Implement a FIXME, recusively reassociating

A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))

This implements Reassociate/mul-factor3.ll


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26757 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2006-03-14 16:04:29 +00:00
parent 95f6553c49
commit e9efecbf47

View File

@ -79,8 +79,8 @@ namespace {
void BuildRankMap(Function &F); void BuildRankMap(Function &F);
unsigned getRank(Value *V); unsigned getRank(Value *V);
void ReassociateExpression(BinaryOperator *I); void ReassociateExpression(BinaryOperator *I);
void RewriteExprTree(BinaryOperator *I, unsigned Idx, void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
std::vector<ValueEntry> &Ops); unsigned Idx = 0);
Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops); Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops); void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
void LinearizeExpr(BinaryOperator *I); void LinearizeExpr(BinaryOperator *I);
@ -174,7 +174,7 @@ unsigned Reassociate::getRank(Value *V) {
/// isReassociableOp - Return true if V is an instruction of the specified /// isReassociableOp - Return true if V is an instruction of the specified
/// opcode and if it only has one use. /// opcode and if it only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
if (V->hasOneUse() && isa<Instruction>(V) && if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
cast<Instruction>(V)->getOpcode() == Opcode) cast<Instruction>(V)->getOpcode() == Opcode)
return cast<BinaryOperator>(V); return cast<BinaryOperator>(V);
return 0; return 0;
@ -234,6 +234,10 @@ void Reassociate::LinearizeExpr(BinaryOperator *I) {
/// form of the the expression (((a+b)+c)+d), and collects information about the /// form of the the expression (((a+b)+c)+d), and collects information about the
/// rank of the non-tree operands. /// rank of the non-tree operands.
/// ///
/// NOTE: These intentionally destroys the expression tree operands (turning
/// them into undef values) to reduce #uses of the values. This means that the
/// caller MUST use something like RewriteExprTree to put the values back in.
///
void Reassociate::LinearizeExprTree(BinaryOperator *I, void Reassociate::LinearizeExprTree(BinaryOperator *I,
std::vector<ValueEntry> &Ops) { std::vector<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
@ -262,6 +266,10 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
// such, just remember these operands and their rank. // such, just remember these operands and their rank.
Ops.push_back(ValueEntry(getRank(LHS), LHS)); Ops.push_back(ValueEntry(getRank(LHS), LHS));
Ops.push_back(ValueEntry(getRank(RHS), RHS)); Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the leaves out.
I->setOperand(0, UndefValue::get(I->getType()));
I->setOperand(1, UndefValue::get(I->getType()));
return; return;
} else { } else {
// Turn X+(Y+Z) -> (Y+Z)+X // Turn X+(Y+Z) -> (Y+Z)+X
@ -293,13 +301,17 @@ void Reassociate::LinearizeExprTree(BinaryOperator *I,
// Remember the RHS operand and its rank. // Remember the RHS operand and its rank.
Ops.push_back(ValueEntry(getRank(RHS), RHS)); Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the RHS leaf out.
I->setOperand(1, UndefValue::get(I->getType()));
} }
// RewriteExprTree - Now that the operands for this expression tree are // RewriteExprTree - Now that the operands for this expression tree are
// linearized and optimized, emit them in-order. This function is written to be // linearized and optimized, emit them in-order. This function is written to be
// tail recursive. // tail recursive.
void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i, void Reassociate::RewriteExprTree(BinaryOperator *I,
std::vector<ValueEntry> &Ops) { std::vector<ValueEntry> &Ops,
unsigned i) {
if (i+2 == Ops.size()) { if (i+2 == Ops.size()) {
if (I->getOperand(0) != Ops[i].Op || if (I->getOperand(0) != Ops[i].Op ||
I->getOperand(1) != Ops[i+1].Op) { I->getOperand(1) != Ops[i+1].Op) {
@ -334,7 +346,7 @@ void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
// Compactify the tree instructions together with each other to guarantee // Compactify the tree instructions together with each other to guarantee
// that the expression tree is dominated by all of Ops. // that the expression tree is dominated by all of Ops.
LHS->moveBefore(I); LHS->moveBefore(I);
RewriteExprTree(LHS, i+1, Ops); RewriteExprTree(LHS, Ops, i+1);
} }
@ -474,14 +486,36 @@ Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Factors.erase(Factors.begin()+i); Factors.erase(Factors.begin()+i);
break; break;
} }
if (!FoundFactor) return 0; if (!FoundFactor) {
