Added ConstantExpr support to CFLAA.

CFLAA didn't know how to properly handle ConstantExprs; it would silently
ignore them. This was a problem if the ConstantExpr is, say, a GEP of a global,
because CFLAA wouldn't realize that there's a global there. :)



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231743 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
George Burgess IV 2015-03-10 02:58:15 +00:00
parent 456a54a2df
commit d8bd7ce2ca
4 changed files with 186 additions and 47 deletions

View File

@ -47,6 +47,7 @@
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <forward_list>
#include <tuple>
@ -231,6 +232,10 @@ public:
// Comparisons between global variables and other constants should be
// handled by BasicAA.
// TODO: ConstantExpr handling -- CFLAA may report NoAlias when comparing
// a GlobalValue and ConstantExpr, but every query needs to have at least
// one Value tied to a Function, and neither GlobalValues nor ConstantExprs
// are.
if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) {
return AliasAnalysis::alias(LocA, LocB);
}
@ -389,7 +394,7 @@ public:
// I put this here to give us an upper bound on time taken by IPA. Is it
// really (realistically) needed? Keep in mind that we do have an n^2 algo.
if (std::distance(Args.begin(), Args.end()) > (int) MaxSupportedArgs)
if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs)
return false;
// Exit early if we'll fail anyway
@ -747,6 +752,25 @@ static Level directionOfEdgeType(EdgeType);
static void buildGraphFrom(CFLAliasAnalysis &, Function *,
SmallVectorImpl<Value *> &, NodeMapT &, GraphT &);
// Gets the edges of a ConstantExpr as if it was an Instruction. This
// function also acts on any nested ConstantExprs, adding the edges
// of those to the given SmallVector as well.
static void constexprToEdges(CFLAliasAnalysis &, ConstantExpr &,
SmallVectorImpl<Edge> &);
// Given an Instruction, this will add it to the graph, along with any
// Instructions that are potentially only available from said Instruction
// For example, given the following line:
// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
// addInstructionToGraph would add both the `load` and `getelementptr`
// instructions to the graph appropriately.
static void addInstructionToGraph(CFLAliasAnalysis &, Instruction &,
SmallVectorImpl<Value *> &, NodeMapT &,
GraphT &);
// Notes whether it would be pointless to add the given Value to our sets.
static bool canSkipAddingToSets(Value *Val);
// Builds the graph + StratifiedSets for a function.
static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *);
@ -818,6 +842,8 @@ static EdgeType flipWeight(EdgeType Initial) {
static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst,
SmallVectorImpl<Edge> &Output) {
assert(hasUsefulEdges(Inst) &&
"Expected instructions to have 'useful' edges");
GetEdgesVisitor v(Analysis, Output);
v.visit(Inst);
}
@ -834,13 +860,41 @@ static Level directionOfEdgeType(EdgeType Weight) {
llvm_unreachable("Incomplete switch coverage");
}
// Aside: We may remove graph construction entirely, because it doesn't really
// buy us much that we don't already have. I'd like to add interprocedural
// analysis prior to this however, in case that somehow requires the graph
// produced by this for efficient execution
static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
SmallVectorImpl<Value *> &ReturnedValues,
NodeMapT &Map, GraphT &Graph) {
static void constexprToEdges(CFLAliasAnalysis &Analysis,
ConstantExpr &CExprToCollapse,
SmallVectorImpl<Edge> &Results) {
SmallVector<ConstantExpr *, 4> Worklist;
Worklist.push_back(&CExprToCollapse);
SmallVector<Edge, 8> ConstexprEdges;
while (!Worklist.empty()) {
auto *CExpr = Worklist.pop_back_val();
std::unique_ptr<Instruction> Inst(CExpr->getAsInstruction());
if (!hasUsefulEdges(Inst.get()))
continue;
ConstexprEdges.clear();
argsToEdges(Analysis, Inst.get(), ConstexprEdges);
for (auto &Edge : ConstexprEdges) {
if (Edge.From == Inst.get())
Edge.From = CExpr;
else if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From))
Worklist.push_back(Nested);
if (Edge.To == Inst.get())
Edge.To = CExpr;
else if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To))
Worklist.push_back(Nested);
}
Results.append(ConstexprEdges.begin(), ConstexprEdges.end());
}
}
static void addInstructionToGraph(CFLAliasAnalysis &Analysis, Instruction &Inst,
SmallVectorImpl<Value *> &ReturnedValues,
NodeMapT &Map, GraphT &Graph) {
const auto findOrInsertNode = [&Map, &Graph](Value *Val) {
auto Pair = Map.insert(std::make_pair(Val, GraphT::Node()));
auto &Iter = Pair.first;
@ -851,40 +905,84 @@ static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
return Iter->second;
};
