remove some unhelpful language from the tutorial

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357863 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2019-04-07 13:17:16 +00:00
parent b97b21f624
commit e0a373b557
2 changed files with 106 additions and 7 deletions

View File

@ -174,15 +174,10 @@ Language-Specific Optimizations
-------------------------------
One thing about LLVM that turns off many people is that it does not
solve all the world's problems in one system (sorry 'world hunger',
someone else will have to solve you some other day). One specific
solve all the world's problems in one system. One specific
complaint is that people perceive LLVM as being incapable of performing
high-level language-specific optimization: LLVM "loses too much
information".
Unfortunately, this is really not the place to give you a full and
unified version of "Chris Lattner's theory of compiler design". Instead,
I'll make a few observations:
information". Here are a few observations about this:
First, you're right that LLVM does lose information. For example, as of
this writing, there is no way to distinguish in the LLVM IR whether an

View File

@ -0,0 +1,104 @@
=============================================
My First Language Frontend: Table of Contents
=============================================
Introduction to the "Kaleidoscope" Language Tutorial
====================================================
Welcome to the "Implementing a language with LLVM" tutorial. This
tutorial runs through the implementation of a simple language, showing
how fun and easy it can be. This tutorial will get you up and started as
well as help to build a framework you can extend to other languages. The
code in this tutorial can also be used as a playground to hack on other
LLVM specific things.
The goal of this tutorial is to progressively unveil our language,
describing how it is built up over time. This will let us cover a fairly
broad range of language design and LLVM-specific usage issues, showing
and explaining the code for it all along the way, without overwhelming
you with tons of details up front.
It is useful to point out ahead of time that this tutorial is really
about teaching compiler techniques and LLVM specifically, *not* about
teaching modern and sane software engineering principles. In practice,
this means that we'll take a number of shortcuts to simplify the
exposition. For example, the code uses global variables
all over the place, doesn't use nice design patterns like
`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
it is very simple. If you dig in and use the code as a basis for future
projects, fixing these deficiencies shouldn't be hard.
I've tried to put this tutorial together in a way that makes chapters
easy to skip over if you are already familiar with or are uninterested
in the various pieces. The structure of the tutorial is:
- `Chapter #1 <#language>`_: Introduction to the Kaleidoscope
language, and the definition of its Lexer - This shows where we are
going and the basic functionality that we want it to do. In order to
make this tutorial maximally understandable and hackable, we choose
to implement everything in C++ instead of using lexer and parser
generators. LLVM works just fine with such tools, feel free
to use one if you prefer.
- `Chapter #2 <LangImpl02.html>`_: Implementing a Parser and AST -
With the lexer in place, we can talk about parsing techniques and
basic AST construction. This tutorial describes recursive descent
parsing and operator precedence parsing. Nothing in Chapters 1 or 2
is LLVM-specific, the code doesn't even link in LLVM at this point.
:)
- `Chapter #3 <LangImpl03.html>`_: Code generation to LLVM IR - With
the AST ready, we can show off how easy generation of LLVM IR really
is.
- `Chapter #4 <LangImpl04.html>`_: Adding JIT and Optimizer Support
- Because a lot of people are interested in using LLVM as a JIT,
we'll dive right into it and show you the 3 lines it takes to add JIT
support. LLVM is also useful in many other ways, but this is one
simple and "sexy" way to show off its power. :)
- `Chapter #5 <LangImpl05.html>`_: Extending the Language: Control
Flow - With the language up and running, we show how to extend it
with control flow operations (if/then/else and a 'for' loop). This
gives us a chance to talk about simple SSA construction and control
flow.
- `Chapter #6 <LangImpl06.html>`_: Extending the Language:
User-defined Operators - This is a silly but fun chapter that talks
about extending the language to let the user program define their own
arbitrary unary and binary operators (with assignable precedence!).
This lets us build a significant piece of the "language" as library
routines.
- `Chapter #7 <LangImpl07.html>`_: Extending the Language: Mutable
Variables - This chapter talks about adding user-defined local
variables along with an assignment operator. The interesting part
about this is how easy and trivial it is to construct SSA form in
LLVM: no, LLVM does *not* require your front-end to construct SSA
form!
- `Chapter #8 <LangImpl08.html>`_: Compiling to Object Files - This
chapter explains how to take LLVM IR and compile it down to object
files.
- `Chapter #9 <LangImpl09.html>`_: Extending the Language: Debug
Information - Having built a decent little programming language with
control flow, functions and mutable variables, we consider what it
takes to add debug information to standalone executables. This debug
information will allow you to set breakpoints in Kaleidoscope
functions, print out argument variables, and call functions - all
from within the debugger!
- `Chapter #10 <LangImpl10.html>`_: Conclusion and other useful LLVM
tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of
pointers to info about "special topics" like adding garbage
collection support, exceptions, debugging, support for "spaghetti
stacks", and a bunch of other tips and tricks.
By the end of the tutorial, we'll have written a bit less than 1000 lines
of non-comment, non-blank, lines of code. With this small amount of
code, we'll have built up a very reasonable compiler for a non-trivial
language including a hand-written lexer, parser, AST, as well as code
generation support with a JIT compiler. While other systems may have
interesting "hello world" tutorials, I think the breadth of this
tutorial is a great testament to the strengths of LLVM and why you
should consider it if you're interested in language or compiler design.
A note about this tutorial: we expect you to extend the language and
play with it on your own. Take the code and go crazy hacking away at it,
compilers don't need to be scary creatures - it can be a lot of fun to
play with languages!