Revert the earlier change that removed the M_REMATERIALIZABLE machine

instruction flag, and use the flag along with a virtual member function
hook for targets to override if there are instructions that are only
trivially rematerializable with specific operands (i.e. constant pool
loads).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37728 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2007-06-26 00:48:07 +00:00
parent 9a0930dbd9
commit d45eddd214
15 changed files with 57 additions and 48 deletions

View File

@ -78,6 +78,10 @@ const unsigned M_VARIABLE_OPS = 1 << 11;
// controls execution. It may be set to 'always'.
const unsigned M_PREDICABLE = 1 << 12;
// M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized
// at any time, e.g. constant generation, load from constant pool.
const unsigned M_REMATERIALIZIBLE = 1 << 13;
// M_CLOBBERS_PRED - Set if this instruction may clobbers the condition code
// register and / or registers that are used to predicate instructions.
const unsigned M_CLOBBERS_PRED = 1 << 14;
@ -268,6 +272,28 @@ public:
return get(Opcode).Flags & M_NOT_DUPLICABLE;
}
/// isTriviallyReMaterializable - Return true if the instruction is trivially
/// rematerializable, meaning it has no side effects and requires no operands
/// that aren't always available.
bool isTriviallyReMaterializable(MachineInstr *MI) const {
return (MI->getInstrDescriptor()->Flags & M_REMATERIALIZIBLE) &&
isReallyTriviallyReMaterializable(MI);
}
protected:
/// isReallyTriviallyReMaterializable - For instructions with opcodes for
/// which the M_REMATERIALIZABLE flag is set, this function tests whether the
/// instruction itself is actually trivially rematerializable, considering
/// its operands. This is used for targets that have instructions that are
/// only trivially rematerializable for specific uses. This predicate must
/// return false if the instruction has any side effects other than
/// producing a value, or if it requres any address registers that are not
/// always available.
virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const {
return true;
}
public:
/// getOperandConstraint - Returns the value of the specific constraint if
/// it is set. Returns -1 if it is not set.
int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
@ -301,16 +327,6 @@ public:
return 0;
}
/// isTriviallyReMaterializable - If the specified machine instruction can
/// be trivally re-materialized at any time, e.g. constant generation or
/// loads from constant pools. If not, return false. This predicate must
/// return false if the instruction has any side effects other than
/// producing the value from the load, or if it requres any address
/// registers that are not always available.
virtual bool isTriviallyReMaterializable(MachineInstr *MI) const {
return false;
}
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into one or moretrue

View File

@ -130,20 +130,6 @@ unsigned ARMInstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) con
return 0;
}
bool ARMInstrInfo::isTriviallyReMaterializable(MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: break;
case ARM::LDRcp:
case ARM::MOVi:
case ARM::MVNi:
case ARM::MOVi2pieces:
case ARM::tLDRcp:
// These instructions are always trivially rematerializable.
return true;
}
return false;
}
static unsigned getUnindexedOpcode(unsigned Opc) {
switch (Opc) {
default: break;

View File

@ -87,7 +87,6 @@ public:
unsigned &SrcReg, unsigned &DstReg) const;
virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
virtual bool isTriviallyReMaterializable(MachineInstr *MI) const;
virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,

View File

@ -677,6 +677,7 @@ def LDR : AI2<(ops GPR:$dst, addrmode2:$addr),
[(set GPR:$dst, (load addrmode2:$addr))]>;
// Special LDR for loads from non-pc-relative constpools.
let isReMaterializable = 1 in
def LDRcp : AI2<(ops GPR:$dst, addrmode2:$addr),
"ldr", " $dst, $addr", []>;
@ -810,6 +811,7 @@ def MOVr : AI1<(ops GPR:$dst, GPR:$src),
def MOVs : AI1<(ops GPR:$dst, so_reg:$src),
"mov", " $dst, $src", [(set GPR:$dst, so_reg:$src)]>;
let isReMaterializable = 1 in
def MOVi : AI1<(ops GPR:$dst, so_imm:$src),
"mov", " $dst, $src", [(set GPR:$dst, so_imm:$src)]>;
@ -917,6 +919,7 @@ def MVNr : AI<(ops GPR:$dst, GPR:$src),
"mvn", " $dst, $src", [(set GPR:$dst, (not GPR:$src))]>;
def MVNs : AI<(ops GPR:$dst, so_reg:$src),
"mvn", " $dst, $src", [(set GPR:$dst, (not so_reg:$src))]>;
let isReMaterializable = 1 in
def MVNi : AI<(ops GPR:$dst, so_imm:$imm),
"mvn", " $dst, $imm", [(set GPR:$dst, so_imm_not:$imm)]>;
@ -1187,6 +1190,7 @@ def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
// Large immediate handling.
// Two piece so_imms.
let isReMaterializable = 1 in
def MOVi2pieces : AI1x2<(ops GPR:$dst, so_imm2part:$src),
"mov", " $dst, $src",
[(set GPR:$dst, so_imm2part:$src)]>;

