sink most of the meat in smallvector back from SmallVectorTemplateCommon

down into SmallVectorImpl.  This requires sprinking a ton of this->'s in,
but gives us a place to factor.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91522 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2009-12-16 08:05:48 +00:00
parent 0588bcef8d
commit e6e55d7959

View File

@ -86,19 +86,11 @@ public:
template <typename T>
class SmallVectorTemplateCommon : public SmallVectorBase {
protected:
void setEnd(T *P) { this->EndX = P; }
public:
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
~SmallVectorTemplateCommon() {
// Destroy the constructed elements in the vector.
destroy_range(begin(), end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(begin());
}
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
@ -118,7 +110,7 @@ public:
const_iterator begin() const { return (const_iterator)this->BeginX; }
iterator end() { return (iterator)this->EndX; }
const_iterator end() const { return (const_iterator)this->EndX; }
private:
protected:
iterator capacity_ptr() { return (iterator)this->CapacityX; }
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
public:
@ -163,253 +155,297 @@ public:
const_reference back() const {
return end()[-1];
}
};
template <typename T, bool isPodLike>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
void push_back(const_reference Elt) {
if (this->EndX < this->CapacityX) {
Retry:
new (end()) T(Elt);
setEnd(end()+1);
return;
}
grow();
goto Retry;
};
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
};
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
public:
typedef typename SmallVectorTemplateBase<T, isPodLike<T>::value >::iterator
iterator;
typedef typename SmallVectorTemplateBase<T, isPodLike<T>::value >::size_type
size_type;
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
}
void pop_back() {
setEnd(end()-1);
end()->~T();
~SmallVectorImpl() {
// Destroy the constructed elements in the vector.
destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(this->begin());
}
T pop_back_val() {
T Result = back();
pop_back();
return Result;
}
void clear() {
destroy_range(begin(), end());
destroy_range(this->begin(), this->end());
this->EndX = this->BeginX;
}
void resize(unsigned N) {
if (N < size()) {
destroy_range(begin()+N, end());
setEnd(begin()+N);
} else if (N > size()) {
if (capacity() < N)
if (N < this->size()) {
this->destroy_range(this->begin()+N, this->end());
this->setEnd(this->begin()+N);
} else if (N > this->size()) {
if (this->capacity() < N)
grow(N);
construct_range(end(), begin()+N, T());
setEnd(begin()+N);
this->construct_range(this->end(), this->begin()+N, T());
this->setEnd(this->begin()+N);
}
}
void resize(unsigned N, const T &NV) {
if (N < size()) {
destroy_range(begin()+N, end());
setEnd(begin()+N);
} else if (N > size()) {
if (capacity() < N)
if (N < this->size()) {
destroy_range(this->begin()+N, this->end());
setEnd(this->begin()+N);
} else if (N > this->size()) {
if (this->capacity() < N)
grow(N);
construct_range(end(), begin()+N, NV);
setEnd(begin()+N);
construct_range(this->end(), this->begin()+N, NV);
setEnd(this->begin()+N);
}
}
void reserve(unsigned N) {
if (capacity() < N)
if (this->capacity() < N)
grow(N);
}
void swap(SmallVectorTemplateCommon &RHS);
void push_back(const T &Elt) {
if (this->EndX < this->CapacityX) {
Retry:
new (this->end()) T(Elt);
setEnd(this->end()+1);
return;
}
this->grow();
goto Retry;
}
void pop_back() {
setEnd(this->end()-1);
this->end()->~T();
}
T pop_back_val() {
T Result = this->back();
pop_back();
return Result;
}
void swap(SmallVectorImpl &RHS);
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
void append(in_iter in_start, in_iter in_end) {
size_type NumInputs = std::distance(in_start, in_end);
// Grow allocated space if needed.
if (NumInputs > size_type(capacity_ptr()-end()))
grow(size()+NumInputs);
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
grow(this->size()+NumInputs);
// Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, end());
setEnd(end() + NumInputs);
std::uninitialized_copy(in_start, in_end, this->end());
setEnd(this->end() + NumInputs);
}
/// append - Add the specified range to the end of the SmallVector.