// We don't want the edges of most "return" instructions, but we *do* want
// to know what can be returned.
if (isa<ReturnInst>(&Inst))
ReturnedValues.push_back(&Inst);
if (!hasUsefulEdges(&Inst))
return;
SmallVector<Edge, 8> Edges;
for (auto &Bb : Fn->getBasicBlockList()) {
for (auto &Inst : Bb.getInstList()) {
// We don't want the edges of most "return" instructions, but we *do* want
// to know what can be returned.
if (auto *Ret = dyn_cast<ReturnInst>(&Inst))
ReturnedValues.push_back(Ret);
argsToEdges(Analysis, &Inst, Edges);
if (!hasUsefulEdges(&Inst))
continue;
Edges.clear();
argsToEdges(Analysis, &Inst, Edges);
// In the case of an unused alloca (or similar), edges may be empty. Note
// that it exists so we can potentially answer NoAlias.
if (Edges.empty()) {
auto MaybeVal = getTargetValue(&Inst);
assert(MaybeVal.hasValue());
auto *Target = *MaybeVal;
findOrInsertNode(Target);
continue;
}
for (const Edge &E : Edges) {
auto To = findOrInsertNode(E.To);
auto From = findOrInsertNode(E.From);
auto FlippedWeight = flipWeight(E.Weight);
auto Attrs = E.AdditionalAttrs;
Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
std::make_pair(FlippedWeight, Attrs));
}
}
// In the case of an unused alloca (or similar), edges may be empty. Note
// that it exists so we can potentially answer NoAlias.
if (Edges.empty()) {
auto MaybeVal = getTargetValue(&Inst);
assert(MaybeVal.hasValue());
auto *Target = *MaybeVal;
findOrInsertNode(Target);
return;
}
const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) {
auto To = findOrInsertNode(E.To);
auto From = findOrInsertNode(E.From);
auto FlippedWeight = flipWeight(E.Weight);
auto Attrs = E.AdditionalAttrs;
Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs),
std::make_pair(FlippedWeight, Attrs));
};
SmallVector<ConstantExpr *, 4> ConstantExprs;
for (const Edge &E : Edges) {
addEdgeToGraph(E);
if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To))
ConstantExprs.push_back(Constexpr);
if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From))
ConstantExprs.push_back(Constexpr);
}
for (ConstantExpr *CE : ConstantExprs) {
Edges.clear();
constexprToEdges(Analysis, *CE, Edges);
std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph);
}
}
// Aside: We may remove graph construction entirely, because it doesn't really
// buy us much that we don't already have. I'd like to add interprocedural
// analysis prior to this however, in case that somehow requires the graph
// produced by this for efficient execution
static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn,
SmallVectorImpl<Value *> &ReturnedValues,
NodeMapT &Map, GraphT &Graph) {
for (auto &Bb : Fn->getBasicBlockList())
for (auto &Inst : Bb.getInstList())
addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph);
}
static bool canSkipAddingToSets(Value *Val) {
// Constants can share instances, which may falsely unify multiple
// sets, e.g. in
// store i32* null, i32** %ptr1
// store i32* null, i32** %ptr2
// clearly ptr1 and ptr2 should not be unified into the same set, so
// we should filter out the (potentially shared) instance to
// i32* null.
if (isa<Constant>(Val)) {
bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) ||
isa<ConstantStruct>(Val);
// TODO: Because all of these things are constant, we can determine whether
// the data is *actually* mutable at graph building time. This will probably
// come for free/cheap with offset awareness.
bool CanStoreMutableData =
isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container;
return !CanStoreMutableData;
}
return false;
}
static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
@ -918,7 +1016,7 @@ static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
while (!Worklist.empty()) {
auto Node = Worklist.pop_back_val();
auto *CurValue = findValueOrDie(Node);
if (isa<Constant>(CurValue) && !isa<GlobalValue>(CurValue))
if (canSkipAddingToSets(CurValue))
continue;
for (const auto &EdgeTuple : Graph.edgesFor(Node)) {
@ -927,7 +1025,7 @@ static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
auto &OtherNode = std::get<1>(EdgeTuple);
auto *OtherValue = findValueOrDie(OtherNode);
if (isa<Constant>(OtherValue) && !isa<GlobalValue>(OtherValue))
if (canSkipAddingToSets(OtherValue))
continue;
bool Added;
@ -962,7 +1060,12 @@ static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) {
// things that were present during construction being present in the graph.
// So, we add all present arguments here.
for (auto &Arg : Fn->args()) {
Builder.add(&Arg);
if (!Builder.add(&Arg))
continue;
auto Attrs = valueToAttrIndex(&Arg);
if (Attrs.hasValue())
Builder.noteAttributes(&Arg, *Attrs);
}
return FunctionInfo(Builder.build(), std::move(ReturnedValues));