View File

@ -267,6 +267,7 @@ def tLDRpci : TIs<(ops GPR:$dst, i32imm:$addr),
[(set GPR:$dst, (load (ARMWrapper tconstpool:$addr)))]>;
// Special LDR for loads from non-pc-relative constpools.
let isReMaterializable = 1 in
def tLDRcp : TIs<(ops GPR:$dst, i32imm:$addr),
"ldr $dst, $addr", []>;
} // isLoad

View File

@ -186,6 +186,7 @@ class Instruction {
bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
bit isCommutable = 0; // Is this 3 operand instruction commutable?
bit isTerminator = 0; // Is this part of the terminator for a basic block?
bit isReMaterializable = 0; // Is this instruction re-materializable?
bit isPredicable = 0; // Is this instruction predicable?
bit hasDelaySlot = 0; // Does this instruction have an delay slot?
bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.

View File

@ -413,10 +413,12 @@ def FSTPrr : FPI<0xD8, AddRegFrm, (ops RST:$op), "fstp $op">, DD;
def FXCH : FPI<0xC8, AddRegFrm, (ops RST:$op), "fxch $op">, D9;
// Floating point constant loads.
let isReMaterializable = 1 in {
def FpLD0 : FpI<(ops RFP:$dst), ZeroArgFP,
[(set RFP:$dst, fp64imm0)]>;
def FpLD1 : FpI<(ops RFP:$dst), ZeroArgFP,
[(set RFP:$dst, fp64imm1)]>;
}
def FLD0 : FPI<0xEE, RawFrm, (ops), "fldz">, D9;
def FLD1 : FPI<0xE8, RawFrm, (ops), "fld1">, D9;

View File

@ -112,20 +112,9 @@ unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
}
bool X86InstrInfo::isTriviallyReMaterializable(MachineInstr *MI) const {
bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
switch (MI->getOpcode()) {
default: break;
case X86::FpLD0:
case X86::FpLD1:
case X86::MOV8ri:
case X86::MOV16ri:
case X86::MOV32ri:
case X86::MMX_V_SET0:
case X86::MMX_V_SETALLONES:
case X86::V_SET0:
case X86::V_SETALLONES:
// These instructions are always trivially rematerializable.
return true;
case X86::MOV8rm:
case X86::MOV16rm:
case X86::MOV16_rm:
@ -146,7 +135,9 @@ bool X86InstrInfo::isTriviallyReMaterializable(MachineInstr *MI) const {
MI->getOperand(2).getImmedValue() == 1 &&
MI->getOperand(3).getReg() == 0;
}
return false;
// All other instructions marked M_REMATERIALIZABLE are always trivially
// rematerializable.
return true;
}
/// convertToThreeAddress - This method must be implemented by targets that

View File

@ -239,7 +239,7 @@ public:
unsigned& destReg) const;
unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
bool isTriviallyReMaterializable(MachineInstr *MI) const;
bool isReallyTriviallyReMaterializable(MachineInstr *MI) const;
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target

View File

@ -617,6 +617,7 @@ def MOV16rr : I<0x89, MRMDestReg, (ops GR16:$dst, GR16:$src),
"mov{w} {$src, $dst|$dst, $src}", []>, OpSize;
def MOV32rr : I<0x89, MRMDestReg, (ops GR32:$dst, GR32:$src),
"mov{l} {$src, $dst|$dst, $src}", []>;
let isReMaterializable = 1 in {
def MOV8ri : Ii8 <0xB0, AddRegFrm, (ops GR8 :$dst, i8imm :$src),
"mov{b} {$src, $dst|$dst, $src}",
[(set GR8:$dst, imm:$src)]>;
@ -626,6 +627,7 @@ def MOV16ri : Ii16<0xB8, AddRegFrm, (ops GR16:$dst, i16imm:$src),
def MOV32ri : Ii32<0xB8, AddRegFrm, (ops GR32:$dst, i32imm:$src),
"mov{l} {$src, $dst|$dst, $src}",
[(set GR32:$dst, imm:$src)]>;
}
def MOV8mi : Ii8 <0xC6, MRM0m, (ops i8mem :$dst, i8imm :$src),
"mov{b} {$src, $dst|$dst, $src}",
[(store (i8 imm:$src), addr:$dst)]>;

View File

@ -503,12 +503,14 @@ def MMX_MASKMOVQ : MMXI<0xF7, MRMDestMem, (ops VR64:$src, VR64:$mask),
// Alias instructions that map zero vector to pxor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
def MMX_V_SET0 : MMXI<0xEF, MRMInitReg, (ops VR64:$dst),
"pxor $dst, $dst",
[(set VR64:$dst, (v1i64 immAllZerosV))]>;
def MMX_V_SETALLONES : MMXI<0x76, MRMInitReg, (ops VR64:$dst),
"pcmpeqd $dst, $dst",
[(set VR64:$dst, (v1i64 immAllOnesV))]>;
let isReMaterializable = 1 in {
def MMX_V_SET0 : MMXI<0xEF, MRMInitReg, (ops VR64:$dst),
"pxor $dst, $dst",
[(set VR64:$dst, (v1i64 immAllZerosV))]>;
def MMX_V_SETALLONES : MMXI<0x76, MRMInitReg, (ops VR64:$dst),
"pcmpeqd $dst, $dst",
[(set VR64:$dst, (v1i64 immAllOnesV))]>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns

View File

@ -762,6 +762,7 @@ def STMXCSR : PSI<0xAE, MRM3m, (ops i32mem:$dst),
// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let isReMaterializable = 1 in
def V_SET0 : PSI<0x57, MRMInitReg, (ops VR128:$dst),
"xorps $dst, $dst",
[(set VR128:$dst, (v4f32 immAllZerosV))]>;
@ -1821,9 +1822,10 @@ def MFENCE : I<0xAE, MRM6m, (ops),
// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
def V_SETALLONES : PDI<0x76, MRMInitReg, (ops VR128:$dst),
"pcmpeqd $dst, $dst",
[(set VR128:$dst, (v2f64 immAllOnesV))]>;
let isReMaterializable = 1 in
def V_SETALLONES : PDI<0x76, MRMInitReg, (ops VR128:$dst),
"pcmpeqd $dst, $dst",
[(set VR128:$dst, (v2f64 immAllOnesV))]>;
// FR64 to 128-bit vector conversion.
def MOVSD2PDrr : SDI<0x10, MRMSrcReg, (ops VR128:$dst, FR64:$src),

View File

@ -91,6 +91,7 @@ namespace llvm {
bool isConvertibleToThreeAddress;
bool isCommutable;
bool isTerminator;
bool isReMaterializable;
bool hasDelaySlot;
bool usesCustomDAGSchedInserter;
bool hasVariableNumberOfOperands;

View File

@ -365,6 +365,7 @@ CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr)
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");

View File

@ -240,6 +240,7 @@ void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
if (Inst.isConvertibleToThreeAddress) OS << "|M_CONVERTIBLE_TO_3_ADDR";
if (Inst.isCommutable) OS << "|M_COMMUTABLE";
if (Inst.isTerminator) OS << "|M_TERMINATOR_FLAG";
if (Inst.isReMaterializable) OS << "|M_REMATERIALIZIBLE";
if (Inst.clobbersPred) OS << "|M_CLOBBERS_PRED";
if (Inst.isNotDuplicable) OS << "|M_NOT_DUPLICABLE";
if (Inst.usesCustomDAGSchedInserter)