Initial checkin of the Mach-O emitter. There's plenty of fixmes, but it

does emit linkable .o files in very simple cases.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29850 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nate Begeman 2006-08-23 21:08:52 +00:00
parent 81bc5088dd
commit eb883af390
8 changed files with 1118 additions and 47 deletions

View File

@ -0,0 +1,600 @@
//=== MachOWriter.h - Target-independent Mach-O writer support --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MachOWriter class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHOWRITER_H
#define LLVM_CODEGEN_MACHOWRITER_H
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <list>
namespace llvm {
class GlobalVariable;
class Mangler;
class MachineCodeEmitter;
class MachOCodeEmitter;
/// MachOWriter - This class implements the common target-independent code for
/// writing Mach-O files. Targets should derive a class from this to
/// parameterize the output format.
///
class MachOWriter : public MachineFunctionPass {
friend class MachOCodeEmitter;
public:
MachineCodeEmitter &getMachineCodeEmitter() const {
return *(MachineCodeEmitter*)MCE;
}
~MachOWriter();
typedef std::vector<unsigned char> DataBuffer;
protected:
MachOWriter(std::ostream &O, TargetMachine &TM);
/// Output stream to send the resultant object file to.
///
std::ostream &O;
/// Target machine description.
///
TargetMachine &TM;
/// Mang - The object used to perform name mangling for this module.
///
Mangler *Mang;
/// MCE - The MachineCodeEmitter object that we are exposing to emit machine
/// code for functions to the .o file.
MachOCodeEmitter *MCE;
/// is64Bit/isLittleEndian - This information is inferred from the target
/// machine directly, indicating what header values and flags to set.
bool is64Bit, isLittleEndian;
/// doInitialization - Emit the file header and all of the global variables
/// for the module to the Mach-O file.
bool doInitialization(Module &M);
bool runOnMachineFunction(MachineFunction &MF);
/// doFinalization - Now that the module has been completely processed, emit
/// the Mach-O file to 'O'.
bool doFinalization(Module &M);
/// MachOHeader - This struct contains the header information about a
/// specific architecture type/subtype pair that is emitted to the file.
struct MachOHeader {
uint32_t magic; // mach magic number identifier
uint32_t cputype; // cpu specifier
uint32_t cpusubtype; // machine specifier
uint32_t filetype; // type of file
uint32_t ncmds; // number of load commands
uint32_t sizeofcmds; // the size of all the load commands
uint32_t flags; // flags
uint32_t reserved; // 64-bit only
/// HeaderData - The actual data for the header which we are building
/// up for emission to the file.
DataBuffer HeaderData;
// Constants for the cputype field
// see <mach/machine.h>
enum { CPU_TYPE_I386 = 7,
CPU_TYPE_X86_64 = 7 | 0x1000000,
CPU_TYPE_ARM = 12,
CPU_TYPE_SPARC = 14,
CPU_TYPE_POWERPC = 18,
CPU_TYPE_POWERPC64 = 18 | 0x1000000
};
// Constants for the cpusubtype field
// see <mach/machine.h>
enum { CPU_SUBTYPE_I386_ALL = 3,
CPU_SUBTYPE_X86_64_ALL = 3,
CPU_SUBTYPE_ARM_ALL = 0,
CPU_SUBTYPE_SPARC_ALL = 0,
CPU_SUBTYPE_POWERPC_ALL = 0
};
// Constants for the filetype field
// see <mach-o/loader.h> for additional info on the various types
enum { MH_OBJECT = 1, // relocatable object file
MH_EXECUTE = 2, // demand paged executable file
MH_FVMLIB = 3, // fixed VM shared library file
MH_CORE = 4, // core file
MH_PRELOAD = 5, // preloaded executable file
MH_DYLIB = 6, // dynamically bound shared library
MH_DYLINKER = 7, // dynamic link editor
MH_BUNDLE = 8, // dynamically bound bundle file
MH_DYLIB_STUB = 9, // shared library stub for static linking only
MH_DSYM = 10 // companion file wiht only debug sections
};
// Constants for the flags field
enum { MH_NOUNDEFS = 1 << 0,
// the object file has no undefined references
MH_INCRLINK = 1 << 1,
// the object file is the output of an incremental link against
// a base file and cannot be link edited again
MH_DYLDLINK = 1 << 2,
// the object file is input for the dynamic linker and cannot be
// statically link edited again.
MH_BINDATLOAD = 1 << 3,
// the object file's undefined references are bound by the
// dynamic linker when loaded.
MH_PREBOUND = 1 << 4,
// the file has its dynamic undefined references prebound
MH_SPLIT_SEGS = 1 << 5,
// the file has its read-only and read-write segments split
// see <mach/shared_memory_server.h>
MH_LAZY_INIT = 1 << 6,
// the shared library init routine is to be run lazily via
// catching memory faults to its writable segments (obsolete)
MH_TWOLEVEL = 1 << 7,
// the image is using two-level namespace bindings
MH_FORCE_FLAT = 1 << 8,
// the executable is forcing all images to use flat namespace
// bindings.
MH_NOMULTIDEFS = 1 << 8,
// this umbrella guarantees no multiple definitions of symbols
// in its sub-images so the two-level namespace hints can
// always be used.
MH_NOFIXPREBINDING = 1 << 10,
// do not have dyld notify the prebidning agent about this
// executable.
MH_PREBINDABLE = 1 << 11,
// the binary is not prebound but can have its prebinding
// redone. only used when MH_PREBOUND is not set.
