[Orc] Refactor the compile-on-demand layer to make module partitioning lazy,

and avoid cloning unused decls into every partition.

Module partitioning showed up as a source of significant overhead when I
profiled some trivial test cases. Avoiding the overhead of partitionging
for uncalled functions helps to mitigate this.

This change also means that it is no longer necessary to have a
LazyEmittingLayer underneath the CompileOnDemand layer, since the
CompileOnDemandLayer will not extract or emit function bodies until they are
called.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236465 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Lang Hames 2015-05-04 22:03:10 +00:00
parent 79597d7489
commit ee160106a1
9 changed files with 562 additions and 537 deletions

View File

@ -1214,11 +1214,11 @@ public:
void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
JITSymbol findSymbol(const std::string &Name) {
return LazyEmitLayer.findSymbol(Name, true);
return LazyEmitLayer.findSymbol(Name, false);
}
JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
return LazyEmitLayer.findSymbolIn(H, Name, true);
return LazyEmitLayer.findSymbolIn(H, Name, false);
}
JITSymbol findUnmangledSymbol(const std::string &Name) {
@ -1276,7 +1276,7 @@ private:
makeStub(*F, *FunctionBodyPointer);
// Step 4) Add the module containing the stub to the JIT.
auto H = addModule(C.takeM());
auto StubH = addModule(C.takeM());
// Step 5) Set the compile and update actions.
//
@ -1289,14 +1289,20 @@ private:
// The update action will update FunctionBodyPointer to point at the newly
// compiled function.
std::shared_ptr<FunctionAST> Fn = std::move(FnAST);
CallbackInfo.setCompileAction([this, Fn]() {
CallbackInfo.setCompileAction([this, Fn, BodyPtrName, StubH]() {
auto H = addModule(IRGen(Session, *Fn));
return findUnmangledSymbolIn(H, Fn->Proto->Name).getAddress();
auto BodySym = findUnmangledSymbolIn(H, Fn->Proto->Name);
auto BodyPtrSym = findUnmangledSymbolIn(StubH, BodyPtrName);
assert(BodySym && "Missing function body.");
assert(BodyPtrSym && "Missing function pointer.");
auto BodyAddr = BodySym.getAddress();
auto BodyPtr = reinterpret_cast<void*>(
static_cast<uintptr_t>(BodyPtrSym.getAddress()));
memcpy(BodyPtr, &BodyAddr, sizeof(uintptr_t));
return BodyAddr;
});
CallbackInfo.setUpdateAction(
getLocalFPUpdater(LazyEmitLayer, H, mangle(BodyPtrName)));
return H;
return StubH;
}
SessionContext &Session;

View File

@ -1,60 +0,0 @@
//===-- CloneSubModule.h - Utilities for extracting sub-modules -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains utilities for extracting sub-modules. Useful for breaking up modules
// for lazy jitting.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_CLONESUBMODULE_H
#define LLVM_EXECUTIONENGINE_ORC_CLONESUBMODULE_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <functional>
namespace llvm {
class Function;
class GlobalVariable;
class Module;
namespace orc {
/// @brief Functor type for describing how CloneSubModule should mutate a
/// GlobalVariable.
typedef std::function<void(GlobalVariable &, const GlobalVariable &,
ValueToValueMapTy &)> HandleGlobalVariableFtor;
/// @brief Functor type for describing how CloneSubModule should mutate a
/// Function.
typedef std::function<void(Function &, const Function &, ValueToValueMapTy &)>
HandleFunctionFtor;
/// @brief Copies the initializer from Orig to New.
///
/// Type is suitable for implicit conversion to a HandleGlobalVariableFtor.
void copyGVInitializer(GlobalVariable &New, const GlobalVariable &Orig,
ValueToValueMapTy &VMap);
/// @brief Copies the body of Orig to New.
///
/// Type is suitable for implicit conversion to a HandleFunctionFtor.
void copyFunctionBody(Function &New, const Function &Orig,
ValueToValueMapTy &VMap);
/// @brief Clone a subset of the module Src into Dst.
void CloneSubModule(Module &Dst, const Module &Src,
HandleGlobalVariableFtor HandleGlobalVariable,
HandleFunctionFtor HandleFunction, bool KeepInlineAsm);
} // End namespace orc.
} // End namespace llvm.
#endif // LLVM_EXECUTIONENGINE_ORC_CLONESUBMODULE_H