///
void append(size_type NumInputs, const T &Elt) {
// Grow allocated space if needed.
if (NumInputs > size_type(capacity_ptr()-end()))
grow(size()+NumInputs);
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
grow(this->size()+NumInputs);
// Copy the new elements over.
std::uninitialized_fill_n(end(), NumInputs, Elt);
setEnd(end() + NumInputs);
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
setEnd(this->end() + NumInputs);
}
void assign(unsigned NumElts, const T &Elt) {
clear();
if (capacity() < NumElts)
if (this->capacity() < NumElts)
grow(NumElts);
setEnd(begin()+NumElts);
construct_range(begin(), end(), Elt);
setEnd(this->begin()+NumElts);
construct_range(this->begin(), this->end(), Elt);
}
iterator erase(iterator I) {
iterator N = I;
// Shift all elts down one.
std::copy(I+1, end(), I);
std::copy(I+1, this->end(), I);
// Drop the last elt.
pop_back();
return(N);
}
iterator erase(iterator S, iterator E) {
iterator N = S;
// Shift all elts down.
iterator I = std::copy(E, end(), S);
iterator I = std::copy(E, this->end(), S);
// Drop the last elts.
destroy_range(I, end());
destroy_range(I, this->end());
setEnd(I);
return(N);
}
iterator insert(iterator I, const T &Elt) {
if (I == end()) { // Important special case for empty vector.
if (I == this->end()) { // Important special case for empty vector.
push_back(Elt);
return end()-1;
return this->end()-1;
}
if (this->EndX < this->CapacityX) {
Retry:
new (end()) T(back());
setEnd(end()+1);
Retry:
new (this->end()) T(this->back());
this->setEnd(this->end()+1);
// Push everything else over.
std::copy_backward(I, end()-1, end());
std::copy_backward(I, this->end()-1, this->end());
*I = Elt;
return I;
}
size_t EltNo = I-begin();
grow();
I = begin()+EltNo;
size_t EltNo = I-this->begin();
this->grow();
I = this->begin()+EltNo;
goto Retry;
}
iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
if (I == end()) { // Important special case for empty vector.
if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt);
return end()-1;
return this->end()-1;
}
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I-begin();
size_t InsertElt = I - this->begin();
// Ensure there is enough space.
reserve(static_cast<unsigned>(size() + NumToInsert));
reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = begin()+InsertElt;
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(end()-I) >= NumToInsert) {
T *OldEnd = end();
append(end()-NumToInsert, end());
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
std::fill_n(I, NumToInsert, Elt);
return I;
}
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Copy over the elements that we're about to overwrite.
T *OldEnd = end();
setEnd(end() + NumToInsert);
T *OldEnd = this->end();
setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
uninitialized_copy(I, OldEnd, end()-NumOverwritten);
uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
return I;
}
template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) {
if (I == end()) { // Important special case for empty vector.
if (I == this->end()) { // Important special case for empty vector.
append(From, To);
return end()-1;
return this->end()-1;
}
size_t NumToInsert = std::distance(From, To);
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I-begin();
size_t InsertElt = I - this->begin();
// Ensure there is enough space.
reserve(static_cast<unsigned>(size() + NumToInsert));
reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = begin()+InsertElt;
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(end()-I) >= NumToInsert) {
T *OldEnd = end();
append(end()-NumToInsert, end());
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
std::copy(From, To, I);
return I;
}
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Copy over the elements that we're about to overwrite.
T *OldEnd = end();
setEnd(end() + NumToInsert);
T *OldEnd = this->end();
setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
uninitialized_copy(I, OldEnd, end()-NumOverwritten);
uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
std::copy(From, From+NumOverwritten, I);
// Insert the non-overwritten middle part.
uninitialized_copy(From+NumOverwritten, To, OldEnd);
return I;
}
const SmallVectorTemplateCommon
&operator=(const SmallVectorTemplateCommon &RHS);
bool operator==(const SmallVectorTemplateCommon &RHS) const {
if (size() != RHS.size()) return false;
return std::equal(begin(), end(), RHS.begin());
const SmallVectorImpl
&operator=(const SmallVectorImpl &RHS);
bool operator==(const SmallVectorImpl &RHS) const {
if (this->size() != RHS.size()) return false;
return std::equal(this->begin(), this->end(), RHS.begin());
}
bool operator!=(const SmallVectorTemplateCommon &RHS) const {
bool operator!=(const SmallVectorImpl &RHS) const {
return !(*this == RHS);
}
bool operator<(const SmallVectorTemplateCommon &RHS) const {
return std::lexicographical_compare(begin(), end(),
bool operator<(const SmallVectorImpl &RHS) const {
return std::lexicographical_compare(this->begin(), this->end(),
RHS.begin(), RHS.end());
}
/// set_size - Set the array size to \arg N, which the current array must have
/// enough capacity for.
