB)) {
|
||||
DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "LV: We can vectorize this loop! VF="<<MaxVF<<"\n");
|
||||
|
||||
// Okay! We can vectorize. Return the max trip multiple.
|
||||
return MaxVF;
|
||||
}
|
||||
|
||||
bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
|
||||
// Holds the read and write pointers that we find.
|
||||
typedef SmallVector<Value*, 10> ValueVector;
|
||||
ValueVector Reads;
|
||||
ValueVector Writes;
|
||||
|
||||
unsigned NumPhis = 0;
|
||||
for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
|
||||
Instruction *I = it;
|
||||
|
||||
PHINode *Phi = dyn_cast<PHINode>(I);
|
||||
if (Phi) {
|
||||
NumPhis++;
|
||||
// We only look at integer phi nodes.
|
||||
if (!Phi->getType()->isIntegerTy()) {
|
||||
DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// If we found an induction variable.
|
||||
if (NumPhis > 1) {
|
||||
DEBUG(dbgs() << "LV: Found more than one PHI.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// This should not happen because the loop should be normalized.
|
||||
if (Phi->getNumIncomingValues() != 2) {
|
||||
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that the PHI is consecutive and starts at zero.
|
||||
const SCEV *PhiScev = SE->getSCEV(Phi);
|
||||
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
|
||||
if (!AR) {
|
||||
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
const SCEV *Step = AR->getStepRecurrence(*SE);
|
||||
const SCEV *Start = AR->getStart();
|
||||
|
||||
if (!Step->isOne() || !Start->isZero()) {
|
||||
DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// IF this is a load, record its pointer. If it is not a load, abort.
|
||||
// Notice that we don't handle function calls that read or write.
|
||||
if (I->mayReadFromMemory()) {
|
||||
LoadInst *Ld = dyn_cast<LoadInst>(I);
|
||||
if (!Ld) return false;
|
||||
if (!Ld->isSimple()) {
|
||||
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
|
||||
return false;
|
||||
}
|
||||
GetUnderlyingObjects(Ld->getPointerOperand(), Reads, DL);
|
||||
}
|
||||
|
||||
// Record store pointers. Abort on all other instructions that write to
|
||||
// memory.
|
||||
if (I->mayWriteToMemory()) {
|
||||
StoreInst *St = dyn_cast<StoreInst>(I);
|
||||
if (!St) return false;
|
||||
if (!St->isSimple()) {
|
||||
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
|
||||
return false;
|
||||
}
|
||||
GetUnderlyingObjects(St->getPointerOperand(), Writes, DL);
|
||||
}
|
||||
|
||||
// We still don't handle functions.
|
||||
CallInst *CI = dyn_cast<CallInst>(I);
|
||||
if (CI) {
|
||||
DEBUG(dbgs() << "LV: Found a call site:"<<
|
||||
CI->getCalledFunction()->getName() << "\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// We do not re-vectorize vectors.
|
||||
if (!VectorType::isValidElementType(I->getType()) &&
|
||||
!I->getType()->isVoidTy()) {
|
||||
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
|
||||
return false;
|
||||
}
|
||||
//Check that all of the users of the loop are inside the BB.
|
||||
for (Value::use_iterator it = I->use_begin(), e = I->use_end();
|
||||
it != e; ++it) {
|
||||
Instruction *U = cast<Instruction>(*it);
|
||||
BasicBlock *Parent = U->getParent();
|
||||
if (Parent != &BB) {
|
||||
DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} // next instr.
|
||||
|
||||
// Check that the underlying objects of the reads and writes are either
|
||||
// disjoint memory locations, or that they are no-alias arguments.
|
||||
ValueVector::iterator r, re, w, we;
|
||||
for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
|
||||
if (!isKnownDisjoint(*r)) {
|
||||
DEBUG(dbgs() << "LV: Found a bad read Ptr: "<< **r << "\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
|
||||
if (!isKnownDisjoint(*w)) {
|
||||
DEBUG(dbgs() << "LV: Found a bad write Ptr: "<< **w << "\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check that there are no multiple write locations to the same pointer.
|
||||
SmallPtrSet<Value*, 8> BasePointers;
|
||||
for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
|
||||
if (BasePointers.count(*w)) {
|
||||
DEBUG(dbgs() << "LV: Multiple writes to the same index :"<< **w << "\n");
|
||||
return false;
|
||||
}
|
||||
BasePointers.insert(*w);
|
||||
}
|
||||
|
||||
// Sort the writes vector so that we can use a binary search.
|
||||
std::sort(Writes.begin(), Writes.end());
|
||||
// Check that the reads and the writes are disjoint.
|
||||
for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
|
||||
if (std::binary_search(Writes.begin(), Writes.end(), *r)) {
|
||||
DEBUG(dbgs() << "Vectorizer: Found a read/write ptr:"<< **r << "\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// All is okay.