MH_ALLMODSBOUND = 1 << 12,
// indicates that this binary binds to all two-level namespace
// modules of its dependent libraries. Only used when
// MH_PREBINDABLE and MH_TWOLEVEL are both set.
MH_SUBSECTIONS_VIA_SYMBOLS = 1 << 13,
// safe to divide up the sections into sub-sections via symbols
// for dead code stripping.
MH_CANONICAL = 1 << 14,
// the binary has been canonicalized via the unprebind operation
MH_WEAK_DEFINES = 1 << 15,
// the final linked image contains external weak symbols
MH_BINDS_TO_WEAK = 1 << 16,
// the final linked image uses weak symbols
MH_ALLOW_STACK_EXECUTION = 1 << 17
// When this bit is set, all stacks in the task will be given
// stack execution privilege. Only used in MH_EXECUTE filetype
};
MachOHeader() : magic(0), cputype(0), cpusubtype(0), filetype(0),
ncmds(0), sizeofcmds(0), flags(0), reserved(0) { }
/// cmdSize - This routine returns the size of the MachOSection as written
/// to disk, depending on whether the destination is a 64 bit Mach-O file.
unsigned cmdSize(bool is64Bit) const {
if (is64Bit)
return 8 * sizeof(uint32_t);
else
return 7 * sizeof(uint32_t);
}
/// setMagic - This routine sets the appropriate value for the 'magic'
/// field based on pointer size and endianness.
void setMagic(bool isLittleEndian, bool is64Bit) {
if (isLittleEndian)
if (is64Bit) magic = 0xcffaedfe;
else magic = 0xcefaedfe;
else
if (is64Bit) magic = 0xfeedfacf;
else magic = 0xfeedface;
}
};
/// Header - An instance of MachOHeader that we will update while we build
/// the file, and then emit during finalization.
MachOHeader Header;
private:
/// MachOSegment - This struct contains the necessary information to
/// emit the load commands for each section in the file.
struct MachOSegment {
uint32_t cmd; // LC_SEGMENT or LC_SEGMENT_64
uint32_t cmdsize; // Total size of this struct and section commands
std::string segname; // segment name
uint64_t vmaddr; // address of this segment
uint64_t vmsize; // size of this segment, may be larger than filesize
uint64_t fileoff; // offset in file
uint64_t filesize; // amount to read from file
uint32_t maxprot; // maximum VM protection
uint32_t initprot; // initial VM protection
uint32_t nsects; // number of sections in this segment
uint32_t flags; // flags
// Constants for the vm protection fields
// see <mach-o/vm_prot.h>
enum { VM_PROT_NONE = 0x00,
VM_PROT_READ = 0x01, // read permission
VM_PROT_WRITE = 0x02, // write permission
VM_PROT_EXECUTE = 0x04, // execute permission,
VM_PROT_ALL = 0x07
};
// Constants for the cmd field
// see <mach-o/loader.h>
enum { LC_SEGMENT = 0x01, // segment of this file to be mapped
LC_SEGMENT_64 = 0x19 // 64-bit segment of this file to be mapped
};
/// cmdSize - This routine returns the size of the MachOSection as written
/// to disk, depending on whether the destination is a 64 bit Mach-O file.
unsigned cmdSize(bool is64Bit) const {
if (is64Bit)
return 6 * sizeof(uint32_t) + 4 * sizeof(uint64_t) + 16;
else
return 10 * sizeof(uint32_t) + 16; // addresses only 32 bits
}
MachOSegment(const std::string &seg, bool is64Bit)
: cmd(is64Bit ? LC_SEGMENT_64 : LC_SEGMENT), cmdsize(0), segname(seg),
vmaddr(0), vmsize(0), fileoff(0), filesize(0), maxprot(VM_PROT_ALL),
initprot(VM_PROT_ALL), nsects(0), flags(0) { }
};
/// MachOSection - This struct contains information about each section in a
/// particular segment that is emitted to the file. This is eventually
/// turned into the SectionCommand in the load command for a particlar
/// segment.
struct MachOSection {
std::string sectname; // name of this section,
std::string segname; // segment this section goes in
uint64_t addr; // memory address of this section
uint64_t size; // size in bytes of this section
uint32_t offset; // file offset of this section
uint32_t align; // section alignment (power of 2)
uint32_t reloff; // file offset of relocation entries
uint32_t nreloc; // number of relocation entries
uint32_t flags; // flags (section type and attributes)
uint32_t reserved1; // reserved (for offset or index)
uint32_t reserved2; // reserved (for count or sizeof)
uint32_t reserved3; // reserved (64 bit only)
/// A unique number for this section, which will be used to match symbols
/// to the correct section.
uint32_t Index;
/// SectionData - The actual data for this section which we are building
/// up for emission to the file.
DataBuffer SectionData;
// Constants for the section types (low 8 bits of flags field)
// see <mach-o/loader.h>
enum { S_REGULAR = 0,
// regular section
S_ZEROFILL = 1,
// zero fill on demand section
S_CSTRING_LITERALS = 2,
// section with only literal C strings
S_4BYTE_LITERALS = 3,
// section with only 4 byte literals
S_8BYTE_LITERALS = 4,
// section with only 8 byte literals
S_LITERAL_POINTERS = 5,
// section with only pointers to literals
S_NON_LAZY_SYMBOL_POINTERS = 6,
// section with only non-lazy symbol pointers
S_LAZY_SYMBOL_POINTERS = 7,
// section with only lazy symbol pointers
S_SYMBOL_STUBS = 8,
// section with only symbol stubs
// byte size of stub in the reserved2 field
S_MOD_INIT_FUNC_POINTERS = 9,
// section with only function pointers for initialization
S_MOD_TERM_FUNC_POINTERS = 10,