// Make sure to restore the operands to the expression tree.
RewriteExprTree(BO, Factors);
return 0;
}
if (Factors.size() == 1) return Factors[0].Op; if (Factors.size() == 1) return Factors[0].Op;
RewriteExprTree(BO, 0, Factors); RewriteExprTree(BO, Factors);
return BO; return BO;
} }
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
/// add its operands as factors, otherwise add V to the list of factors.
static void FindSingleUseMultiplyFactors(Value *V,
std::vector<Value*> &Factors) {
BinaryOperator *BO;
if ((!V->hasOneUse() && !V->use_empty()) ||
!(BO = dyn_cast<BinaryOperator>(V)) ||
BO->getOpcode() != Instruction::Mul) {
Factors.push_back(V);
return;
}
// Otherwise, add the LHS and RHS to the list of factors.
FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
}
Value *Reassociate::OptimizeExpression(BinaryOperator *I, Value *Reassociate::OptimizeExpression(BinaryOperator *I,
std::vector<ValueEntry> &Ops) { std::vector<ValueEntry> &Ops) {
@ -627,26 +661,26 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
if (!I->getType()->isFloatingPoint()) { if (!I->getType()->isFloatingPoint()) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i) { for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
if (BOp->getOpcode() == Instruction::Mul && BOp->hasOneUse()) { if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
// Compute all of the factors of this added value. // Compute all of the factors of this added value.
std::vector<ValueEntry> Factors; std::vector<Value*> Factors;
LinearizeExprTree(BOp, Factors); FindSingleUseMultiplyFactors(BOp, Factors);
assert(Factors.size() > 1 && "Bad linearize!"); assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op. // Add one to FactorOccurrences for each unique factor in this op.
if (Factors.size() == 2) { if (Factors.size() == 2) {
unsigned Occ = ++FactorOccurrences[Factors[0].Op]; unsigned Occ = ++FactorOccurrences[Factors[0]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0].Op; } if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
if (Factors[0].Op != Factors[1].Op) { // Don't double count A*A. if (Factors[0] != Factors[1]) { // Don't double count A*A.
Occ = ++FactorOccurrences[Factors[1].Op]; Occ = ++FactorOccurrences[Factors[1]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1].Op; } if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
} }
} else { } else {
std::set<Value*> Duplicates; std::set<Value*> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) for (unsigned i = 0, e = Factors.size(); i != e; ++i)
if (Duplicates.insert(Factors[i].Op).second) { if (Duplicates.insert(Factors[i]).second) {
unsigned Occ = ++FactorOccurrences[Factors[i].Op]; unsigned Occ = ++FactorOccurrences[Factors[i]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i].Op; } if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
} }
} }
} }
@ -675,21 +709,26 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
// No need for extra uses anymore. // No need for extra uses anymore.
delete DummyInst; delete DummyInst;
unsigned NumAddedValues = NewMulOps.size();
Value *V = EmitAddTreeOfValues(I, NewMulOps); Value *V = EmitAddTreeOfValues(I, NewMulOps);
// FIXME: Must optimize V now, to handle this case: Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
// A*A*B + A*A*C -> A*(A*B+A*C) -> A*(A*(B+C))
V = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
// Now that we have inserted V and its sole use, optimize it. This allows
// us to handle cases that require multiple factoring steps, such as this:
// A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
if (NumAddedValues > 1)
ReassociateExpression(cast<BinaryOperator>(V));
++NumFactor; ++NumFactor;
if (Ops.size() == 0) if (Ops.size() == 0)
return V; return V2;
// Add the new value to the list of things being added. // Add the new value to the list of things being added.
Ops.insert(Ops.begin(), ValueEntry(getRank(V), V)); Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
// Rewrite the tree so that there is now a use of V. // Rewrite the tree so that there is now a use of V.
RewriteExprTree(I, 0, Ops); RewriteExprTree(I, Ops);
return OptimizeExpression(I, Ops); return OptimizeExpression(I, Ops);
} }
break; break;
@ -808,7 +847,7 @@ void Reassociate::ReassociateExpression(BinaryOperator *I) {
} else { } else {
// Now that we ordered and optimized the expressions, splat them back into // Now that we ordered and optimized the expressions, splat them back into
// the expression tree, removing any unneeded nodes. // the expression tree, removing any unneeded nodes.
RewriteExprTree(I, 0, Ops); RewriteExprTree(I, Ops);
} }
} }