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Checks if the value is a Global variable or if it is an Arguments
|
||||
/// marked with the NoAlias attribute.
|
||||
bool LoopVectorizationLegality::isKnownDisjoint(Value* Val) {
|
||||
assert(Val && "Invalid value");
|
||||
if (dyn_cast<GlobalValue>(Val))
|
||||
return true;
|
||||
if (dyn_cast<AllocaInst>(Val))
|
||||
return true;
|
||||
Argument *A = dyn_cast<Argument>(Val);
|
||||
if (!A)
|
||||
return false;
|
||||
return A->hasNoAliasAttr();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
char LoopVectorize::ID = 0;
|
||||
static const char lv_name[] = "Loop Vectorization";
|
||||
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
|
||||
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
||||
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
|
||||
|
||||
namespace llvm {
|
||||
Pass *createLoopVectorizePass() {
|
||||
return new LoopVectorize();
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -7,7 +7,7 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements common infrastructure for libLLVMVectorizeOpts.a, which
|
||||
// This file implements common infrastructure for libLLVMVectorizeOpts.a, which
|
||||
// implements several vectorization transformations over the LLVM intermediate
|
||||
// representation, including the C bindings for that library.
|
||||
//
|
||||
@ -23,10 +23,11 @@
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
/// initializeVectorizationPasses - Initialize all passes linked into the
|
||||
/// initializeVectorizationPasses - Initialize all passes linked into the
|
||||
/// Vectorization library.
|
||||
void llvm::initializeVectorization(PassRegistry &Registry) {
|
||||
initializeBBVectorizePass(Registry);
|
||||
initializeLoopVectorizePass(Registry);
|
||||
}
|
||||
|
||||
void LLVMInitializeVectorization(LLVMPassRegistryRef R) {
|
||||
@ -37,3 +38,6 @@ void LLVMAddBBVectorizePass(LLVMPassManagerRef PM) {
|
||||
unwrap(PM)->add(createBBVectorizePass());
|
||||
}
|
||||
|
||||
void LLVMAddLoopVectorizePass(LLVMPassManagerRef PM) {
|
||||
unwrap(PM)->add(createLoopVectorizePass());
|
||||
}
|
||||
|
651
test/Transforms/LoopVectorize/gcc-examples.ll
Normal file
651
test/Transforms/LoopVectorize/gcc-examples.ll
Normal file
@ -0,0 +1,651 @@
|
||||
; RUN: opt < %s -loop-vectorize -dce -instcombine -licm -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-apple-macosx10.8.0"
|
||||
|
||||
@b = common global [2048 x i32] zeroinitializer, align 16
|
||||
@c = common global [2048 x i32] zeroinitializer, align 16
|
||||
@a = common global [2048 x i32] zeroinitializer, align 16
|
||||
@G = common global [32 x [1024 x i32]] zeroinitializer, align 16
|
||||
@ub = common global [1024 x i32] zeroinitializer, align 16
|
||||
@uc = common global [1024 x i32] zeroinitializer, align 16
|
||||
@d = common global [2048 x i32] zeroinitializer, align 16
|
||||
@fa = common global [1024 x float] zeroinitializer, align 16
|
||||
@fb = common global [1024 x float] zeroinitializer, align 16
|
||||
@ic = common global [1024 x i32] zeroinitializer, align 16
|
||||
@da = common global [1024 x float] zeroinitializer, align 16
|
||||
@db = common global [1024 x float] zeroinitializer, align 16
|
||||
@dc = common global [1024 x float] zeroinitializer, align 16
|
||||
@dd = common global [1024 x float] zeroinitializer, align 16
|
||||
@dj = common global [1024 x i32] zeroinitializer, align 16
|
||||
|
||||
;CHECK: @example1
|
||||
;CHECK: load <4 x i32>
|
||||
;CHECK: add <4 x i32>
|
||||
;CHECK: store <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example1() nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv
|
||||
%3 = load i32* %2, align 4
|
||||
%4 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %indvars.iv
|
||||
%5 = load i32* %4, align 4
|
||||
%6 = add nsw i32 %5, %3
|
||||
%7 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
|
||||
store i32 %6, i32* %7, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 256
|
||||
br i1 %exitcond, label %8, label %1
|
||||
|
||||
; <label>:8 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
; We can't vectorize this loop because it has non constant loop bounds.