// section with only function pointers for termination
S_COALESCED = 11,
// section contains symbols that are coalesced
S_GB_ZEROFILL = 12,
// zero fill on demand section (that can be larger than 4GB)
S_INTERPOSING = 13,
// section with only pairs of function pointers for interposing
S_16BYTE_LITERALS = 14
// section with only 16 byte literals
};
// Constants for the section flags (high 24 bits of flags field)
// see <mach-o/loader.h>
enum { S_ATTR_PURE_INSTRUCTIONS = 1 << 31,
// section contains only true machine instructions
S_ATTR_NO_TOC = 1 << 30,
// section contains coalesced symbols that are not to be in a
// ranlib table of contents
S_ATTR_STRIP_STATIC_SYMS = 1 << 29,
// ok to strip static symbols in this section in files with the
// MY_DYLDLINK flag
S_ATTR_NO_DEAD_STRIP = 1 << 28,
// no dead stripping
S_ATTR_LIVE_SUPPORT = 1 << 27,
// blocks are live if they reference live blocks
S_ATTR_SELF_MODIFYING_CODE = 1 << 26,
// used with i386 code stubs written on by dyld
S_ATTR_DEBUG = 1 << 25,
// a debug section
S_ATTR_SOME_INSTRUCTIONS = 1 << 10,
// section contains some machine instructions
S_ATTR_EXT_RELOC = 1 << 9,
// section has external relocation entries
S_ATTR_LOC_RELOC = 1 << 8
// section has local relocation entries
};
/// cmdSize - This routine returns the size of the MachOSection as written
/// to disk, depending on whether the destination is a 64 bit Mach-O file.
unsigned cmdSize(bool is64Bit) const {
if (is64Bit)
return 7 * sizeof(uint32_t) + 2 * sizeof(uint64_t) + 32;
else
return 9 * sizeof(uint32_t) + 32; // addresses only 32 bits
}
MachOSection(const std::string &seg, const std::string &sect)
: sectname(sect), segname(seg), addr(0), size(0), offset(0), align(0),
reloff(0), nreloc(0), flags(0), reserved1(0), reserved2(0),
reserved3(0) { }
};
/// SectionList - This is the list of sections that we have emitted to the
/// file. Once the file has been completely built, the segment load command
/// SectionCommands are constructed from this info.
std::list<MachOSection> SectionList;
/// SectionLookup - This is a mapping from section name to SectionList entry
std::map<std::string, MachOSection*> SectionLookup;
/// getSection - Return the section with the specified name, creating a new
/// section if one does not already exist.
MachOSection &getSection(const std::string &seg, const std::string &sect,
unsigned Flags = 0) {
MachOSection *&SN = SectionLookup[seg+sect];
if (SN) return *SN;
SectionList.push_back(MachOSection(seg, sect));
SN = &SectionList.back();
SN->Index = SectionList.size();
SN->flags = MachOSection::S_REGULAR | Flags;
return *SN;
}
MachOSection &getTextSection() {
return getSection("__TEXT", "__text",
MachOSection::S_ATTR_PURE_INSTRUCTIONS |
MachOSection::S_ATTR_SOME_INSTRUCTIONS);
}
/// MachOSymTab - This struct contains information about the offsets and
/// size of symbol table information.
/// segment.
struct MachOSymTab {
uint32_t cmd; // LC_SYMTAB
uint32_t cmdsize; // sizeof( MachOSymTab )
uint32_t symoff; // symbol table offset
uint32_t nsyms; // number of symbol table entries
uint32_t stroff; // string table offset
uint32_t strsize; // string table size in bytes
// Constants for the cmd field
// see <mach-o/loader.h>
enum { LC_SYMTAB = 0x02 // link-edit stab symbol table info
};
MachOSymTab() : cmd(LC_SYMTAB), cmdsize(6 * sizeof(uint32_t)), symoff(0),
nsyms(0), stroff(0), strsize(0) { }
};
/// MachOSymTab - This struct contains information about the offsets and
/// size of symbol table information.
/// segment.
struct MachODySymTab {
uint32_t cmd; // LC_DYSYMTAB
uint32_t cmdsize; // sizeof( MachODySymTab )
uint32_t ilocalsym; // index to local symbols
uint32_t nlocalsym; // number of local symbols
uint32_t iextdefsym; // index to externally defined symbols
uint32_t nextdefsym; // number of externally defined symbols
uint32_t iundefsym; // index to undefined symbols
uint32_t nundefsym; // number of undefined symbols
uint32_t tocoff; // file offset to table of contents
uint32_t ntoc; // number of entries in table of contents
uint32_t modtaboff; // file offset to module table
uint32_t nmodtab; // number of module table entries
uint32_t extrefsymoff; // offset to referenced symbol table
uint32_t nextrefsyms; // number of referenced symbol table entries
uint32_t indirectsymoff; // file offset to the indirect symbol table
uint32_t nindirectsyms; // number of indirect symbol table entries
uint32_t extreloff; // offset to external relocation entries
uint32_t nextrel; // number of external relocation entries
uint32_t locreloff; // offset to local relocation entries
uint32_t nlocrel; // number of local relocation entries
// Constants for the cmd field
// see <mach-o/loader.h>
enum { LC_DYSYMTAB = 0x0B // dynamic link-edit symbol table info
};
MachODySymTab() : cmd(LC_DYSYMTAB), cmdsize(20 * sizeof(uint32_t)),
ilocalsym(0), nlocalsym(0), iextdefsym(0), nextdefsym(0),
iundefsym(0), nundefsym(0), tocoff(0), ntoc(0), modtaboff(0),
nmodtab(0), extrefsymoff(0), nextrefsyms(0), indirectsymoff(0),
nindirectsyms(0), extreloff(0), nextrel(0), locreloff(0), nlocrel(0) { }
};
/// SymTab - The "stab" style symbol table information
MachOSymTab SymTab;
