ConstantFolding.cpp: Whitespace.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167377 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
NAKAMURA Takumi 2012-11-05 00:11:11 +00:00
parent a1beca6845
commit db2b285225

View File

@ -41,7 +41,7 @@ using namespace llvm;
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// DataLayout. This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy,
@ -59,9 +59,9 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
return ConstantExpr::getBitCast(C, DestTy);
unsigned NumSrcElts = CDV->getType()->getNumElements();
Type *SrcEltTy = CDV->getType()->getElementType();
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
if (SrcEltTy->isFloatingPointTy()) {
@ -72,7 +72,7 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
C = ConstantExpr::getBitCast(C, SrcIVTy);
CDV = cast<ConstantDataVector>(C);
}
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
@ -84,43 +84,43 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
else
Result |= CDV->getElementAsInteger(i);
}
return ConstantInt::get(IT, Result);
}
// The code below only handles casts to vectors currently.
VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
if (DestVTy == 0)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
}
// If this is a bitcast from constant vector -> vector, fold it.
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, VMCore can fold it.
unsigned NumDstElt = DestVTy->getNumElements();
unsigned NumSrcElt = C->getType()->getVectorNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = C->getType()->getVectorElementType();
Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
@ -130,11 +130,11 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, TD);
// Finally, VMCore can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
@ -148,13 +148,13 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
!isa<ConstantDataVector>(C))
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = TD.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
@ -170,15 +170,15 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
@ -186,30 +186,30 @@ static Constant *FoldBitCast(Constant *C, Type *DestTy,
}
return ConstantVector::get(Result);
}
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
return ConstantVector::get(Result);
}
@ -224,28 +224,28 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
Offset = 0;
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Cannot compute this if the element type of the pointer is missing size
// info.
if (!cast<PointerType>(CE->getOperand(0)->getType())
->getElementType()->isSized())
return false;
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
return false;
// Otherwise, add any offset that our operands provide.
gep_type_iterator GTI = gep_type_begin(CE);
for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
@ -253,7 +253,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
ConstantInt *CI = dyn_cast<ConstantInt>(*i);
if (!CI) return false; // Index isn't a simple constant?
if (CI->isZero()) continue; // Not adding anything.
if (StructType *ST = dyn_cast<StructType>(*GTI)) {
// N = N + Offset
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
@ -264,7 +264,7 @@ static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
}
return true;
}
return false;
}
@ -277,27 +277,27 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
const DataLayout &TD) {
assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
++ByteOffset;
}
return true;
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
@ -309,13 +309,13 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
}
return false;
}
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = TD.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (1) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
@ -325,9 +325,9 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, TD))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
@ -375,11 +375,11 @@ static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
}
return true;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, TD);
}
@ -391,7 +391,7 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const DataLayout &TD) {
Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
// If this is a float/double load, we can try folding it as an int32/64 load
@ -415,15 +415,15 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
return FoldBitCast(Res, LoadTy, TD);
return 0;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
GlobalValue *GVal;
int64_t Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
@ -432,11 +432,11 @@ static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
if (Offset < 0) return 0;
// If we're not accessing anything in this constant, the result is undefined.
if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
BytesLoaded, TD))
@ -464,15 +464,15 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return 0;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
}
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
StringRef Str;
@ -500,14 +500,14 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
}
}
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (GlobalVariable *GV =
@ -520,7 +520,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
return UndefValue::get(ResTy);
}
}
// Try hard to fold loads from bitcasted strange and non-type-safe things. We
// currently don't do any of this for big endian systems. It can be
// generalized in the future if someone is interested.