|
||||
;CHECK: @example2
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example2(i32 %n, i32 %x) nounwind uwtable ssp {
|
||||
%1 = icmp sgt i32 %n, 0
|
||||
br i1 %1, label %.lr.ph5, label %.preheader
|
||||
|
||||
..preheader_crit_edge: ; preds = %.lr.ph5
|
||||
%phitmp = sext i32 %n to i64
|
||||
br label %.preheader
|
||||
|
||||
.preheader: ; preds = %..preheader_crit_edge, %0
|
||||
%i.0.lcssa = phi i64 [ %phitmp, %..preheader_crit_edge ], [ 0, %0 ]
|
||||
%2 = icmp eq i32 %n, 0
|
||||
br i1 %2, label %._crit_edge, label %.lr.ph
|
||||
|
||||
.lr.ph5: ; preds = %0, %.lr.ph5
|
||||
%indvars.iv6 = phi i64 [ %indvars.iv.next7, %.lr.ph5 ], [ 0, %0 ]
|
||||
%3 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv6
|
||||
store i32 %x, i32* %3, align 4
|
||||
%indvars.iv.next7 = add i64 %indvars.iv6, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next7 to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, %n
|
||||
br i1 %exitcond, label %..preheader_crit_edge, label %.lr.ph5
|
||||
|
||||
.lr.ph: ; preds = %.preheader, %.lr.ph
|
||||
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ %i.0.lcssa, %.preheader ]
|
||||
%.02 = phi i32 [ %4, %.lr.ph ], [ %n, %.preheader ]
|
||||
%4 = add nsw i32 %.02, -1
|
||||
%5 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv
|
||||
%6 = load i32* %5, align 4
|
||||
%7 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %indvars.iv
|
||||
%8 = load i32* %7, align 4
|
||||
%9 = and i32 %8, %6
|
||||
%10 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
|
||||
store i32 %9, i32* %10, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%11 = icmp eq i32 %4, 0
|
||||
br i1 %11, label %._crit_edge, label %.lr.ph
|
||||
|
||||
._crit_edge: ; preds = %.lr.ph, %.preheader
|
||||
ret void
|
||||
}
|
||||
|
||||
; We can't vectorize this loop because it has non constant loop bounds.
|
||||
;CHECK: @example3
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example3(i32 %n, i32* noalias nocapture %p, i32* noalias nocapture %q) nounwind uwtable ssp {
|
||||
%1 = icmp eq i32 %n, 0
|
||||
br i1 %1, label %._crit_edge, label %.lr.ph
|
||||
|
||||
.lr.ph: ; preds = %0, %.lr.ph
|
||||
%.05 = phi i32 [ %2, %.lr.ph ], [ %n, %0 ]
|
||||
%.014 = phi i32* [ %5, %.lr.ph ], [ %p, %0 ]
|
||||
%.023 = phi i32* [ %3, %.lr.ph ], [ %q, %0 ]
|
||||
%2 = add nsw i32 %.05, -1
|
||||
%3 = getelementptr inbounds i32* %.023, i64 1
|
||||
%4 = load i32* %.023, align 16
|
||||
%5 = getelementptr inbounds i32* %.014, i64 1
|
||||
store i32 %4, i32* %.014, align 16
|
||||
%6 = icmp eq i32 %2, 0
|
||||
br i1 %6, label %._crit_edge, label %.lr.ph
|
||||
|
||||
._crit_edge: ; preds = %.lr.ph, %0
|
||||
ret void
|
||||
}
|
||||
|
||||
; We can't vectorize this loop because it has non constant loop bounds.
|
||||
;CHECK: @example4
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example4(i32 %n, i32* noalias nocapture %p, i32* noalias nocapture %q) nounwind uwtable ssp {
|
||||
%1 = add nsw i32 %n, -1
|
||||
%2 = icmp eq i32 %n, 0
|
||||
br i1 %2, label %.preheader4, label %.lr.ph10
|
||||
|
||||
.preheader4: ; preds = %0
|
||||
%3 = icmp sgt i32 %1, 0
|
||||
br i1 %3, label %.lr.ph6, label %._crit_edge
|
||||
|
||||
.lr.ph10: ; preds = %0, %.lr.ph10
|
||||
%4 = phi i32 [ %9, %.lr.ph10 ], [ %1, %0 ]
|
||||
%.018 = phi i32* [ %8, %.lr.ph10 ], [ %p, %0 ]
|
||||
%.027 = phi i32* [ %5, %.lr.ph10 ], [ %q, %0 ]
|
||||
%5 = getelementptr inbounds i32* %.027, i64 1
|
||||
%6 = load i32* %.027, align 16
|
||||
%7 = add nsw i32 %6, 5
|
||||
%8 = getelementptr inbounds i32* %.018, i64 1
|
||||
store i32 %7, i32* %.018, align 16
|
||||
%9 = add nsw i32 %4, -1
|
||||
%10 = icmp eq i32 %4, 0
|
||||
br i1 %10, label %._crit_edge, label %.lr.ph10
|
||||
|
||||
.preheader: ; preds = %.lr.ph6
|
||||
br i1 %3, label %.lr.ph, label %._crit_edge
|
||||
|
||||
.lr.ph6: ; preds = %.preheader4, %.lr.ph6
|
||||
%indvars.iv11 = phi i64 [ %indvars.iv.next12, %.lr.ph6 ], [ 0, %.preheader4 ]
|
||||
%indvars.iv.next12 = add i64 %indvars.iv11, 1
|
||||
%11 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv.next12