/// DySymTab - symbol table info for the dynamic link editor
MachODySymTab DySymTab;
/// MachOSym - This struct contains information about each symbol that is
/// added to logical symbol table for the module. This is eventually
/// turned into a real symbol table in the file.
struct MachOSym {
const GlobalValue *GV; // The global value this corresponds to.
uint32_t n_strx; // index into the string table
uint8_t n_type; // type flag
uint8_t n_sect; // section number or NO_SECT
int16_t n_desc; // see <mach-o/stab.h>
uint64_t n_value; // value for this symbol (or stab offset)
// Constants for the n_sect field
// see <mach-o/nlist.h>
enum { NO_SECT = 0 }; // symbol is not in any section
// Constants for the n_type field
// see <mach-o/nlist.h>
enum { N_UNDF = 0x0, // undefined, n_sect == NO_SECT
N_ABS = 0x2, // absolute, n_sect == NO_SECT
N_SECT = 0xe, // defined in section number n_sect
N_PBUD = 0xc, // prebound undefined (defined in a dylib)
N_INDR = 0xa // indirect
};
// The following bits are OR'd into the types above. For example, a type
// of 0x0f would be an external N_SECT symbol (0x0e | 0x01).
enum { N_EXT = 0x01, // external symbol bit
N_PEXT = 0x10 // private external symbol bit
};
// Constants for the n_desc field
// see <mach-o/loader.h>
enum { REFERENCE_FLAG_UNDEFINED_NON_LAZY = 0,
REFERENCE_FLAG_UNDEFINED_LAZY = 1,
REFERENCE_FLAG_DEFINED = 2,
REFERENCE_FLAG_PRIVATE_DEFINED = 3,
REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY = 4,
REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY = 5
};
enum { N_NO_DEAD_STRIP = 0x0020, // symbol is not to be dead stripped
N_WEAK_REF = 0x0040, // symbol is weak referenced
N_WEAK_DEF = 0x0080 // coalesced symbol is a weak definition
};
/// entrySize - This routine returns the size of a symbol table entry as
/// written to disk.
static unsigned entrySize() { return 12; }
MachOSym(const GlobalValue *gv, uint8_t sect) : GV(gv), n_strx(0),
n_type(N_UNDF), n_sect(sect), n_desc(0), n_value(0) {}
};
/// SymbolTable - This is the list of symbols we have emitted to the file.
/// This actually gets rearranged before emission to the file (to put the
/// local symbols first in the list).
std::vector<MachOSym> SymbolTable;
/// DynamicSymbolTable - This is just a vector of indices into
/// SymbolTable to aid in emitting the DYSYMTAB load command.
std::vector<unsigned> DynamicSymbolTable;
/// StringTable - The table of strings referenced by SymbolTable entries
std::vector<std::string> StringTable;
// align - Emit padding into the file until the current output position is
// aligned to the specified power of two boundary.
static void align(DataBuffer &Output, unsigned Boundary) {
assert(Boundary && (Boundary & (Boundary-1)) == 0 &&
"Must align to 2^k boundary");
size_t Size = Output.size();
if (Size & (Boundary-1)) {
// Add padding to get alignment to the correct place.
size_t Pad = Boundary-(Size & (Boundary-1));
Output.resize(Size+Pad);
}
}
void outbyte(DataBuffer &Output, unsigned char X) {
Output.push_back(X);
}
void outhalf(DataBuffer &Output, unsigned short X) {
if (isLittleEndian) {
Output.push_back(X&255);
Output.push_back(X >> 8);
} else {
Output.push_back(X >> 8);
Output.push_back(X&255);
}
}
void outword(DataBuffer &Output, unsigned X) {
if (isLittleEndian) {
Output.push_back((X >> 0) & 255);
Output.push_back((X >> 8) & 255);
Output.push_back((X >> 16) & 255);
Output.push_back((X >> 24) & 255);
} else {
Output.push_back((X >> 24) & 255);
Output.push_back((X >> 16) & 255);
Output.push_back((X >> 8) & 255);
Output.push_back((X >> 0) & 255);
}
}
void outxword(DataBuffer &Output, uint64_t X) {
if (isLittleEndian) {
Output.push_back(unsigned(X >> 0) & 255);
Output.push_back(unsigned(X >> 8) & 255);
Output.push_back(unsigned(X >> 16) & 255);
Output.push_back(unsigned(X >> 24) & 255);
Output.push_back(unsigned(X >> 32) & 255);
Output.push_back(unsigned(X >> 40) & 255);
Output.push_back(unsigned(X >> 48) & 255);
Output.push_back(unsigned(X >> 56) & 255);
} else {
Output.push_back(unsigned(X >> 56) & 255);
Output.push_back(unsigned(X >> 48) & 255);
Output.push_back(unsigned(X >> 40) & 255);
Output.push_back(unsigned(X >> 32) & 255);
Output.push_back(unsigned(X >> 24) & 255);
Output.push_back(unsigned(X >> 16) & 255);
Output.push_back(unsigned(X >> 8) & 255);
Output.push_back(unsigned(X >> 0) & 255);
}
}
void outaddr32(DataBuffer &Output, unsigned X) {
outword(Output, X);
}
void outaddr64(DataBuffer &Output, uint64_t X) {
outxword(Output, X);
}
void outaddr(DataBuffer &Output, uint64_t X) {
if (!is64Bit)
outword(Output, (unsigned)X);
else
outxword(Output, X);
}
void outstring(DataBuffer &Output, std::string &S, unsigned Length) {
char *buffer = (char *)calloc(1, Length);
unsigned i;
// FIXME: it is unclear if mach-o requires null terminated strings, or
// if a string of 16 bytes with no null terminator is ok. If so,
// we should switch to strncpy.
strlcpy(buffer, S.c_str(), Length);
for (i = 0; i < Length; ++i)
outbyte(Output, buffer[i]);
free(buffer);
}
private:
void EmitGlobal(GlobalVariable *GV);
void EmitHeaderAndLoadCommands();
void EmitSections();
void EmitRelocations();
void EmitSymbolTable();
void EmitStringTable();
};
}
#endif