View File

@ -15,110 +15,180 @@
#ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
#define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H
//#include "CloneSubModule.h"
#include "IndirectionUtils.h"
#include "LambdaResolver.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <list>
#include <set>
#include "llvm/Support/Debug.h"
namespace llvm {
namespace orc {
/// @brief Compile-on-demand layer.
///
/// Modules added to this layer have their calls indirected, and are then
/// broken up into a set of single-function modules, each of which is added
/// to the layer below in a singleton set. The lower layer can be any layer that
/// accepts IR module sets.
///
/// It is expected that this layer will frequently be used on top of a
/// LazyEmittingLayer. The combination of the two ensures that each function is
/// compiled only when it is first called.
/// When a module is added to this layer a stub is created for each of its
/// function definitions. The stubs and other global values are immediately
/// added to the layer below. When a stub is called it triggers the extraction
/// of the function body from the original module. The extracted body is then
/// compiled and executed.
template <typename BaseLayerT, typename CompileCallbackMgrT>
class CompileOnDemandLayer {
private:
/// @brief Lookup helper that provides compatibility with the classic
/// static-compilation symbol resolution process.
///
/// The CompileOnDemand (COD) layer splits modules up into multiple
/// sub-modules, each held in its own llvm::Module instance, in order to
/// support lazy compilation. When a module that contains private symbols is
/// broken up symbol linkage changes may be required to enable access to
/// "private" data that now resides in a different llvm::Module instance. To
/// retain expected symbol resolution behavior for clients of the COD layer,
/// the CODScopedLookup class uses a two-tiered lookup system to resolve
/// symbols. Lookup first scans sibling modules that were split from the same
/// original module (logical-module scoped lookup), then scans all other
/// modules that have been added to the lookup scope (logical-dylib scoped
/// lookup).
class CODScopedLookup {
private:
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT;
typedef std::vector<BaseLayerModuleSetHandleT> SiblingHandlesList;
typedef std::list<SiblingHandlesList> PseudoDylibModuleSetHandlesList;
// Utility class for MapValue. Only materializes declarations for global
// variables.
class GlobalDeclMaterializer : public ValueMaterializer {
public:
/// @brief Handle for a logical module.
typedef typename PseudoDylibModuleSetHandlesList::iterator LMHandle;
GlobalDeclMaterializer(Module &Dst) : Dst(Dst) {}
Value* materializeValueFor(Value *V) final {
if (auto *GV = dyn_cast<GlobalVariable>(V))
return cloneGlobalVariableDecl(Dst, *GV);
else if (auto *F = dyn_cast<Function>(V))
return cloneFunctionDecl(Dst, *F);
// Else.
return nullptr;
}
private:
Module &Dst;
};
/// @brief Construct a scoped lookup.
CODScopedLookup(BaseLayerT &BaseLayer) : BaseLayer(BaseLayer) {}
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT;
class UncompiledPartition;
virtual ~CODScopedLookup() {}
// Logical module.
//
// This struct contains the handles for the global values and stubs (which
// cover the external symbols of the original module), plus the handes for
// each of the extracted partitions. These handleds are used for lookup (only