|
||||
%12 = load i32* %11, align 4
|
||||
%13 = add nsw i64 %indvars.iv11, 3
|
||||
%14 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %13
|
||||
%15 = load i32* %14, align 4
|
||||
%16 = add nsw i32 %15, %12
|
||||
%17 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv11
|
||||
store i32 %16, i32* %17, align 4
|
||||
%lftr.wideiv13 = trunc i64 %indvars.iv.next12 to i32
|
||||
%exitcond14 = icmp eq i32 %lftr.wideiv13, %1
|
||||
br i1 %exitcond14, label %.preheader, label %.lr.ph6
|
||||
|
||||
.lr.ph: ; preds = %.preheader, %.lr.ph
|
||||
%indvars.iv = phi i64 [ %indvars.iv.next, %.lr.ph ], [ 0, %.preheader ]
|
||||
%18 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
|
||||
%19 = load i32* %18, align 4
|
||||
%20 = icmp sgt i32 %19, 4
|
||||
%21 = select i1 %20, i32 4, i32 0
|
||||
%22 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv
|
||||
store i32 %21, i32* %22, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, %1
|
||||
br i1 %exitcond, label %._crit_edge, label %.lr.ph
|
||||
|
||||
._crit_edge: ; preds = %.lr.ph10, %.preheader4, %.lr.ph, %.preheader
|
||||
ret void
|
||||
}
|
||||
|
||||
;CHECK: @example8
|
||||
;CHECK: store <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example8(i32 %x) nounwind uwtable ssp {
|
||||
br label %.preheader
|
||||
|
||||
.preheader: ; preds = %3, %0
|
||||
%indvars.iv3 = phi i64 [ 0, %0 ], [ %indvars.iv.next4, %3 ]
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %.preheader
|
||||
%indvars.iv = phi i64 [ 0, %.preheader ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds [32 x [1024 x i32]]* @G, i64 0, i64 %indvars.iv3, i64 %indvars.iv
|
||||
store i32 %x, i32* %2, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %3, label %1
|
||||
|
||||
; <label>:3 ; preds = %1
|
||||
%indvars.iv.next4 = add i64 %indvars.iv3, 1
|
||||
%lftr.wideiv5 = trunc i64 %indvars.iv.next4 to i32
|
||||
%exitcond6 = icmp eq i32 %lftr.wideiv5, 32
|
||||
br i1 %exitcond6, label %4, label %.preheader
|
||||
|
||||
; <label>:4 ; preds = %3
|
||||
ret void
|
||||
}
|
||||
|
||||
; We can't vectorize because it has a reduction variable.
|
||||
;CHECK: @example9
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret i32
|
||||
define i32 @example9() nounwind uwtable readonly ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%diff.01 = phi i32 [ 0, %0 ], [ %7, %1 ]
|
||||
%2 = getelementptr inbounds [1024 x i32]* @ub, i64 0, i64 %indvars.iv
|
||||
%3 = load i32* %2, align 4
|
||||
%4 = getelementptr inbounds [1024 x i32]* @uc, i64 0, i64 %indvars.iv
|
||||
%5 = load i32* %4, align 4
|
||||
%6 = add i32 %3, %diff.01
|
||||
%7 = sub i32 %6, %5
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %8, label %1
|
||||
|
||||
; <label>:8 ; preds = %1
|
||||
ret i32 %7
|
||||
}
|
||||
|
||||
;CHECK: @example10a
|
||||
;CHECK: load <4 x i16>
|
||||
;CHECK: add <4 x i16>
|
||||
;CHECK: store <4 x i16>
|
||||
;CHECK: ret void
|
||||
define void @example10a(i16* noalias nocapture %sa, i16* noalias nocapture %sb, i16* noalias nocapture %sc, i32* noalias nocapture %ia, i32* noalias nocapture %ib, i32* noalias nocapture %ic) nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds i32* %ib, i64 %indvars.iv
|
||||
%3 = load i32* %2, align 4
|
||||
%4 = getelementptr inbounds i32* %ic, i64 %indvars.iv
|
||||
%5 = load i32* %4, align 4
|
||||
%6 = add nsw i32 %5, %3
|
||||
%7 = getelementptr inbounds i32* %ia, i64 %indvars.iv
|
||||
store i32 %6, i32* %7, align 4
|
||||
%8 = getelementptr inbounds i16* %sb, i64 %indvars.iv
|
||||
%9 = load i16* %8, align 2
|
||||
%10 = getelementptr inbounds i16* %sc, i64 %indvars.iv
|
||||
%11 = load i16* %10, align 2
|
||||
%12 = add i16 %11, %9
|
||||
%13 = getelementptr inbounds i16* %sa, i64 %indvars.iv
|
||||
store i16 %12, i16* %13, align 2
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %14, label %1
|
||||
|
||||
; <label>:14 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
;CHECK: @example10b
|
||||
;CHECK: load <4 x i16>
|
||||
;CHECK: sext <4 x i16>
|
||||