428
lib/CodeGen/MachOWriter.cpp Normal file
View File

@ -0,0 +1,428 @@
//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent Mach-O writer. This file writes
// out the Mach-O file in the following order:
//
// #1 FatHeader (universal-only)
// #2 FatArch (universal-only, 1 per universal arch)
// Per arch:
// #3 Header
// #4 Load Commands
// #5 Sections
// #6 Relocations
// #7 Symbols
// #8 Strings
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/CodeGen/MachOWriter.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include <iostream>
using namespace llvm;
//===----------------------------------------------------------------------===//
// MachOCodeEmitter Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
/// MachOCodeEmitter - This class is used by the MachOWriter to emit the code
/// for functions to the Mach-O file.
class MachOCodeEmitter : public MachineCodeEmitter {
MachOWriter &MOW;
/// MOS - The current section we're writing to
MachOWriter::MachOSection *MOS;
/// Relocations - These are the relocations that the function needs, as
/// emitted.
std::vector<MachineRelocation> Relocations;
/// MBBLocations - This vector is a mapping from MBB ID's to their address.
/// It is filled in by the StartMachineBasicBlock callback and queried by
/// the getMachineBasicBlockAddress callback.
std::vector<intptr_t> MBBLocations;
public:
MachOCodeEmitter(MachOWriter &mow) : MOW(mow) {}
void startFunction(MachineFunction &F);
bool finishFunction(MachineFunction &F);
void addRelocation(const MachineRelocation &MR) {
Relocations.push_back(MR);
}
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
if (MBBLocations.size() <= (unsigned)MBB->getNumber())
MBBLocations.resize((MBB->getNumber()+1)*2);
MBBLocations[MBB->getNumber()] = getCurrentPCValue();
}
virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const {
assert(0 && "CP not implementated yet!");
return 0;
}
virtual intptr_t getJumpTableEntryAddress(unsigned Index) const {
assert(0 && "JT not implementated yet!");
return 0;
}
virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
MBBLocations[MBB->getNumber()] && "MBB not emitted!");
return MBBLocations[MBB->getNumber()];
}
/// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
void startFunctionStub(unsigned StubSize) {
assert(0 && "JIT specific function called!");
abort();
}
void *finishFunctionStub(const Function *F) {
assert(0 && "JIT specific function called!");
abort();
return 0;
}
};
}
/// startFunction - This callback is invoked when a new machine function is
/// about to be emitted.
void MachOCodeEmitter::startFunction(MachineFunction &F) {
// Align the output buffer to the appropriate alignment, power of 2.
// FIXME: GENERICIZE!!
unsigned Align = 4;
// Get the Mach-O Section that this function belongs in.
MOS = &MOW.getTextSection();
// FIXME: better memory management
MOS->SectionData.reserve(4096);
BufferBegin = &(MOS->SectionData[0]);
BufferEnd = BufferBegin + MOS->SectionData.capacity();
CurBufferPtr = BufferBegin + MOS->size;
// Upgrade the section alignment if required.
if (MOS->align < Align) MOS->align = Align;
// Make sure we only relocate to this function's MBBs.
MBBLocations.clear();
}
/// finishFunction - This callback is invoked after the function is completely
/// finished.
bool MachOCodeEmitter::finishFunction(MachineFunction &F) {
MOS->size += CurBufferPtr - BufferBegin;
// Get a symbol for the function to add to the symbol table
MachOWriter::MachOSym FnSym(F.getFunction(), MOS->Index);
// Figure out the binding (linkage) of the symbol.
switch (F.getFunction()->getLinkage()) {
default:
// appending linkage is illegal for functions.
assert(0 && "Unknown linkage type!");
case GlobalValue::ExternalLinkage:
FnSym.n_type = MachOWriter::MachOSym::N_SECT | MachOWriter::MachOSym::N_EXT;
break;
case GlobalValue::InternalLinkage:
FnSym.n_type = MachOWriter::MachOSym::N_SECT;
break;
}
// Resolve the function's relocations either to concrete pointers in the case
// of branches from one block to another, or to target relocation entries.
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
MachineRelocation &MR = Relocations[i];
if (MR.isBasicBlock()) {
void *MBBAddr = (void *)getMachineBasicBlockAddress(MR.getBasicBlock());
MR.setResultPointer(MBBAddr);
MOW.TM.getJITInfo()->relocate(BufferBegin, &MR, 1, 0);
// FIXME: we basically want the JITInfo relocate() function to rewrite
// this guy right now, so we just write the correct displacement
// to the file.
} else {
// isString | isGV | isCPI | isJTI
// FIXME: do something smart here. We won't be able to relocate these
// until the sections are all layed out, but we still need to
// record them. Maybe emit TargetRelocations and then resolve
// those at file writing time?
std::cerr << "whee!\n";
}
}
Relocations.clear();
// Finally, add it to the symtab.
MOW.SymbolTable.push_back(FnSym);
return false;
}
//===----------------------------------------------------------------------===//
// MachOWriter Implementation
//===----------------------------------------------------------------------===//
MachOWriter::MachOWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
// FIXME: set cpu type and cpu subtype somehow from TM
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
// Create the machine code emitter object for this target.
MCE = new MachOCodeEmitter(*this);
}
MachOWriter::~MachOWriter() {
delete MCE;
}
void MachOWriter::EmitGlobal(GlobalVariable *GV) {
// FIXME: do something smart here.
}
bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
// Nothing to do here, this is all done through the MCE object.
return false;
}
bool MachOWriter::doInitialization(Module &M) {
// Set the magic value, now that we know the pointer size and endianness
Header.setMagic(isLittleEndian, is64Bit);
// Set the file type
// FIXME: this only works for object files, we do not support the creation
// of dynamic libraries or executables at this time.
Header.filetype = MachOHeader::MH_OBJECT;
Mang = new Mangler(M);
return false;
}
/// doFinalization - Now that the module has been completely processed, emit
/// the Mach-O file to 'O'.
bool MachOWriter::doFinalization(Module &M) {
// Okay, the.text section has been completed, build the .data, .bss, and
// "common" sections next.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
// Emit the header and load commands.
EmitHeaderAndLoadCommands();