@ -531,7 +531,7 @@ Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
if (LI->isVolatile()) return 0;
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, TD);
@ -540,23 +540,23 @@ static Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout *TD){
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as TD,
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const DataLayout *TD){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub && TD) {
GlobalValue *GV1, *GV2;
int64_t Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
@ -564,7 +564,7 @@ static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
}
}
return 0;
}
@ -628,14 +628,14 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
!Ptr->getType()->isPointerTy())
return 0;
Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i])) {
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 &&
@ -709,12 +709,12 @@ static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
// Only handle pointers to sized types, not pointers to functions.
if (!ATy->getElementType()->isSized())
return 0;
}
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
@ -837,7 +837,7 @@ Constant *llvm::ConstantFoldInstruction(Instruction *I,
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
TD, TLI);
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, TD);
@ -887,19 +887,19 @@ Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
/// information, due to only being passed an opcode and operands. Constant
/// folding using this function strips this information.
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
const DataLayout *TD,
const TargetLibraryInfo *TLI) {
const TargetLibraryInfo *TLI) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
return C;
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
switch (Opcode) {
default: return 0;
case Instruction::ICmp:
@ -917,7 +917,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
Constant *Mask =
Constant *Mask =
ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
Input = ConstantExpr::getAnd(Input, Mask);
@ -965,7 +965,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
return C;
if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
}
}
@ -975,7 +975,7 @@ Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
/// returns a constant expression of the specified operands.
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
Constant *Ops0, Constant *Ops1,
const DataLayout *TD,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
@ -996,17 +996,17 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt &&
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
@ -1030,24 +1030,24 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
CE1->getOperand(0), TD, TLI);
}
}
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS =
Constant *LHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
TD, TLI);
Constant *RHS =
Constant *RHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
TD, TLI);
unsigned OpC =
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
Constant *Ops[] = { LHS, RHS };
return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
}
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
@ -1055,7 +1055,7 @@ Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (!CE->getOperand(1)->isNullValue())
return 0; // Do not allow stepping over the value!
@ -1125,14 +1125,14 @@ llvm::canConstantFoldCallTo(const Function *F) {
if (!F->hasName()) return false;
StringRef Name = F->getName();
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
switch (Name[0]) {
default: return false;
case 'a':
return Name == "acos" || Name == "asin" ||
return Name == "acos" || Name == "asin" ||
Name == "atan" || Name == "atan2";
case 'c':
return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
@ -1152,7 +1152,7 @@ llvm::canConstantFoldCallTo(const Function *F) {
}
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
Type *Ty) {
sys::llvm_fenv_clearexcept();
V = NativeFP(V);
@ -1160,7 +1160,7 @@ static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
sys::llvm_fenv_clearexcept();
return 0;
}
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
@ -1176,7 +1176,7 @@ static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
sys::llvm_fenv_clearexcept();
return 0;
}
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
@ -1270,7 +1270,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
case 'e':
if (Name == "exp" && TLI->has(LibFunc::exp))
return ConstantFoldFP(exp, V, Ty);
if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
// Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
// C99 library.
@ -1346,7 +1346,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
// Support ConstantVector in case we have an Undef in the top.
if (isa<ConstantVector>(Operands[0]) ||
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
Constant *Op = cast<Constant>(Operands[0]);
switch (F->getIntrinsicID()) {
@ -1365,11 +1365,11 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldConvertToInt(FPOp->getValueAPF(),
return ConstantFoldConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty);
}
}
if (isa<UndefValue>(Operands[0])) {
if (F->getIntrinsicID() == Intrinsic::bswap)
return Operands[0];
@ -1383,14 +1383,14 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
double Op1V = Ty->isFloatTy() ?
double Op1V = Ty->isFloatTy() ?
(double)Op1->getValueAPF().convertToFloat() :
Op1->getValueAPF().convertToDouble();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return 0;
double Op2V = Ty->isFloatTy() ?
double Op2V = Ty->isFloatTy() ?
(double)Op2->getValueAPF().convertToFloat():
Op2->getValueAPF().convertToDouble();
@ -1417,7 +1417,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
}
return 0;
}
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
switch (F->getIntrinsicID()) {
@ -1467,7 +1467,7 @@ llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
}
}
return 0;
}
return 0;