;CHECK: store <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example10b(i16* noalias nocapture %sa, i16* noalias nocapture %sb, i16* noalias nocapture %sc, i32* noalias nocapture %ia, i32* noalias nocapture %ib, i32* noalias nocapture %ic) nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds i16* %sb, i64 %indvars.iv
|
||||
%3 = load i16* %2, align 2
|
||||
%4 = sext i16 %3 to i32
|
||||
%5 = getelementptr inbounds i32* %ia, i64 %indvars.iv
|
||||
store i32 %4, i32* %5, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %6, label %1
|
||||
|
||||
; <label>:6 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
;CHECK: @example11
|
||||
;CHECK: load i32
|
||||
;CHECK: load i32
|
||||
;CHECK: load i32
|
||||
;CHECK: load i32
|
||||
;CHECK: insertelement
|
||||
;CHECK: insertelement
|
||||
;CHECK: insertelement
|
||||
;CHECK: insertelement
|
||||
;CHECK: ret void
|
||||
define void @example11() nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = shl nsw i64 %indvars.iv, 1
|
||||
%3 = or i64 %2, 1
|
||||
%4 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %3
|
||||
%5 = load i32* %4, align 4
|
||||
%6 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %3
|
||||
%7 = load i32* %6, align 4
|
||||
%8 = mul nsw i32 %7, %5
|
||||
%9 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %2
|
||||
%10 = load i32* %9, align 8
|
||||
%11 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %2
|
||||
%12 = load i32* %11, align 8
|
||||
%13 = mul nsw i32 %12, %10
|
||||
%14 = sub nsw i32 %8, %13
|
||||
%15 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
|
||||
store i32 %14, i32* %15, align 4
|
||||
%16 = mul nsw i32 %7, %10
|
||||
%17 = mul nsw i32 %12, %5
|
||||
%18 = add nsw i32 %17, %16
|
||||
%19 = getelementptr inbounds [2048 x i32]* @d, i64 0, i64 %indvars.iv
|
||||
store i32 %18, i32* %19, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 512
|
||||
br i1 %exitcond, label %20, label %1
|
||||
|
||||
; <label>:20 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
;CHECK: @example12
|
||||
;CHECK: trunc <4 x i64>
|
||||
;CHECK: store <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example12() nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
|
||||
%3 = trunc i64 %indvars.iv to i32
|
||||
store i32 %3, i32* %2, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %4, label %1
|
||||
|
||||
; <label>:4 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
; Can't vectorize because of reductions.
|
||||
;CHECK: @example13
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example13(i32** nocapture %A, i32** nocapture %B, i32* nocapture %out) nounwind uwtable ssp {
|
||||
br label %.preheader
|
||||
|
||||
.preheader: ; preds = %14, %0
|
||||
%indvars.iv4 = phi i64 [ 0, %0 ], [ %indvars.iv.next5, %14 ]
|
||||
%1 = getelementptr inbounds i32** %A, i64 %indvars.iv4
|
||||
%2 = load i32** %1, align 8
|
||||
%3 = getelementptr inbounds i32** %B, i64 %indvars.iv4
|
||||
%4 = load i32** %3, align 8
|
||||
br label %5
|
||||
|
||||
; <label>:5 ; preds = %.preheader, %5
|
||||
%indvars.iv = phi i64 [ 0, %.preheader ], [ %indvars.iv.next, %5 ]
|
||||
%diff.02 = phi i32 [ 0, %.preheader ], [ %11, %5 ]
|
||||
%6 = getelementptr inbounds i32* %2, i64 %indvars.iv
|
||||
%7 = load i32* %6, align 4
|
||||
%8 = getelementptr inbounds i32* %4, i64 %indvars.iv
|
||||
%9 = load i32* %8, align 4
|
||||
%10 = add i32 %7, %diff.02
|
||||
%11 = sub i32 %10, %9
|
||||
%indvars.iv.next = add i64 %indvars.iv, 8
|
||||
%12 = trunc i64 %indvars.iv.next to i32
|
||||
%13 = icmp slt i32 %12, 1024
|
||||
br i1 %13, label %5, label %14
|
||||
|
||||
; <label>:14 ; preds = %5
|
||||
%15 = getelementptr inbounds i32* %out, i64 %indvars.iv4
|
||||
store i32 %11, i32* %15, align 4
|
||||
%indvars.iv.next5 = add i64 %indvars.iv4, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next5 to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 32
|
||||
br i1 %exitcond, label %16, label %.preheader
|
||||
|
||||
; <label>:16 ; preds = %14
|
||||
ret void
|
||||
}
|
||||
|
||||
; Can't vectorize because of reductions.
