[ADT] Rewrite IntrusiveRefCntPtr's comments. NFC

Edit for voice, and also add examples.  In particular, add an
explanation for why you might want to specialize IntrusiveRefCntPtrInfo,
which is not obvious.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290720 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Justin Lebar 2016-12-29 19:59:38 +00:00
parent 3ac4ec55df
commit d1a132183f

View File

@ -7,14 +7,49 @@
//
//===----------------------------------------------------------------------===//
//
// This file defines IntrusiveRefCntPtr, a template class that
// implements a "smart" pointer for objects that maintain their own
// internal reference count, and RefCountedBase, a generic base class
// for objects that wish to have their lifetimes managed using reference
// counting.
// This file defines the RefCountedBase, ThreadSafeRefCountedBase, and
// IntrusiveRefCntPtr classes.
//
// IntrusiveRefCntPtr is similar to Boost's intrusive_ptr with added
// LLVM-style casting.
// IntrusiveRefCntPtr is a smart pointer to an object which maintains a
// reference count. (ThreadSafe)RefCountedBase is a mixin class that adds a
// refcount member variable and methods for updating the refcount. An object
// that inherits from (ThreadSafe)RefCountedBase deletes itself when its
// refcount hits zero.
//
// For example:
//
// class MyClass : public RefCountedBase<MyClass> {};
//
// void foo() {
// // Objects that inherit from RefCountedBase should always be instantiated
// // on the heap, never on the stack.
// IntrusiveRefCntPtr<MyClass> Ptr1(new MyClass());
//
// // Copying an IntrusiveRefCntPtr increases the pointee's refcount by 1.
// IntrusiveRefCntPtr<MyClass> Ptr2(Ptr1);
//
// // Constructing an IntrusiveRefCntPtr has no effect on the object's
// // refcount. After a move, the moved-from pointer is null.
// IntrusiveRefCntPtr<MyClass> Ptr3(std::move(Ptr1));
// assert(Ptr1 == nullptr);
//
// // Clearing an IntrusiveRefCntPtr decreases the pointee's refcount by 1.
// Ptr2.reset();
//
// // The object deletes itself when we return from the function, because
// // Ptr3's destructor decrements its refcount to 0.
// }
//
// You can use IntrusiveRefCntPtr with isa<T>(), dyn_cast<T>(), etc.:
//
// IntrusiveRefCntPtr<MyClass> Ptr(new MyClass());
// OtherClass *Other = dyn_cast<OtherClass>(Ptr); // Ptr.get() not required
//
// IntrusiveRefCntPtr works with any class that
//
// - inherits from (ThreadSafe)RefCountedBase,
// - has Retain() and Release() methods, or
// - specializes IntrusiveRefCntPtrInfo.
//
//===----------------------------------------------------------------------===//
@ -27,16 +62,15 @@
namespace llvm {
//===----------------------------------------------------------------------===//
/// RefCountedBase - A generic base class for objects that wish to
/// have their lifetimes managed using reference counts. Classes
/// subclass RefCountedBase to obtain such functionality, and are
/// typically handled with IntrusiveRefCntPtr "smart pointers" (see below)
/// which automatically handle the management of reference counts.
/// Objects that subclass RefCountedBase should not be allocated on
/// the stack, as invoking "delete" (which is called when the
/// reference count hits 0) on such objects is an error.
//===----------------------------------------------------------------------===//
/// A CRTP mixin class that adds reference counting to a type.
///
/// The lifetime of an object which inherits from RefCountedBase is managed by
/// calls to Release() and Retain(), which increment and decrement the object's
/// refcount, respectively. When a Release() call decrements the refcount to 0,
/// the object deletes itself.
///
/// Objects that inherit from RefCountedBase should always be allocated with
/// operator new.
template <class Derived> class RefCountedBase {
mutable unsigned RefCount = 0;
@ -52,18 +86,7 @@ public:
}
};
template <typename T> struct IntrusiveRefCntPtrInfo {
static void retain(T *obj) { obj->Retain(); }
static void release(T *obj) { obj->Release(); }
};
/// \brief A thread-safe version of \c llvm::RefCountedBase.
///
/// A generic base class for objects that wish to have their lifetimes managed
/// using reference counts. Classes subclass \c ThreadSafeRefCountedBase to
/// obtain such functionality, and are typically handled with
/// \c IntrusiveRefCntPtr "smart pointers" which automatically handle the
/// management of reference counts.
/// A thread-safe version of \c RefCountedBase.
template <class Derived> class ThreadSafeRefCountedBase {
mutable std::atomic<int> RefCount;
@ -81,22 +104,37 @@ public:
}
};
//===----------------------------------------------------------------------===//
/// IntrusiveRefCntPtr - A template class that implements a "smart pointer"
/// that assumes the wrapped object has a reference count associated
/// with it that can be managed via calls to
/// IntrusivePtrAddRef/IntrusivePtrRelease. The smart pointers
/// manage reference counts via the RAII idiom: upon creation of
/// smart pointer the reference count of the wrapped object is
/// incremented and upon destruction of the smart pointer the
/// reference count is decremented. This class also safely handles
/// wrapping NULL pointers.
/// Class you can specialize to provide custom retain/release functionality for
/// a type.
///
/// Reference counting is implemented via calls to
/// Obj->Retain()/Obj->Release(). Release() is required to destroy the
/// object when the reference count reaches zero. Inheriting from
/// RefCountedBase takes care of this automatically.
//===----------------------------------------------------------------------===//
/// Usually specializing this class is not necessary, as IntrusiveRefCntPtr
/// works with any type which defines Retain() and Release() functions -- you
/// can define those functions yourself if RefCountedBase doesn't work for you.
///
/// One case when you might want to specialize this type is if you have
/// - Foo.h defines type Foo and includes Bar.h, and
/// - Bar.h uses IntrusiveRefCntPtr<Foo> in inline functions.
///
/// Because Foo.h includes Bar.h, Bar.h can't include Foo.h in order to pull in
/// the declaration of Foo. Without the declaration of Foo, normally Bar.h
/// wouldn't be able to use IntrusiveRefCntPtr<Foo>, which wants to call
/// T::Retain and T::Release.
///
/// To resolve this, Bar.h could include a third header, FooFwd.h, which
/// forward-declares Foo and specializes IntrusiveRefCntPtrInfo<Foo>. Then
/// Bar.h could use IntrusiveRefCntPtr<Foo>, although it still couldn't call any
/// functions on Foo itself, because Foo would be an incomplete type.
template <typename T> struct IntrusiveRefCntPtrInfo {
static void retain(T *obj) { obj->Retain(); }
static void release(T *obj) { obj->Release(); }
};
/// A smart pointer to a reference-counted object that inherits from
/// RefCountedBase or ThreadSafeRefCountedBase.
///
/// This class increments its pointee's reference count when it is created, and
/// decrements its refcount when it's destroyed (or is changed to point to a
/// different object).
template <typename T> class IntrusiveRefCntPtr {
T *Obj = nullptr;
@ -208,10 +246,8 @@ bool operator!=(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
return !(A == B);
}
//===----------------------------------------------------------------------===//
// LLVM-style downcasting support for IntrusiveRefCntPtr objects
//===----------------------------------------------------------------------===//
// Make IntrusiveRefCntPtr work with dyn_cast, isa, and the other idioms from
// Casting.h.
template <typename From> struct simplify_type;
template <class T> struct simplify_type<IntrusiveRefCntPtr<T>> {