// Emit the text and data sections.
EmitSections();
// Emit the relocation entry data for each section.
// FIXME: presumably this should be a virtual method, since different targets
// have different relocation types.
EmitRelocations();
// Emit the symbol table.
// FIXME: we don't handle debug info yet, we should probably do that.
EmitSymbolTable();
// Emit the string table for the sections we have.
EmitStringTable();
// We are done with the abstract symbols.
SectionList.clear();
SymbolTable.clear();
DynamicSymbolTable.clear();
// Release the name mangler object.
delete Mang; Mang = 0;
return false;
}
void MachOWriter::EmitHeaderAndLoadCommands() {
// Step #0: Fill in the segment load command size, since we need it to figure
// out the rest of the header fields
MachOSegment SEG("", is64Bit);
SEG.nsects = SectionList.size();
SEG.cmdsize = SEG.cmdSize(is64Bit) +
SEG.nsects * SectionList.begin()->cmdSize(is64Bit);
// Step #1: calculate the number of load commands. We always have at least
// one, for the LC_SEGMENT load command, plus two for the normal
// and dynamic symbol tables, if there are any symbols.
Header.ncmds = SymbolTable.empty() ? 1 : 3;
// Step #2: calculate the size of the load commands
Header.sizeofcmds = SEG.cmdsize;
if (!SymbolTable.empty())
Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
// Step #3: write the header to the file
// Local alias to shortenify coming code.
DataBuffer &FH = Header.HeaderData;
outword(FH, Header.magic);
outword(FH, Header.cputype);
outword(FH, Header.cpusubtype);
outword(FH, Header.filetype);
outword(FH, Header.ncmds);
outword(FH, Header.sizeofcmds);
outword(FH, Header.flags);
if (is64Bit)
outword(FH, Header.reserved);
// Step #4: Finish filling in the segment load command and write it out
for (std::list<MachOSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I)
SEG.filesize += I->size;
SEG.vmsize = SEG.filesize;
SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
outword(FH, SEG.cmd);
outword(FH, SEG.cmdsize);
outstring(FH, SEG.segname, 16);
outaddr(FH, SEG.vmaddr);
outaddr(FH, SEG.vmsize);
outaddr(FH, SEG.fileoff);
outaddr(FH, SEG.filesize);
outword(FH, SEG.maxprot);
outword(FH, SEG.initprot);
outword(FH, SEG.nsects);
outword(FH, SEG.flags);
// Step #5: Write out the section commands for each section
for (std::list<MachOSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
I->offset = SEG.fileoff; // FIXME: separate offset
outstring(FH, I->sectname, 16);
outstring(FH, I->segname, 16);
outaddr(FH, I->addr);
outaddr(FH, I->size);
outword(FH, I->offset);
outword(FH, I->align);
outword(FH, I->reloff);
outword(FH, I->nreloc);
outword(FH, I->flags);
outword(FH, I->reserved1);
outword(FH, I->reserved2);
if (is64Bit)
outword(FH, I->reserved3);
}
// Step #6: Emit LC_SYMTAB/LC_DYSYMTAB load commands
// FIXME: We'll need to scan over the symbol table and possibly do the sort
// here so that we can set the proper indices in the dysymtab load command for
// the index and number of external symbols defined in this module.
// FIXME: We'll also need to scan over all the symbols so that we can
// calculate the size of the string table.
// FIXME: add size of relocs
SymTab.symoff = SEG.fileoff + SEG.filesize;
SymTab.nsyms = SymbolTable.size();
SymTab.stroff = SymTab.symoff + SymTab.nsyms * MachOSym::entrySize();
SymTab.strsize = 10;
outword(FH, SymTab.cmd);
outword(FH, SymTab.cmdsize);
outword(FH, SymTab.symoff);
outword(FH, SymTab.nsyms);
outword(FH, SymTab.stroff);
outword(FH, SymTab.strsize);
// FIXME: set DySymTab fields appropriately
outword(FH, DySymTab.cmd);
outword(FH, DySymTab.cmdsize);
outword(FH, DySymTab.ilocalsym);
outword(FH, DySymTab.nlocalsym);
outword(FH, DySymTab.iextdefsym);
outword(FH, DySymTab.nextdefsym);
outword(FH, DySymTab.iundefsym);
outword(FH, DySymTab.nundefsym);
outword(FH, DySymTab.tocoff);
outword(FH, DySymTab.ntoc);
outword(FH, DySymTab.modtaboff);
outword(FH, DySymTab.nmodtab);
outword(FH, DySymTab.extrefsymoff);
outword(FH, DySymTab.nextrefsyms);
outword(FH, DySymTab.indirectsymoff);
outword(FH, DySymTab.nindirectsyms);
outword(FH, DySymTab.extreloff);
outword(FH, DySymTab.nextrel);
outword(FH, DySymTab.locreloff);
outword(FH, DySymTab.nlocrel);
O.write((char*)&FH[0], FH.size());
}
/// EmitSections - Now that we have constructed the file header and load
/// commands, emit the data for each section to the file.
void MachOWriter::EmitSections() {
for (std::list<MachOSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
O.write((char*)&I->SectionData[0], I->size);
}
}
void MachOWriter::EmitRelocations() {
// FIXME: this should probably be a pure virtual function, since the
// relocation types and layout of the relocations themselves are target
// specific.
}
/// EmitSymbolTable - Sort the symbols we encountered and assign them each a
/// string table index so that they appear in the correct order in the output
/// file.
void MachOWriter::EmitSymbolTable() {
// The order of the symbol table is:
// local symbols
// defined external symbols (sorted by name)
// undefined external symbols (sorted by name)
DataBuffer ST;
// FIXME: enforce the above ordering, presumably by sorting by name,
// then partitioning twice.
unsigned stringIndex;
for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
E = SymbolTable.end(); I != E; ++I) {
// FIXME: remove when we actually calculate these correctly
I->n_strx = 1;
StringTable.push_back(Mang->getValueName(I->GV));
// Emit nlist to buffer
outword(ST, I->n_strx);
outbyte(ST, I->n_type);
outbyte(ST, I->n_sect);
outhalf(ST, I->n_desc);
outaddr(ST, I->n_value);
}
O.write((char*)&ST[0], ST.size());
}
/// EmitStringTable - This method adds and emits a section for the Mach-O
/// string table.
void MachOWriter::EmitStringTable() {
// The order of the string table is:
// strings for external symbols
// strings for local symbols
// This is the symbol table, but backwards. This allows us to avoid a sorting
// the symbol table again; all we have to do is use a reverse iterator.
DataBuffer ST;
// Write out a leading zero byte when emitting string table, for n_strx == 0
// which means an empty string.
outbyte(ST, 0);
for (std::vector<std::string>::iterator I = StringTable.begin(),
E = StringTable.end(); I != E; ++I) {
// FIXME: do not arbitrarily cap symbols to 16 characters
// FIXME: do something more efficient than outstring
outstring(ST, *I, 16);
}
O.write((char*)&ST[0], ST.size());
}

View File

@ -19,11 +19,18 @@
namespace llvm {
class FunctionPass;
class PPCTargetMachine;
class PassManager;
class FunctionPass;
class MachineCodeEmitter;
FunctionPass *createPPCBranchSelectionPass();
FunctionPass *createPPCISelDag(PPCTargetMachine &TM);
FunctionPass *createDarwinAsmPrinter(std::ostream &OS, PPCTargetMachine &TM);
FunctionPass *createPPCCodeEmitterPass(PPCTargetMachine &TM,
MachineCodeEmitter &MCE);
void addPPCMachOObjectWriterPass(PassManager &FPM, std::ostream &o,
PPCTargetMachine &tm);
} // end namespace llvm;
// GCC #defines PPC on Linux but we use it as our namespace name

View File

@ -62,19 +62,11 @@ namespace {
};
}
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
/// machine code emitted. This uses a MachineCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
/// of functions. This method should returns true if machine code emission is
/// not supported.
///
bool PPCTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
/// createPPCCodeEmitterPass - Return a pass that emits the collected PPC code
/// to the specified MCE object.
FunctionPass *llvm::createPPCCodeEmitterPass(PPCTargetMachine &TM,
MachineCodeEmitter &MCE) {
// Machine code emitter pass for PowerPC
PM.add(new PPCCodeEmitter(*this, MCE));
// Delete machine code for this function after emitting it
PM.add(createMachineCodeDeleter());
return false;
return new PPCCodeEmitter(TM, MCE);
}
#ifdef __APPLE__
@ -132,7 +124,8 @@ int PPCCodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) {
}
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
} else if (MO.isGlobalAddress() || MO.isExternalSymbol()) {
} else if (MO.isGlobalAddress() || MO.isExternalSymbol() ||
MO.isConstantPoolIndex() || MO.isJumpTableIndex()) {
unsigned Reloc = 0;
if (MI.getOpcode() == PPC::BL)
Reloc = PPC::reloc_pcrel_bx;
@ -141,6 +134,7 @@ int PPCCodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) {
default: DEBUG(MI.dump()); assert(0 && "Unknown instruction for relocation!");
case PPC::LIS:
case PPC::LIS8:
case PPC::ADDIS:
case PPC::ADDIS8:
Reloc = PPC::reloc_absolute_high; // Pointer to symbol
break;
@ -176,9 +170,17 @@ int PPCCodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) {
if (MO.isGlobalAddress())
MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
Reloc, MO.getGlobal(), 0));
else
else if (MO.isExternalSymbol())
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
Reloc, MO.getSymbolName(), 0));
else if (MO.isConstantPoolIndex())
MCE.addRelocation(MachineRelocation::getConstPool(
MCE.getCurrentPCOffset(),
Reloc, MO.getConstantPoolIndex(), 0));
else // isJumpTableIndex
MCE.addRelocation(MachineRelocation::getJumpTable(
MCE.getCurrentPCOffset(),
Reloc, MO.getJumpTableIndex(), 0));
} else if (MO.isMachineBasicBlock()) {
unsigned Reloc = 0;
unsigned Opcode = MI.getOpcode();
@ -190,28 +192,6 @@ int PPCCodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) {
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Reloc,
MO.getMachineBasicBlock()));
} else if (MO.isConstantPoolIndex() || MO.isJumpTableIndex()) {
if (MO.isConstantPoolIndex())
rv = MCE.getConstantPoolEntryAddress(MO.getConstantPoolIndex());
else
rv = MCE.getJumpTableEntryAddress(MO.getJumpTableIndex());
unsigned Opcode = MI.getOpcode();
if (Opcode == PPC::LIS || Opcode == PPC::LIS8 ||
Opcode == PPC::ADDIS || Opcode == PPC::ADDIS8) {
// lis wants hi16(addr)
if ((short)rv < 0) rv += 1 << 16;
rv >>= 16;
} else if (Opcode == PPC::LWZ || Opcode == PPC::LWZ8 ||
Opcode == PPC::LA ||
Opcode == PPC::LI || Opcode == PPC::LI8 ||
Opcode == PPC::LFS || Opcode == PPC::LFD) {
// These load opcodes want lo16(addr)
rv &= 0xffff;
} else {
MI.dump();
assert(0 && "Unknown constant pool or jump table using instruction!");
}
} else {
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();

View File

@ -0,0 +1,41 @@
//===-- PPCMachOWriter.cpp - Emit a Mach-O file for the PowerPC backend ---===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a Mach-O writer for the PowerPC backend. The public
// interface to this file is the createPPCMachOObjectWriterPass function.
//
//===----------------------------------------------------------------------===//
#include "PPCTargetMachine.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachOWriter.h"
#include "llvm/Support/Visibility.h"
using namespace llvm;
namespace {
class VISIBILITY_HIDDEN PPCMachOWriter : public MachOWriter {
public:
PPCMachOWriter(std::ostream &O, PPCTargetMachine &TM) : MachOWriter(O, TM) {
// FIMXE: choose ppc64 when appropriate
Header.cputype = MachOHeader::CPU_TYPE_POWERPC;
Header.cpusubtype = MachOHeader::CPU_SUBTYPE_POWERPC_ALL;
}
};
}
/// addPPCMachOObjectWriterPass - Returns a pass that outputs the generated code
/// as a Mach-O object file.
///
void llvm::addPPCMachOObjectWriterPass(PassManager &FPM,
std::ostream &O, PPCTargetMachine &TM) {
PPCMachOWriter *EW = new PPCMachOWriter(O, TM);
FPM.add(EW);
FPM.add(createPPCCodeEmitterPass(TM, EW->getMachineCodeEmitter()));
}

View File

@ -109,11 +109,11 @@ PPC64TargetMachine::PPC64TargetMachine(const Module &M, const std::string &FS)
/// addPassesToEmitFile - Add passes to the specified pass manager to implement
/// a static compiler for this target.
///
bool PPCTargetMachine::addPassesToEmitFile(PassManager &PM,
std::ostream &Out,
bool PPCTargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out,
CodeGenFileType FileType,
bool Fast) {
if (FileType != TargetMachine::AssemblyFile) return true;
if (FileType != TargetMachine::AssemblyFile &&
FileType != TargetMachine::ObjectFile) return true;
// Run loop strength reduction before anything else.
if (!Fast) PM.add(createLoopStrengthReducePass(&TLInfo));
@ -146,7 +146,11 @@ bool PPCTargetMachine::addPassesToEmitFile(PassManager &PM,
// Must run branch selection immediately preceding the asm printer
PM.add(createPPCBranchSelectionPass());
if (FileType == TargetMachine::AssemblyFile)
PM.add(createDarwinAsmPrinter(Out, *this));
else
// FIXME: support PPC ELF files at some point
addPPCMachOObjectWriterPass(PM, Out, *this);
PM.add(createMachineCodeDeleter());
return false;
@ -184,3 +188,17 @@ void PPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
PM.add(createMachineFunctionPrinterPass(&std::cerr));
}
/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
/// machine code emitted. This uses a MachineCodeEmitter object to handle
/// actually outputting the machine code and resolving things like the address
/// of functions. This method should returns true if machine code emission is
/// not supported.
///
bool PPCTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
MachineCodeEmitter &MCE) {
// Machine code emitter pass for PowerPC
PM.add(createPPCCodeEmitterPass(*this, MCE));
// Delete machine code for this function after emitting it
PM.add(createMachineCodeDeleter());
return false;
}

View File

@ -136,7 +136,7 @@ bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out,
case TargetMachine::ObjectFile:
// FIXME: We only support emission of ELF files for now, this should check
// the target triple and decide on the format to write (e.g. COFF on
// win32).
// win32 or Mach-O on darwin).
addX86ELFObjectWriterPass(PM, Out, *this);
break;
}

View File

@ -219,9 +219,6 @@ int main(int argc, char **argv) {
}
}
if (FileType != TargetMachine::AssemblyFile)
std::cerr << "WARNING: only -filetype=asm is currently supported.\n";
// Ask the target to add backend passes as necessary.
if (Target.addPassesToEmitFile(Passes, *Out, FileType, Fast)) {
std::cerr << argv[0] << ": target '" << Target.getName()