///
@ -420,20 +456,20 @@ public:
/// update the size later. This avoids the cost of value initializing elements
/// which will only be overwritten.
void set_size(unsigned N) {
assert(N <= capacity());
setEnd(begin() + N);
assert(N <= this->capacity());
setEnd(this->begin() + N);
}
private:
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(size_type MinSize = 0);
void grow(size_t MinSize = 0);
static void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S)
new (S) T(Elt);
}
static void destroy_range(T *S, T *E) {
// No need to do a destroy loop for POD's.
if (isPodLike<T>::value) return;
@ -459,31 +495,31 @@ private:
// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T>
void SmallVectorTemplateCommon<T>::grow(size_t MinSize) {
size_t CurCapacity = capacity();
size_t CurSize = size();
void SmallVectorImpl<T>::grow(size_t MinSize) {
size_t CurCapacity = this->capacity();
size_t CurSize = this->size();
size_t NewCapacity = 2*CurCapacity;
if (NewCapacity < MinSize)
NewCapacity = MinSize;
T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
// Copy the elements over.
uninitialized_copy(begin(), end(), NewElts);
uninitialized_copy(this->begin(), this->end(), NewElts);
// Destroy the original elements.
destroy_range(begin(), end());
destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(begin());
operator delete(this->begin());
setEnd(NewElts+CurSize);
this->BeginX = NewElts;
this->CapacityX = begin()+NewCapacity;
this->CapacityX = this->begin()+NewCapacity;
}
template <typename T>
void SmallVectorTemplateCommon<T>::swap(SmallVectorTemplateCommon<T> &RHS) {
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
if (this == &RHS) return;
// We can only avoid copying elements if neither vector is small.
@ -493,54 +529,53 @@ void SmallVectorTemplateCommon<T>::swap(SmallVectorTemplateCommon<T> &RHS) {
std::swap(this->CapacityX, RHS.CapacityX);
return;
}
if (RHS.size() > capacity())
if (RHS.size() > this->capacity())
grow(RHS.size());
if (size() > RHS.capacity())
RHS.grow(size());
if (this->size() > RHS.capacity())
RHS.grow(this->size());
// Swap the shared elements.
size_t NumShared = size();
size_t NumShared = this->size();
if (NumShared > RHS.size()) NumShared = RHS.size();
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
std::swap((*this)[i], RHS[i]);
// Copy over the extra elts.
if (size() > RHS.size()) {
size_t EltDiff = size() - RHS.size();
uninitialized_copy(begin()+NumShared, end(), RHS.end());
if (this->size() > RHS.size()) {
size_t EltDiff = this->size() - RHS.size();
uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
RHS.setEnd(RHS.end()+EltDiff);
destroy_range(begin()+NumShared, end());
setEnd(begin()+NumShared);
} else if (RHS.size() > size()) {
size_t EltDiff = RHS.size() - size();
uninitialized_copy(RHS.begin()+NumShared, RHS.end(), end());
setEnd(end() + EltDiff);
destroy_range(this->begin()+NumShared, this->end());
setEnd(this->begin()+NumShared);
} else if (RHS.size() > this->size()) {
size_t EltDiff = RHS.size() - this->size();
uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
setEnd(this->end() + EltDiff);
destroy_range(RHS.begin()+NumShared, RHS.end());
RHS.setEnd(RHS.begin()+NumShared);
}
}
template <typename T>
const SmallVectorTemplateCommon<T> &
SmallVectorTemplateCommon<T>::
operator=(const SmallVectorTemplateCommon<T> &RHS) {
const SmallVectorImpl<T> &SmallVectorImpl<T>::
operator=(const SmallVectorImpl<T> &RHS) {
// Avoid self-assignment.
if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then
// destroy any excess.
size_t RHSSize = RHS.size();
size_t CurSize = size();
size_t CurSize = this->size();
if (CurSize >= RHSSize) {
// Assign common elements.
iterator NewEnd;
if (RHSSize)
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, begin());
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
else
NewEnd = begin();
NewEnd = this->begin();
// Destroy excess elements.
destroy_range(NewEnd, end());
destroy_range(NewEnd, this->end());
// Trim.
setEnd(NewEnd);
@ -549,52 +584,25 @@ SmallVectorTemplateCommon<T>::
// If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow.
if (capacity() < RHSSize) {
if (this->capacity() < RHSSize) {
// Destroy current elements.
destroy_range(begin(), end());
setEnd(begin());
destroy_range(this->begin(), this->end());
setEnd(this->begin());
CurSize = 0;
grow(RHSSize);
} else if (CurSize) {
// Otherwise, use assignment for the already-constructed elements.
std::copy(RHS.begin(), RHS.begin()+CurSize, begin());
std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
}
// Copy construct the new elements in place.
uninitialized_copy(RHS.begin()+CurSize, RHS.end(), begin()+CurSize);
uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
// Set end.
setEnd(begin()+RHSSize);
setEnd(this->begin()+RHSSize);
return *this;
}
template <typename T, bool isPodLike>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
};
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
};
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
public:
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
}
};
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements