Don't merge two constants if we care about the address of both.

This fixes the original testcase in PR8927. It also causes a clang
binary built with a patched clang to increase in size by 0.21%.

We can probably get some of the size back by writing a pass that
detects that a global never has its pointer compared and adds
unnamed_addr to it (maybe extend global opt). It is also possible that
there are some other cases clang could add unnamed_addr to.

I will investigate extending globalopt next.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123584 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Rafael Espindola 2011-01-16 17:05:09 +00:00
parent 1ed26acc58
commit d6e5cbc842
4 changed files with 105 additions and 23 deletions

View File

@ -65,6 +65,18 @@ static void FindUsedValues(GlobalVariable *LLVMUsed,
UsedValues.insert(GV);
}
// True if A is better than B.
static bool IsBetterCannonical(const GlobalVariable &A,
const GlobalVariable &B) {
if (!A.hasLocalLinkage() && B.hasLocalLinkage())
return true;
if (A.hasLocalLinkage() && !B.hasLocalLinkage())
return false;
return A.hasUnnamedAddr();
}
bool ConstantMerge::runOnModule(Module &M) {
// Find all the globals that are marked "used". These cannot be merged.
SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
@ -85,44 +97,43 @@ bool ConstantMerge::runOnModule(Module &M) {
// second level constants have initializers which point to the globals that
// were just merged.
while (1) {
// First pass: identify all globals that can be merged together, filling in
// the Replacements vector. We cannot do the replacement in this pass
// because doing so may cause initializers of other globals to be rewritten,
// invalidating the Constant* pointers in CMap.
//
// First: Find the canonical constants others will be merged with.
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
// If this GV is dead, remove it.
GV->removeDeadConstantUsers();
if (GV->use_empty() && GV->hasLocalLinkage()) {
GV->eraseFromParent();
continue;
}
// Only process constants with initializers in the default address space.
if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
// Don't touch values marked with attribute(used).
UsedGlobals.count(GV))
continue;
// Start by filling slots with only the globals we aren't allowed to
// delete because they're externally visible.
if (GV->hasLocalLinkage())
continue;
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
GlobalVariable *&Slot = CMap[Init];
if (Slot == 0) { // Nope, add it to the map.
// If this is the first constant we find or if the old on is local,
// replace with the current one. It the current is externally visible
// it cannot be replace, but can be the canonical constant we merge with.
if (Slot == 0 || IsBetterCannonical(*GV, *Slot)) {
Slot = GV;
}
}
// Second: identify all globals that can be merged together, filling in
// the Replacements vector. We cannot do the replacement in this pass
// because doing so may cause initializers of other globals to be rewritten,
// invalidating the Constant* pointers in CMap.
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
@ -134,21 +145,26 @@ bool ConstantMerge::runOnModule(Module &M) {
UsedGlobals.count(GV))
continue;
// Only look at the remaining globals now.
// We can only replace constant with local linkage.
if (!GV->hasLocalLinkage())
continue;
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
GlobalVariable *&Slot = CMap[Init];
GlobalVariable *Slot = CMap[Init];
if (Slot == 0) { // Nope, add it to the map.
Slot = GV;
} else { // Yup, this is a duplicate!
// Make all uses of the duplicate constant use the canonical version.
Replacements.push_back(std::make_pair(GV, Slot));
}
if (!Slot || Slot == GV)
continue;
if (!Slot->hasUnnamedAddr() && !GV->hasUnnamedAddr())
continue;
if (!GV->hasUnnamedAddr())
Slot->setUnnamedAddr(false);
// Make all uses of the duplicate constant use the canonical version.
Replacements.push_back(std::make_pair(GV, Slot));
}
if (Replacements.empty())

View File

@ -5,7 +5,7 @@ declare i32 @zed(%struct.foobar*, %struct.foobar*)
%struct.foobar = type { i32 }
; CHECK: bar.d
@bar.d = constant %struct.foobar zeroinitializer, align 4
@bar.d = unnamed_addr constant %struct.foobar zeroinitializer, align 4
; CHECK-NOT: foo.d
@foo.d = internal constant %struct.foobar zeroinitializer, align 4
define i32 @main() nounwind ssp {

View File

@ -0,0 +1,26 @@
; RUN: opt -constmerge %s -S -o - | FileCheck %s
; Test that in one run var3 is merged into var2 and var1 into var4.
declare void @zed(%struct.foobar*, %struct.foobar*)
%struct.foobar = type { i32 }
@var1 = internal constant %struct.foobar { i32 2 }
@var2 = unnamed_addr constant %struct.foobar { i32 2 }
@var3 = internal constant %struct.foobar { i32 2 }
@var4 = unnamed_addr constant %struct.foobar { i32 2 }
; CHECK: %struct.foobar = type { i32 }
; CHECK-NOT: @
; CHECK: @var2 = constant %struct.foobar { i32 2 }
; CHECK-NEXT: @var4 = constant %struct.foobar { i32 2 }
; CHECK-NOT: @
; CHECK: declare void @zed(%struct.foobar*, %struct.foobar*)
define i32 @main() {
entry:
call void @zed(%struct.foobar* @var1, %struct.foobar* @var2)
call void @zed(%struct.foobar* @var3, %struct.foobar* @var4)
ret i32 0
}

View File

@ -0,0 +1,40 @@
; RUN: opt -constmerge %s -S -o - | FileCheck %s
; Test which corresponding x and y are merged and that unnamed_addr
; is correctly set.
declare void @zed(%struct.foobar*, %struct.foobar*)
%struct.foobar = type { i32 }
@test1.x = internal constant %struct.foobar { i32 1 }
@test1.y = constant %struct.foobar { i32 1 }
@test2.x = internal constant %struct.foobar { i32 2 }
@test2.y = unnamed_addr constant %struct.foobar { i32 2 }
@test3.x = internal unnamed_addr constant %struct.foobar { i32 3 }
@test3.y = constant %struct.foobar { i32 3 }
@test4.x = internal unnamed_addr constant %struct.foobar { i32 4 }
@test4.y = unnamed_addr constant %struct.foobar { i32 4 }
; CHECK: %struct.foobar = type { i32 }
; CHECK-NOT: @
; CHECK: @test1.x = internal constant %struct.foobar { i32 1 }
; CHECK-NEXT: @test1.y = constant %struct.foobar { i32 1 }
; CHECK-NEXT: @test2.y = constant %struct.foobar { i32 2 }
; CHECK-NEXT: @test3.y = constant %struct.foobar { i32 3 }
; CHECK-NEXT: @test4.y = unnamed_addr constant %struct.foobar { i32 4 }
; CHECK-NOT: @
; CHECK: declare void @zed(%struct.foobar*, %struct.foobar*)
define i32 @main() {
entry:
call void @zed(%struct.foobar* @test1.x, %struct.foobar* @test1.y)
call void @zed(%struct.foobar* @test2.x, %struct.foobar* @test2.y)
call void @zed(%struct.foobar* @test3.x, %struct.foobar* @test3.y)
call void @zed(%struct.foobar* @test4.x, %struct.foobar* @test4.y)
ret i32 0
}