sink most of the meat in smallvector back from SmallVectorTemplateCommon

down into SmallVectorImpl.  This requires sprinking a ton of this->'s in,
but gives us a place to factor.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91522 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2009-12-16 08:05:48 +00:00
parent 0588bcef8d
commit e6e55d7959

View File

@ -86,19 +86,11 @@ public:
template <typename T> template <typename T>
class SmallVectorTemplateCommon : public SmallVectorBase { class SmallVectorTemplateCommon : public SmallVectorBase {
protected:
void setEnd(T *P) { this->EndX = P; } void setEnd(T *P) { this->EndX = P; }
public: public:
SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {} SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
~SmallVectorTemplateCommon() {
// Destroy the constructed elements in the vector.
destroy_range(begin(), end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(begin());
}
typedef size_t size_type; typedef size_t size_type;
typedef ptrdiff_t difference_type; typedef ptrdiff_t difference_type;
typedef T value_type; typedef T value_type;
@ -118,7 +110,7 @@ public:
const_iterator begin() const { return (const_iterator)this->BeginX; } const_iterator begin() const { return (const_iterator)this->BeginX; }
iterator end() { return (iterator)this->EndX; } iterator end() { return (iterator)this->EndX; }
const_iterator end() const { return (const_iterator)this->EndX; } const_iterator end() const { return (const_iterator)this->EndX; }
private: protected:
iterator capacity_ptr() { return (iterator)this->CapacityX; } iterator capacity_ptr() { return (iterator)this->CapacityX; }
const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;} const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
public: public:
@ -163,64 +155,108 @@ public:
const_reference back() const { const_reference back() const {
return end()[-1]; return end()[-1];
} }
};
void push_back(const_reference Elt) {
if (this->EndX < this->CapacityX) { template <typename T, bool isPodLike>
Retry: class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
new (end()) T(Elt); public:
setEnd(end()+1); SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
return;
} };
grow();
goto Retry; template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
};
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
public:
typedef typename SmallVectorTemplateBase<T, isPodLike<T>::value >::iterator
iterator;
typedef typename SmallVectorTemplateBase<T, isPodLike<T>::value >::size_type
size_type;
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
} }
void pop_back() { ~SmallVectorImpl() {
setEnd(end()-1); // Destroy the constructed elements in the vector.
end()->~T(); destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall())
operator delete(this->begin());
} }
T pop_back_val() {
T Result = back();
pop_back();
return Result;
}
void clear() { void clear() {
destroy_range(begin(), end()); destroy_range(this->begin(), this->end());
this->EndX = this->BeginX; this->EndX = this->BeginX;
} }
void resize(unsigned N) { void resize(unsigned N) {
if (N < size()) { if (N < this->size()) {
destroy_range(begin()+N, end()); this->destroy_range(this->begin()+N, this->end());
setEnd(begin()+N); this->setEnd(this->begin()+N);
} else if (N > size()) { } else if (N > this->size()) {
if (capacity() < N) if (this->capacity() < N)
grow(N); grow(N);
construct_range(end(), begin()+N, T()); this->construct_range(this->end(), this->begin()+N, T());
setEnd(begin()+N); this->setEnd(this->begin()+N);
} }
} }
void resize(unsigned N, const T &NV) { void resize(unsigned N, const T &NV) {
if (N < size()) { if (N < this->size()) {
destroy_range(begin()+N, end()); destroy_range(this->begin()+N, this->end());
setEnd(begin()+N); setEnd(this->begin()+N);
} else if (N > size()) { } else if (N > this->size()) {
if (capacity() < N) if (this->capacity() < N)
grow(N); grow(N);
construct_range(end(), begin()+N, NV); construct_range(this->end(), this->begin()+N, NV);
setEnd(begin()+N); setEnd(this->begin()+N);
} }
} }
void reserve(unsigned N) { void reserve(unsigned N) {
if (capacity() < N) if (this->capacity() < N)
grow(N); grow(N);
} }
void swap(SmallVectorTemplateCommon &RHS); void push_back(const T &Elt) {
if (this->EndX < this->CapacityX) {
Retry:
new (this->end()) T(Elt);
setEnd(this->end()+1);
return;
}
this->grow();
goto Retry;
}
void pop_back() {
setEnd(this->end()-1);
this->end()->~T();
}
T pop_back_val() {
T Result = this->back();
pop_back();
return Result;
}
void swap(SmallVectorImpl &RHS);
/// append - Add the specified range to the end of the SmallVector. /// append - Add the specified range to the end of the SmallVector.
/// ///
@ -228,40 +264,40 @@ public:
void append(in_iter in_start, in_iter in_end) { void append(in_iter in_start, in_iter in_end) {
size_type NumInputs = std::distance(in_start, in_end); size_type NumInputs = std::distance(in_start, in_end);
// Grow allocated space if needed. // Grow allocated space if needed.
if (NumInputs > size_type(capacity_ptr()-end())) if (NumInputs > size_type(this->capacity_ptr()-this->end()))
grow(size()+NumInputs); grow(this->size()+NumInputs);
// Copy the new elements over. // Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access // TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy. // iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, end()); std::uninitialized_copy(in_start, in_end, this->end());
setEnd(end() + NumInputs); setEnd(this->end() + NumInputs);
} }
/// append - Add the specified range to the end of the SmallVector. /// append - Add the specified range to the end of the SmallVector.
/// ///
void append(size_type NumInputs, const T &Elt) { void append(size_type NumInputs, const T &Elt) {
// Grow allocated space if needed. // Grow allocated space if needed.
if (NumInputs > size_type(capacity_ptr()-end())) if (NumInputs > size_type(this->capacity_ptr()-this->end()))
grow(size()+NumInputs); grow(this->size()+NumInputs);
// Copy the new elements over. // Copy the new elements over.
std::uninitialized_fill_n(end(), NumInputs, Elt); std::uninitialized_fill_n(this->end(), NumInputs, Elt);
setEnd(end() + NumInputs); setEnd(this->end() + NumInputs);
} }
void assign(unsigned NumElts, const T &Elt) { void assign(unsigned NumElts, const T &Elt) {
clear(); clear();
if (capacity() < NumElts) if (this->capacity() < NumElts)
grow(NumElts); grow(NumElts);
setEnd(begin()+NumElts); setEnd(this->begin()+NumElts);
construct_range(begin(), end(), Elt); construct_range(this->begin(), this->end(), Elt);
} }
iterator erase(iterator I) { iterator erase(iterator I) {
iterator N = I; iterator N = I;
// Shift all elts down one. // Shift all elts down one.
std::copy(I+1, end(), I); std::copy(I+1, this->end(), I);
// Drop the last elt. // Drop the last elt.
pop_back(); pop_back();
return(N); return(N);
@ -270,56 +306,56 @@ public:
iterator erase(iterator S, iterator E) { iterator erase(iterator S, iterator E) {
iterator N = S; iterator N = S;
// Shift all elts down. // Shift all elts down.
iterator I = std::copy(E, end(), S); iterator I = std::copy(E, this->end(), S);
// Drop the last elts. // Drop the last elts.
destroy_range(I, end()); destroy_range(I, this->end());
setEnd(I); setEnd(I);
return(N); return(N);
} }
iterator insert(iterator I, const T &Elt) { iterator insert(iterator I, const T &Elt) {
if (I == end()) { // Important special case for empty vector. if (I == this->end()) { // Important special case for empty vector.
push_back(Elt); push_back(Elt);
return end()-1; return this->end()-1;
} }
if (this->EndX < this->CapacityX) { if (this->EndX < this->CapacityX) {
Retry: Retry:
new (end()) T(back()); new (this->end()) T(this->back());
setEnd(end()+1); this->setEnd(this->end()+1);
// Push everything else over. // Push everything else over.
std::copy_backward(I, end()-1, end()); std::copy_backward(I, this->end()-1, this->end());
*I = Elt; *I = Elt;
return I; return I;
} }
size_t EltNo = I-begin(); size_t EltNo = I-this->begin();
grow(); this->grow();
I = begin()+EltNo; I = this->begin()+EltNo;
goto Retry; goto Retry;
} }
iterator insert(iterator I, size_type NumToInsert, const T &Elt) { iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
if (I == end()) { // Important special case for empty vector. if (I == this->end()) { // Important special case for empty vector.
append(NumToInsert, Elt); append(NumToInsert, Elt);
return end()-1; return this->end()-1;
} }
// Convert iterator to elt# to avoid invalidating iterator when we reserve() // Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I-begin(); size_t InsertElt = I - this->begin();
// Ensure there is enough space. // Ensure there is enough space.
reserve(static_cast<unsigned>(size() + NumToInsert)); reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator. // Uninvalidate the iterator.
I = begin()+InsertElt; I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the // If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to // range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't // insertion. Since we already reserved space, we know that this won't
// reallocate the vector. // reallocate the vector.
if (size_t(end()-I) >= NumToInsert) { if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = end(); T *OldEnd = this->end();
append(end()-NumToInsert, end()); append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced. // Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
@ -332,10 +368,10 @@ public:
// not inserting at the end. // not inserting at the end.
// Copy over the elements that we're about to overwrite. // Copy over the elements that we're about to overwrite.
T *OldEnd = end(); T *OldEnd = this->end();
setEnd(end() + NumToInsert); setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I; size_t NumOverwritten = OldEnd-I;
uninitialized_copy(I, OldEnd, end()-NumOverwritten); uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part. // Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt); std::fill_n(I, NumOverwritten, Elt);
@ -347,28 +383,28 @@ public:
template<typename ItTy> template<typename ItTy>
iterator insert(iterator I, ItTy From, ItTy To) { iterator insert(iterator I, ItTy From, ItTy To) {
if (I == end()) { // Important special case for empty vector. if (I == this->end()) { // Important special case for empty vector.
append(From, To); append(From, To);
return end()-1; return this->end()-1;
} }
size_t NumToInsert = std::distance(From, To); size_t NumToInsert = std::distance(From, To);
// Convert iterator to elt# to avoid invalidating iterator when we reserve() // Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I-begin(); size_t InsertElt = I - this->begin();
// Ensure there is enough space. // Ensure there is enough space.
reserve(static_cast<unsigned>(size() + NumToInsert)); reserve(static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator. // Uninvalidate the iterator.
I = begin()+InsertElt; I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the // If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to // range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't // insertion. Since we already reserved space, we know that this won't
// reallocate the vector. // reallocate the vector.
if (size_t(end()-I) >= NumToInsert) { if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = end(); T *OldEnd = this->end();
append(end()-NumToInsert, end()); append(this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced. // Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
@ -381,10 +417,10 @@ public:
// not inserting at the end. // not inserting at the end.
// Copy over the elements that we're about to overwrite. // Copy over the elements that we're about to overwrite.
T *OldEnd = end(); T *OldEnd = this->end();
setEnd(end() + NumToInsert); setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I; size_t NumOverwritten = OldEnd-I;
uninitialized_copy(I, OldEnd, end()-NumOverwritten); uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part. // Replace the overwritten part.
std::copy(From, From+NumOverwritten, I); std::copy(From, From+NumOverwritten, I);
@ -394,19 +430,19 @@ public:
return I; return I;
} }
const SmallVectorTemplateCommon const SmallVectorImpl
&operator=(const SmallVectorTemplateCommon &RHS); &operator=(const SmallVectorImpl &RHS);
bool operator==(const SmallVectorTemplateCommon &RHS) const { bool operator==(const SmallVectorImpl &RHS) const {
if (size() != RHS.size()) return false; if (this->size() != RHS.size()) return false;
return std::equal(begin(), end(), RHS.begin()); return std::equal(this->begin(), this->end(), RHS.begin());
} }
bool operator!=(const SmallVectorTemplateCommon &RHS) const { bool operator!=(const SmallVectorImpl &RHS) const {
return !(*this == RHS); return !(*this == RHS);
} }
bool operator<(const SmallVectorTemplateCommon &RHS) const { bool operator<(const SmallVectorImpl &RHS) const {
return std::lexicographical_compare(begin(), end(), return std::lexicographical_compare(this->begin(), this->end(),
RHS.begin(), RHS.end()); RHS.begin(), RHS.end());
} }
@ -420,14 +456,14 @@ public:
/// update the size later. This avoids the cost of value initializing elements /// update the size later. This avoids the cost of value initializing elements
/// which will only be overwritten. /// which will only be overwritten.
void set_size(unsigned N) { void set_size(unsigned N) {
assert(N <= capacity()); assert(N <= this->capacity());
setEnd(begin() + N); setEnd(this->begin() + N);
} }
private: private:
/// grow - double the size of the allocated memory, guaranteeing space for at /// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified. /// least one more element or MinSize if specified.
void grow(size_type MinSize = 0); void grow(size_t MinSize = 0);
static void construct_range(T *S, T *E, const T &Elt) { static void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S) for (; S != E; ++S)
@ -459,31 +495,31 @@ private:
// Define this out-of-line to dissuade the C++ compiler from inlining it. // Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T> template <typename T>
void SmallVectorTemplateCommon<T>::grow(size_t MinSize) { void SmallVectorImpl<T>::grow(size_t MinSize) {
size_t CurCapacity = capacity(); size_t CurCapacity = this->capacity();
size_t CurSize = size(); size_t CurSize = this->size();
size_t NewCapacity = 2*CurCapacity; size_t NewCapacity = 2*CurCapacity;
if (NewCapacity < MinSize) if (NewCapacity < MinSize)
NewCapacity = MinSize; NewCapacity = MinSize;
T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T))); T *NewElts = static_cast<T*>(operator new(NewCapacity*sizeof(T)));
// Copy the elements over. // Copy the elements over.
uninitialized_copy(begin(), end(), NewElts); uninitialized_copy(this->begin(), this->end(), NewElts);
// Destroy the original elements. // Destroy the original elements.
destroy_range(begin(), end()); destroy_range(this->begin(), this->end());
// If this wasn't grown from the inline copy, deallocate the old space. // If this wasn't grown from the inline copy, deallocate the old space.
if (!this->isSmall()) if (!this->isSmall())
operator delete(begin()); operator delete(this->begin());
setEnd(NewElts+CurSize); setEnd(NewElts+CurSize);
this->BeginX = NewElts; this->BeginX = NewElts;
this->CapacityX = begin()+NewCapacity; this->CapacityX = this->begin()+NewCapacity;
} }
template <typename T> template <typename T>
void SmallVectorTemplateCommon<T>::swap(SmallVectorTemplateCommon<T> &RHS) { void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
if (this == &RHS) return; if (this == &RHS) return;
// We can only avoid copying elements if neither vector is small. // We can only avoid copying elements if neither vector is small.
@ -493,54 +529,53 @@ void SmallVectorTemplateCommon<T>::swap(SmallVectorTemplateCommon<T> &RHS) {
std::swap(this->CapacityX, RHS.CapacityX); std::swap(this->CapacityX, RHS.CapacityX);
return; return;
} }
if (RHS.size() > capacity()) if (RHS.size() > this->capacity())
grow(RHS.size()); grow(RHS.size());
if (size() > RHS.capacity()) if (this->size() > RHS.capacity())
RHS.grow(size()); RHS.grow(this->size());
// Swap the shared elements. // Swap the shared elements.
size_t NumShared = size(); size_t NumShared = this->size();
if (NumShared > RHS.size()) NumShared = RHS.size(); if (NumShared > RHS.size()) NumShared = RHS.size();
for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i) for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
std::swap((*this)[i], RHS[i]); std::swap((*this)[i], RHS[i]);
// Copy over the extra elts. // Copy over the extra elts.
if (size() > RHS.size()) { if (this->size() > RHS.size()) {
size_t EltDiff = size() - RHS.size(); size_t EltDiff = this->size() - RHS.size();
uninitialized_copy(begin()+NumShared, end(), RHS.end()); uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
RHS.setEnd(RHS.end()+EltDiff); RHS.setEnd(RHS.end()+EltDiff);
destroy_range(begin()+NumShared, end()); destroy_range(this->begin()+NumShared, this->end());
setEnd(begin()+NumShared); setEnd(this->begin()+NumShared);
} else if (RHS.size() > size()) { } else if (RHS.size() > this->size()) {
size_t EltDiff = RHS.size() - size(); size_t EltDiff = RHS.size() - this->size();
uninitialized_copy(RHS.begin()+NumShared, RHS.end(), end()); uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
setEnd(end() + EltDiff); setEnd(this->end() + EltDiff);
destroy_range(RHS.begin()+NumShared, RHS.end()); destroy_range(RHS.begin()+NumShared, RHS.end());
RHS.setEnd(RHS.begin()+NumShared); RHS.setEnd(RHS.begin()+NumShared);
} }
} }
template <typename T> template <typename T>
const SmallVectorTemplateCommon<T> & const SmallVectorImpl<T> &SmallVectorImpl<T>::
SmallVectorTemplateCommon<T>:: operator=(const SmallVectorImpl<T> &RHS) {
operator=(const SmallVectorTemplateCommon<T> &RHS) {
// Avoid self-assignment. // Avoid self-assignment.
if (this == &RHS) return *this; if (this == &RHS) return *this;
// If we already have sufficient space, assign the common elements, then // If we already have sufficient space, assign the common elements, then
// destroy any excess. // destroy any excess.
size_t RHSSize = RHS.size(); size_t RHSSize = RHS.size();
size_t CurSize = size(); size_t CurSize = this->size();
if (CurSize >= RHSSize) { if (CurSize >= RHSSize) {
// Assign common elements. // Assign common elements.
iterator NewEnd; iterator NewEnd;
if (RHSSize) if (RHSSize)
NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, begin()); NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
else else
NewEnd = begin(); NewEnd = this->begin();
// Destroy excess elements. // Destroy excess elements.
destroy_range(NewEnd, end()); destroy_range(NewEnd, this->end());
// Trim. // Trim.
setEnd(NewEnd); setEnd(NewEnd);
@ -549,53 +584,26 @@ SmallVectorTemplateCommon<T>::
// If we have to grow to have enough elements, destroy the current elements. // If we have to grow to have enough elements, destroy the current elements.
// This allows us to avoid copying them during the grow. // This allows us to avoid copying them during the grow.
if (capacity() < RHSSize) { if (this->capacity() < RHSSize) {
// Destroy current elements. // Destroy current elements.
destroy_range(begin(), end()); destroy_range(this->begin(), this->end());
setEnd(begin()); setEnd(this->begin());
CurSize = 0; CurSize = 0;
grow(RHSSize); grow(RHSSize);
} else if (CurSize) { } else if (CurSize) {
// Otherwise, use assignment for the already-constructed elements. // Otherwise, use assignment for the already-constructed elements.
std::copy(RHS.begin(), RHS.begin()+CurSize, begin()); std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
} }
// Copy construct the new elements in place. // Copy construct the new elements in place.
uninitialized_copy(RHS.begin()+CurSize, RHS.end(), begin()+CurSize); uninitialized_copy(RHS.begin()+CurSize, RHS.end(), this->begin()+CurSize);
// Set end. // Set end.
setEnd(begin()+RHSSize); setEnd(this->begin()+RHSSize);
return *this; return *this;
} }
template <typename T, bool isPodLike>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
};
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
public:
SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
};
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
public:
// Default ctor - Initialize to empty.
explicit SmallVectorImpl(unsigned N)
: SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
}
};
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements /// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of /// in-place, which allows it to avoid heap allocation when the actual number of