View File

@ -7,7 +7,7 @@
@G = private unnamed_addr constant [1 x i8] c"\00", align 1
; CHECK: Function: test_no_crash
; CHECK: 1 no alias responses
; CHECK: 0 no alias responses
define void @test_no_crash() #0 {
entry:
call i8* asm "nop", "=r,r"(

View File

@ -7,15 +7,51 @@
%T = type { i32, [10 x i8] }
@G = external global %T
@G2 = external global %T
; TODO: Quite a few of these are MayAlias because we don't yet consider
; constant offsets in CFLAA. If we start doing so, then we'll need to
; change these test cases
; CHECK: Function: test
; CHECK-NOT: May:
; CHECK: MayAlias: i32* %D, i32* %F
; CHECK: MayAlias: i32* %D, i8* %X
; CHECK: MayAlias: i32* %F, i8* %X
define void @test() {
%D = getelementptr %T, %T* @G, i64 0, i32 0
%E = getelementptr %T, %T* @G, i64 0, i32 1, i64 5
%F = getelementptr i32, i32* getelementptr (%T* @G, i64 0, i32 0), i64 0
%X = getelementptr [10 x i8], [10 x i8]* getelementptr (%T* @G, i64 0, i32 1), i64 0, i64 5
ret void
}
; CHECK: Function: simplecheck
; CHECK: MayAlias: i32* %F, i32* %arg0
; CHECK: MayAlias: i32* %H, i32* %arg0
; CHECK: MayAlias: i32* %F, i32* %H
define void @simplecheck(i32* %arg0) {
%F = getelementptr i32, i32* getelementptr (%T* @G, i64 0, i32 0), i64 0
%H = getelementptr %T, %T* @G2, i64 0, i32 0
ret void
}
; Ensure that CFLAA properly identifies and handles escaping variables (i.e.
; globals) in nested ConstantExprs
; CHECK: Function: checkNesting
; CHECK: MayAlias: i32* %A, i32* %arg0
%NestedT = type { [1 x [1 x i32]] }
@NT = external global %NestedT
define void @checkNesting(i32* %arg0) {
%A = getelementptr [1 x i32],
[1 x i32]* getelementptr
([1 x [1 x i32]]* getelementptr (%NestedT* @NT, i64 0, i32 0),
i64 0,
i32 0),
i64 0,
i32 0
ret void
}

View File

@ -18,7 +18,7 @@ define void @test(i1 %cond,
i32* %arg31, i32* %arg32, i32* %arg33, i32* %arg34, i32* %arg35) {
; CHECK: 946 Total Alias Queries Performed
; CHECK: 810 no alias responses (85.6%)
; CHECK: 43 no alias responses (4.5%)
%a = alloca i32, align 4
%b = select i1 %cond, i32* %arg35, i32* %arg34
%c = select i1 %cond, i32* %arg34, i32* %arg33