|
||||
;CHECK: @example14
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example14(i32** nocapture %in, i32** nocapture %coeff, i32* nocapture %out) nounwind uwtable ssp {
|
||||
.preheader3:
|
||||
br label %.preheader
|
||||
|
||||
.preheader: ; preds = %11, %.preheader3
|
||||
%indvars.iv7 = phi i64 [ 0, %.preheader3 ], [ %indvars.iv.next8, %11 ]
|
||||
%sum.05 = phi i32 [ 0, %.preheader3 ], [ %10, %11 ]
|
||||
br label %0
|
||||
|
||||
; <label>:0 ; preds = %0, %.preheader
|
||||
%indvars.iv = phi i64 [ 0, %.preheader ], [ %indvars.iv.next, %0 ]
|
||||
%sum.12 = phi i32 [ %sum.05, %.preheader ], [ %10, %0 ]
|
||||
%1 = getelementptr inbounds i32** %in, i64 %indvars.iv
|
||||
%2 = load i32** %1, align 8
|
||||
%3 = getelementptr inbounds i32* %2, i64 %indvars.iv7
|
||||
%4 = load i32* %3, align 4
|
||||
%5 = getelementptr inbounds i32** %coeff, i64 %indvars.iv
|
||||
%6 = load i32** %5, align 8
|
||||
%7 = getelementptr inbounds i32* %6, i64 %indvars.iv7
|
||||
%8 = load i32* %7, align 4
|
||||
%9 = mul nsw i32 %8, %4
|
||||
%10 = add nsw i32 %9, %sum.12
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %11, label %0
|
||||
|
||||
; <label>:11 ; preds = %0
|
||||
%indvars.iv.next8 = add i64 %indvars.iv7, 1
|
||||
%lftr.wideiv9 = trunc i64 %indvars.iv.next8 to i32
|
||||
%exitcond10 = icmp eq i32 %lftr.wideiv9, 32
|
||||
br i1 %exitcond10, label %.preheader3.1, label %.preheader
|
||||
|
||||
.preheader3.1: ; preds = %11
|
||||
store i32 %10, i32* %out, align 4
|
||||
br label %.preheader.1
|
||||
|
||||
.preheader.1: ; preds = %24, %.preheader3.1
|
||||
%indvars.iv7.1 = phi i64 [ 0, %.preheader3.1 ], [ %indvars.iv.next8.1, %24 ]
|
||||
%sum.05.1 = phi i32 [ 0, %.preheader3.1 ], [ %23, %24 ]
|
||||
br label %12
|
||||
|
||||
; <label>:12 ; preds = %12, %.preheader.1
|
||||
%indvars.iv.1 = phi i64 [ 0, %.preheader.1 ], [ %13, %12 ]
|
||||
%sum.12.1 = phi i32 [ %sum.05.1, %.preheader.1 ], [ %23, %12 ]
|
||||
%13 = add nsw i64 %indvars.iv.1, 1
|
||||
%14 = getelementptr inbounds i32** %in, i64 %13
|
||||
%15 = load i32** %14, align 8
|
||||
%16 = getelementptr inbounds i32* %15, i64 %indvars.iv7.1
|
||||
%17 = load i32* %16, align 4
|
||||
%18 = getelementptr inbounds i32** %coeff, i64 %indvars.iv.1
|
||||
%19 = load i32** %18, align 8
|
||||
%20 = getelementptr inbounds i32* %19, i64 %indvars.iv7.1
|
||||
%21 = load i32* %20, align 4
|
||||
%22 = mul nsw i32 %21, %17
|
||||
%23 = add nsw i32 %22, %sum.12.1
|
||||
%lftr.wideiv.1 = trunc i64 %13 to i32
|
||||
%exitcond.1 = icmp eq i32 %lftr.wideiv.1, 1024
|
||||
br i1 %exitcond.1, label %24, label %12
|
||||
|
||||
; <label>:24 ; preds = %12
|
||||
%indvars.iv.next8.1 = add i64 %indvars.iv7.1, 1
|
||||
%lftr.wideiv9.1 = trunc i64 %indvars.iv.next8.1 to i32
|
||||
%exitcond10.1 = icmp eq i32 %lftr.wideiv9.1, 32
|
||||
br i1 %exitcond10.1, label %.preheader3.2, label %.preheader.1
|
||||
|
||||
.preheader3.2: ; preds = %24
|
||||
%25 = getelementptr inbounds i32* %out, i64 1
|
||||
store i32 %23, i32* %25, align 4
|
||||
br label %.preheader.2
|
||||
|
||||
.preheader.2: ; preds = %38, %.preheader3.2
|
||||
%indvars.iv7.2 = phi i64 [ 0, %.preheader3.2 ], [ %indvars.iv.next8.2, %38 ]
|
||||
%sum.05.2 = phi i32 [ 0, %.preheader3.2 ], [ %37, %38 ]
|
||||
br label %26
|
||||
|
||||
; <label>:26 ; preds = %26, %.preheader.2
|
||||
%indvars.iv.2 = phi i64 [ 0, %.preheader.2 ], [ %indvars.iv.next.2, %26 ]
|
||||
%sum.12.2 = phi i32 [ %sum.05.2, %.preheader.2 ], [ %37, %26 ]
|
||||
%27 = add nsw i64 %indvars.iv.2, 2
|
||||
%28 = getelementptr inbounds i32** %in, i64 %27
|
||||
%29 = load i32** %28, align 8
|
||||
%30 = getelementptr inbounds i32* %29, i64 %indvars.iv7.2
|
||||
%31 = load i32* %30, align 4
|
||||
%32 = getelementptr inbounds i32** %coeff, i64 %indvars.iv.2
|
||||
%33 = load i32** %32, align 8
|
||||
%34 = getelementptr inbounds i32* %33, i64 %indvars.iv7.2
|
||||
%35 = load i32* %34, align 4
|
||||
%36 = mul nsw i32 %35, %31
|
||||
%37 = add nsw i32 %36, %sum.12.2
|
||||
%indvars.iv.next.2 = add i64 %indvars.iv.2, 1
|
||||
%lftr.wideiv.2 = trunc i64 %indvars.iv.next.2 to i32
|
||||
%exitcond.2 = icmp eq i32 %lftr.wideiv.2, 1024
|
||||
br i1 %exitcond.2, label %38, label %26
|
||||
|
||||
; <label>:38 ; preds = %26
|
||||
%indvars.iv.next8.2 = add i64 %indvars.iv7.2, 1
|
||||
%lftr.wideiv9.2 = trunc i64 %indvars.iv.next8.2 to i32
|
||||
%exitcond10.2 = icmp eq i32 %lftr.wideiv9.2, 32
|
||||
br i1 %exitcond10.2, label %.preheader3.3, label %.preheader.2
|
||||
|
||||
.preheader3.3: ; preds = %38
|
||||
%39 = getelementptr inbounds i32* %out, i64 2
|
||||
store i32 %37, i32* %39, align 4
|
||||
br label %.preheader.3
|
||||
|
||||
.preheader.3: ; preds = %52, %.preheader3.3
|
||||
%indvars.iv7.3 = phi i64 [ 0, %.preheader3.3 ], [ %indvars.iv.next8.3, %52 ]
|
||||
%sum.05.3 = phi i32 [ 0, %.preheader3.3 ], [ %51, %52 ]
|
||||
br label %40
|
||||
|
||||
; <label>:40 ; preds = %40, %.preheader.3
|
||||
%indvars.iv.3 = phi i64 [ 0, %.preheader.3 ], [ %indvars.iv.next.3, %40 ]
|
||||
%sum.12.3 = phi i32 [ %sum.05.3, %.preheader.3 ], [ %51, %40 ]
|
||||
%41 = add nsw i64 %indvars.iv.3, 3
|
||||
%42 = getelementptr inbounds i32** %in, i64 %41
|
||||
%43 = load i32** %42, align 8
|
||||
%44 = getelementptr inbounds i32* %43, i64 %indvars.iv7.3
|
||||
%45 = load i32* %44, align 4
|
||||
%46 = getelementptr inbounds i32** %coeff, i64 %indvars.iv.3
|
||||
%47 = load i32** %46, align 8
|
||||
%48 = getelementptr inbounds i32* %47, i64 %indvars.iv7.3
|
||||
%49 = load i32* %48, align 4
|
||||
%50 = mul nsw i32 %49, %45
|
||||
%51 = add nsw i32 %50, %sum.12.3
|
||||
%indvars.iv.next.3 = add i64 %indvars.iv.3, 1
|
||||
%lftr.wideiv.3 = trunc i64 %indvars.iv.next.3 to i32
|
||||
%exitcond.3 = icmp eq i32 %lftr.wideiv.3, 1024
|
||||
br i1 %exitcond.3, label %52, label %40
|
||||
|
||||
; <label>:52 ; preds = %40
|
||||
%indvars.iv.next8.3 = add i64 %indvars.iv7.3, 1
|
||||
%lftr.wideiv9.3 = trunc i64 %indvars.iv.next8.3 to i32
|
||||
%exitcond10.3 = icmp eq i32 %lftr.wideiv9.3, 32
|
||||
br i1 %exitcond10.3, label %53, label %.preheader.3
|
||||
|
||||
; <label>:53 ; preds = %52
|
||||
%54 = getelementptr inbounds i32* %out, i64 3
|
||||
store i32 %51, i32* %54, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
; Can't vectorize because the src and dst pointers are not disjoint.
|
||||
;CHECK: @example21
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret i32
|
||||
define i32 @example21(i32* nocapture %b, i32 %n) nounwind uwtable readonly ssp {
|
||||
%1 = icmp sgt i32 %n, 0
|
||||
br i1 %1, label %.lr.ph, label %._crit_edge
|
||||
|
||||
.lr.ph: ; preds = %0
|
||||
%2 = sext i32 %n to i64
|
||||
br label %3
|
||||
|
||||
; <label>:3 ; preds = %.lr.ph, %3
|
||||
%indvars.iv = phi i64 [ %2, %.lr.ph ], [ %indvars.iv.next, %3 ]
|
||||
%a.02 = phi i32 [ 0, %.lr.ph ], [ %6, %3 ]
|
||||
%indvars.iv.next = add i64 %indvars.iv, -1
|
||||
%4 = getelementptr inbounds i32* %b, i64 %indvars.iv.next
|
||||
%5 = load i32* %4, align 4
|
||||
%6 = add nsw i32 %5, %a.02
|
||||
%7 = trunc i64 %indvars.iv.next to i32
|
||||
%8 = icmp sgt i32 %7, 0
|
||||
br i1 %8, label %3, label %._crit_edge
|
||||
|
||||
._crit_edge: ; preds = %3, %0
|
||||
%a.0.lcssa = phi i32 [ 0, %0 ], [ %6, %3 ]
|
||||
ret i32 %a.0.lcssa
|
||||
}
|
||||
|
||||
; Can't vectorize because there are multiple PHIs.
|
||||
;CHECK: @example23
|
||||
;CHECK-NOT: <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example23(i16* nocapture %src, i32* nocapture %dst) nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%.04 = phi i16* [ %src, %0 ], [ %2, %1 ]
|
||||
%.013 = phi i32* [ %dst, %0 ], [ %6, %1 ]
|
||||
%i.02 = phi i32 [ 0, %0 ], [ %7, %1 ]
|
||||
%2 = getelementptr inbounds i16* %.04, i64 1
|
||||
%3 = load i16* %.04, align 2
|
||||
%4 = zext i16 %3 to i32
|
||||
%5 = shl nuw nsw i32 %4, 7
|
||||
%6 = getelementptr inbounds i32* %.013, i64 1
|
||||
store i32 %5, i32* %.013, align 4
|
||||
%7 = add nsw i32 %i.02, 1
|
||||
%exitcond = icmp eq i32 %7, 256
|
||||
br i1 %exitcond, label %8, label %1
|
||||
|
||||
; <label>:8 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
;CHECK: @example24
|
||||
;CHECK: shufflevector <4 x i16>
|
||||
;CHECK: ret void
|
||||
define void @example24(i16 signext %x, i16 signext %y) nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds [1024 x float]* @fa, i64 0, i64 %indvars.iv
|
||||
%3 = load float* %2, align 4
|
||||
%4 = getelementptr inbounds [1024 x float]* @fb, i64 0, i64 %indvars.iv
|
||||
%5 = load float* %4, align 4
|
||||
%6 = fcmp olt float %3, %5
|
||||
%x.y = select i1 %6, i16 %x, i16 %y
|
||||
%7 = sext i16 %x.y to i32
|
||||
%8 = getelementptr inbounds [1024 x i32]* @ic, i64 0, i64 %indvars.iv
|
||||
store i32 %7, i32* %8, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %9, label %1
|
||||
|
||||
; <label>:9 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
||||
;CHECK: @example25
|
||||
;CHECK: and <4 x i1>
|
||||
;CHECK: zext <4 x i1>
|
||||
;CHECK: ret void
|
||||
define void @example25() nounwind uwtable ssp {
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds [1024 x float]* @da, i64 0, i64 %indvars.iv
|
||||
%3 = load float* %2, align 4
|
||||
%4 = getelementptr inbounds [1024 x float]* @db, i64 0, i64 %indvars.iv
|
||||
%5 = load float* %4, align 4
|
||||
%6 = fcmp olt float %3, %5
|
||||
%7 = getelementptr inbounds [1024 x float]* @dc, i64 0, i64 %indvars.iv
|
||||
%8 = load float* %7, align 4
|
||||
%9 = getelementptr inbounds [1024 x float]* @dd, i64 0, i64 %indvars.iv
|
||||
%10 = load float* %9, align 4
|
||||
%11 = fcmp olt float %8, %10
|
||||
%12 = and i1 %6, %11
|
||||
%13 = zext i1 %12 to i32
|
||||
%14 = getelementptr inbounds [1024 x i32]* @dj, i64 0, i64 %indvars.iv
|
||||
store i32 %13, i32* %14, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, 1024
|
||||
br i1 %exitcond, label %15, label %1
|
||||
|
||||
; <label>:15 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
1
test/Transforms/LoopVectorize/lit.local.cfg
Normal file
1
test/Transforms/LoopVectorize/lit.local.cfg
Normal file
@ -0,0 +1 @@
|
||||
config.suffixes = ['.ll', '.c', '.cpp']
|
38
test/Transforms/LoopVectorize/non-const-n.ll
Normal file
38
test/Transforms/LoopVectorize/non-const-n.ll
Normal file
@ -0,0 +1,38 @@
|
||||
; RUN: opt < %s -loop-vectorize -dce -instcombine -licm -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-apple-macosx10.8.0"
|
||||
|
||||
@b = common global [2048 x i32] zeroinitializer, align 16
|
||||
@c = common global [2048 x i32] zeroinitializer, align 16
|
||||
@a = common global [2048 x i32] zeroinitializer, align 16
|
||||
|
||||
;CHECK: @example1
|
||||
;CHECK: shl i32
|
||||
;CHECK: sext i32
|
||||
;CHECK: load <4 x i32>
|
||||
;CHECK: add <4 x i32>
|
||||
;CHECK: store <4 x i32>
|
||||
;CHECK: ret void
|
||||
define void @example1(i32 %n) nounwind uwtable ssp {
|
||||
%n4 = shl i32 %n, 2
|
||||
br label %1
|
||||
|
||||
; <label>:1 ; preds = %1, %0
|
||||
%indvars.iv = phi i64 [ 0, %0 ], [ %indvars.iv.next, %1 ]
|
||||
%2 = getelementptr inbounds [2048 x i32]* @b, i64 0, i64 %indvars.iv
|
||||
%3 = load i32* %2, align 4
|
||||
%4 = getelementptr inbounds [2048 x i32]* @c, i64 0, i64 %indvars.iv
|
||||
%5 = load i32* %4, align 4
|
||||
%6 = add nsw i32 %5, %3
|
||||
%7 = getelementptr inbounds [2048 x i32]* @a, i64 0, i64 %indvars.iv
|
||||
store i32 %6, i32* %7, align 4
|
||||
%indvars.iv.next = add i64 %indvars.iv, 1
|
||||
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
|
||||
%exitcond = icmp eq i32 %lftr.wideiv, %n4
|
||||
br i1 %exitcond, label %8, label %1
|
||||
|
||||
; <label>:8 ; preds = %1
|
||||
ret void
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user