Flesh out a bunch more code, print allocations that are poolable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2031 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-03-29 03:40:59 +00:00
parent a637859c71
commit d2d3a16641

View File

@ -9,25 +9,164 @@
#include "llvm/Transforms/IPO/PoolAllocate.h" #include "llvm/Transforms/IPO/PoolAllocate.h"
#include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DataStructure.h"
#include "llvm/Pass.h" #include "llvm/Pass.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include <algorithm>
// Define the pass class that we implement...
namespace { namespace {
struct PoolAllocate : public Pass { class PoolAllocate : public Pass {
bool run(Module *M) { // PoolTy - The type of a scalar value that contains a pool pointer.
DataStructure &DS = getAnalysis<DataStructure>(); PointerType *PoolTy;
return false; public:
PoolAllocate() {
// Initialize the PoolTy instance variable, since the type never changes.
vector<const Type*> PoolElements;
PoolElements.push_back(PointerType::get(Type::SByteTy));
PoolElements.push_back(Type::UIntTy);
PoolTy = PointerType::get(StructType::get(PoolElements));
// PoolTy = { sbyte*, uint }*
CurModule = 0; DS = 0;
PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
} }
// getAnalysisUsageInfo - This function works on the call graph of a module. bool run(Module *M);
// It is capable of updating the call graph to reflect the new state of the
// module. // getAnalysisUsageInfo - This function requires data structure information
// to be able to see what is pool allocatable.
// //
virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required, virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required,
Pass::AnalysisSet &Destroyed, Pass::AnalysisSet &,Pass::AnalysisSet &) {
Pass::AnalysisSet &Provided) {
Required.push_back(DataStructure::ID); Required.push_back(DataStructure::ID);
} }
private:
// CurModule - The module being processed.
Module *CurModule;
// DS - The data structure graph for the module being processed.
DataStructure *DS;
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
void addPoolPrototypes(Module *M);
// processFunction - Convert a function to use pool allocation where
// available.
//
bool processFunction(Function *F);
}; };
} }
// isNotPoolableAlloc - This is a predicate that returns true if the specified
// allocation node in a data structure graph is eligable for pool allocation.
//
static bool isNotPoolableAlloc(const AllocDSNode *DS) {
if (DS->isAllocaNode()) return false; // Do not pool allocate alloca's.
MallocInst *MI = cast<MallocInst>(DS->getAllocation());
if (MI->isArrayAllocation() && !isa<Constant>(MI->getArraySize()))
return false; // Do not allow variable size allocations...
return true;
}
// processFunction - Convert a function to use pool allocation where
// available.
//
bool PoolAllocate::processFunction(Function *F) {
// Get the closed datastructure graph for the current function... if there are
// any allocations in this graph that are not escaping, we need to pool
// allocate them here!
//
FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
// Get all of the allocations that do not escape the current function. Since
// they are still live (they exist in the graph at all), this means we must
// have scalar references to these nodes, but the scalars are never returned.
//
std::vector<AllocDSNode*> Allocs;
IPGraph.getNonEscapingAllocations(Allocs);
// Filter out allocations that we cannot handle. Currently, this includes
// variable sized array allocations and alloca's (which we do not want to
// pool allocate)
//
Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
Allocs.end());
if (Allocs.empty()) return false; // Nothing to do.
// Loop through the value map looking for scalars that refer to nonescaping
// allocations.
//
map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
vector<pair<Value*, AllocDSNode*> > Scalars;
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I) {
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
// Check to see if the scalar points to anything that is an allocation...
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
// If the allocation is in the nonescaping set...
if (find(Allocs.begin(), Allocs.end(), Alloc) != Allocs.end())
// Add it to the list of scalars we have
Scalars.push_back(make_pair(I->first, Alloc));
}
}
cerr << "In '" << F->getName()
<< "': Found the following values that point to poolable nodes:\n";
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
Scalars[i].first->dump();
return false;
}
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
// addPoolPrototypes - Add prototypes for the pool methods to the specified
// module and update the Pool* instance variables to point to them.
//
void PoolAllocate::addPoolPrototypes(Module *M) {
//M->getOrCreate...
}
bool PoolAllocate::run(Module *M) {
addPoolPrototypes(M);
CurModule = M;
DS = &getAnalysis<DataStructure>();
bool Changed = false;
for (Module::iterator I = M->begin(); I != M->end(); ++I)
if (!(*I)->isExternal())
Changed |= processFunction(*I);
CurModule = 0;
DS = 0;
return false;
}
// createPoolAllocatePass - Global function to access the functionality of this
// pass...
//
Pass *createPoolAllocatePass() { return new PoolAllocate(); } Pass *createPoolAllocatePass() { return new PoolAllocate(); }