// the globals/stubs module is searched) and memory management. The actual
// searching and resource management are handled by the LogicalDylib that owns
// the LogicalModule.
struct LogicalModule {
std::unique_ptr<Module> SrcM;
BaseLayerModuleSetHandleT GVsAndStubsHandle;
std::vector<BaseLayerModuleSetHandleT> ImplHandles;
};
/// @brief Start a new context for a single logical module.
// Logical dylib.
//
// This class handles symbol resolution and resource management for a set of
// modules that were added together as a logical dylib.
//
// A logical dylib contains one-or-more LogicalModules plus a set of
// UncompiledPartitions. LogicalModules support symbol resolution and resource
// management for for code that has already been emitted. UncompiledPartitions
// represent code that has not yet been compiled.
class LogicalDylib {
private:
friend class UncompiledPartition;
typedef std::list<LogicalModule> LogicalModuleList;
public:
typedef unsigned UncompiledPartitionID;
typedef typename LogicalModuleList::iterator LMHandle;
// Construct a logical dylib.
LogicalDylib(CompileOnDemandLayer &CODLayer) : CODLayer(CODLayer) { }
// Delete this logical dylib, release logical module resources.
virtual ~LogicalDylib() {
releaseLogicalModuleResources();
}
// Get a reference to the containing layer.
CompileOnDemandLayer& getCODLayer() { return CODLayer; }
// Get a reference to the base layer.
BaseLayerT& getBaseLayer() { return CODLayer.BaseLayer; }
// Start a new context for a single logical module.
LMHandle createLogicalModule() {
Handles.push_back(SiblingHandlesList());
return std::prev(Handles.end());
LogicalModules.push_back(LogicalModule());
return std::prev(LogicalModules.end());
}
/// @brief Add a concrete Module's handle to the given logical Module's
/// lookup scope.
// Set the global-values-and-stubs module handle for this logical module.
void setGVsAndStubsHandle(LMHandle LMH, BaseLayerModuleSetHandleT H) {
LMH->GVsAndStubsHandle = H;
}
// Return the global-values-and-stubs module handle for this logical module.
BaseLayerModuleSetHandleT getGVsAndStubsHandle(LMHandle LMH) {
return LMH->GVsAndStubsHandle;
}
// Add a handle to a module containing lazy function bodies to the given
// logical module.
void addToLogicalModule(LMHandle LMH, BaseLayerModuleSetHandleT H) {
LMH->push_back(H);
LMH->ImplHandles.push_back(H);
}
/// @brief Remove a logical Module from the CODScopedLookup entirely.
void removeLogicalModule(LMHandle LMH) { Handles.erase(LMH); }
// Create an UncompiledPartition attached to this LogicalDylib.
UncompiledPartition& createUncompiledPartition(LMHandle LMH,
std::shared_ptr<Module> SrcM);
/// @brief Look up a symbol in this context.
JITSymbol findSymbol(LMHandle LMH, const std::string &Name) {
if (auto Symbol = findSymbolIn(LMH, Name))
// Take ownership of the given UncompiledPartition from the logical dylib.
std::unique_ptr<UncompiledPartition>
takeUPOwnership(UncompiledPartitionID ID);
// Look up a symbol in this context.
JITSymbol findSymbolInternally(LMHandle LMH, const std::string &Name) {
if (auto Symbol = getBaseLayer().findSymbolIn(LMH->GVsAndStubsHandle,
Name, false))
return Symbol;
for (auto I = Handles.begin(), E = Handles.end(); I != E; ++I)
for (auto I = LogicalModules.begin(), E = LogicalModules.end(); I != E;
++I)
if (I != LMH)
if (auto Symbol = findSymbolIn(I, Name))
if (auto Symbol = getBaseLayer().findSymbolIn(I->GVsAndStubsHandle,
Name, false))
return Symbol;
return nullptr;
}
/// @brief Find an external symbol (via the user supplied SymbolResolver).
virtual RuntimeDyld::SymbolInfo
externalLookup(const std::string &Name) const = 0;
private:
JITSymbol findSymbolIn(LMHandle LMH, const std::string &Name) {
for (auto H : *LMH)
if (auto Symbol = BaseLayer.findSymbolIn(H, Name, false))
JITSymbol findSymbol(const std::string &Name, bool ExportedSymbolsOnly) {
for (auto &LM : LogicalModules)
if (auto Symbol = getBaseLayer().findSymbolIn(LM.GVsAndStubsHandle,
Name,
ExportedSymbolsOnly))
return Symbol;
return nullptr;
}
BaseLayerT &BaseLayer;
PseudoDylibModuleSetHandlesList Handles;
// Find an external symbol (via the user supplied SymbolResolver).
virtual RuntimeDyld::SymbolInfo
findSymbolExternally(const std::string &Name) const = 0;
private:
void releaseLogicalModuleResources() {
for (auto I = LogicalModules.begin(), E = LogicalModules.end(); I != E;
++I) {
getBaseLayer().removeModuleSet(I->GVsAndStubsHandle);
for (auto H : I->ImplHandles)
getBaseLayer().removeModuleSet(H);
}
}
CompileOnDemandLayer &CODLayer;
LogicalModuleList LogicalModules;
std::vector<std::unique_ptr<UncompiledPartition>> UncompiledPartitions;
};
template <typename ResolverPtrT>
class CODScopedLookupImpl : public CODScopedLookup {
class LogicalDylibImpl : public LogicalDylib {
public:
CODScopedLookupImpl(BaseLayerT &BaseLayer, ResolverPtrT Resolver)
: CODScopedLookup(BaseLayer), Resolver(std::move(Resolver)) {}
LogicalDylibImpl(CompileOnDemandLayer &CODLayer, ResolverPtrT Resolver)
: LogicalDylib(CODLayer), Resolver(std::move(Resolver)) {}
RuntimeDyld::SymbolInfo
externalLookup(const std::string &Name) const override {
findSymbolExternally(const std::string &Name) const override {
return Resolver->findSymbol(Name);
}
@ -127,44 +197,169 @@ private:
};
template <typename ResolverPtrT>
static std::shared_ptr<CODScopedLookup>
createCODScopedLookup(BaseLayerT &BaseLayer,
ResolverPtrT Resolver) {
typedef CODScopedLookupImpl<ResolverPtrT> Impl;
return std::make_shared<Impl>(BaseLayer, std::move(Resolver));
static std::unique_ptr<LogicalDylib>
createLogicalDylib(CompileOnDemandLayer &CODLayer,
ResolverPtrT Resolver) {
typedef LogicalDylibImpl<ResolverPtrT> Impl;
return llvm::make_unique<Impl>(CODLayer, std::move(Resolver));
}
typedef typename BaseLayerT::ModuleSetHandleT BaseLayerModuleSetHandleT;
typedef std::vector<BaseLayerModuleSetHandleT> BaseLayerModuleSetHandleListT;
// Uncompiled partition.
//
// Represents one as-yet uncompiled portion of a module.
class UncompiledPartition {
public:
struct ModuleSetInfo {
// Symbol lookup - just one for the whole module set.
std::shared_ptr<CODScopedLookup> Lookup;
struct PartitionEntry {
PartitionEntry(Function *F, TargetAddress CallbackID)
: F(F), CallbackID(CallbackID) {}
Function *F;
TargetAddress CallbackID;
};
// Logical module handles.
std::vector<typename CODScopedLookup::LMHandle> LMHandles;
typedef std::vector<PartitionEntry> PartitionEntryList;
// List of vectors of module set handles:
// One vector per logical module - each vector holds the handles for the
// exploded modules for that logical module in the base layer.
BaseLayerModuleSetHandleListT BaseLayerModuleSetHandles;
// Creates an uncompiled partition with the list of functions that make up
// this partition.
UncompiledPartition(LogicalDylib &LD, typename LogicalDylib::LMHandle LMH,
std::shared_ptr<Module> SrcM)
: LD(LD), LMH(LMH), SrcM(std::move(SrcM)), ID(~0U) {}
ModuleSetInfo(std::shared_ptr<CODScopedLookup> Lookup)
: Lookup(std::move(Lookup)) {}
void releaseResources(BaseLayerT &BaseLayer) {
for (auto LMH : LMHandles)
Lookup->removeLogicalModule(LMH);
for (auto H : BaseLayerModuleSetHandles)
BaseLayer.removeModuleSet(H);
~UncompiledPartition() {
// FIXME: When we want to support threaded lazy compilation we'll need to
// lock the callback manager here.
auto &CCMgr = LD.getCODLayer().CompileCallbackMgr;
for (auto PEntry : PartitionEntries)
CCMgr.releaseCompileCallback(PEntry.CallbackID);
}
// Set the ID for this partition.
void setID(typename LogicalDylib::UncompiledPartitionID ID) {
this->ID = ID;
}
// Set the function set and callbacks for this partition.
void setPartitionEntries(PartitionEntryList PartitionEntries) {
this->PartitionEntries = std::move(PartitionEntries);
}
// Handle a compile callback for the function at index FnIdx.
TargetAddress compile(unsigned FnIdx) {
// Take ownership of self. This will ensure we delete the partition and
// free all its resources once we're done compiling.
std::unique_ptr<UncompiledPartition> This = LD.takeUPOwnership(ID);
// Release all other compile callbacks for this partition.
// We skip the callback for this function because that's the one that
// called us, and the callback manager will already have removed it.
auto &CCMgr = LD.getCODLayer().CompileCallbackMgr;
for (unsigned I = 0; I < PartitionEntries.size(); ++I)
if (I != FnIdx)
CCMgr.releaseCompileCallback(PartitionEntries[I].CallbackID);
// Grab the name of the function being called here.
Function *F = PartitionEntries[FnIdx].F;
std::string CalledFnName = Mangle(F->getName(), SrcM->getDataLayout());
// Extract the function and add it to the base layer.
auto PartitionImplH = emitPartition();
LD.addToLogicalModule(LMH, PartitionImplH);
// Update body pointers.
// FIXME: When we start supporting remote lazy jitting this will need to
// be replaced with a user-supplied callback for updating the
// remote pointers.
TargetAddress CalledAddr = 0;
for (unsigned I = 0; I < PartitionEntries.size(); ++I) {
auto F = PartitionEntries[I].F;
std::string FName(F->getName());
auto FnBodySym =
LD.getBaseLayer().findSymbolIn(PartitionImplH,
Mangle(FName, SrcM->getDataLayout()),
false);
auto FnPtrSym =
LD.getBaseLayer().findSymbolIn(LD.getGVsAndStubsHandle(LMH),
Mangle(FName + "$orc_addr",
SrcM->getDataLayout()),
false);
assert(FnBodySym && "Couldn't find function body.");
assert(FnPtrSym && "Couldn't find function body pointer.");
auto FnBodyAddr = FnBodySym.getAddress();
void *FnPtrAddr = reinterpret_cast<void*>(
static_cast<uintptr_t>(FnPtrSym.getAddress()));
// If this is the function we're calling record the address so we can
// return it from this function.
if (I == FnIdx)
CalledAddr = FnBodyAddr;
memcpy(FnPtrAddr, &FnBodyAddr, sizeof(uintptr_t));
}
// Finally, clear the partition structure so we don't try to
// double-release the callbacks in the UncompiledPartition destructor.
PartitionEntries.clear();
return CalledAddr;
}
private:
BaseLayerModuleSetHandleT emitPartition() {
// Create the module.
std::string NewName(SrcM->getName());
for (auto &PEntry : PartitionEntries) {
NewName += ".";
NewName += PEntry.F->getName();
}
auto PM = llvm::make_unique<Module>(NewName, SrcM->getContext());
PM->setDataLayout(SrcM->getDataLayout());
ValueToValueMapTy VMap;
GlobalDeclMaterializer GDM(*PM);
// Create decls in the new module.
for (auto &PEntry : PartitionEntries)
cloneFunctionDecl(*PM, *PEntry.F, &VMap);
// Move the function bodies.
for (auto &PEntry : PartitionEntries)
moveFunctionBody(*PEntry.F, VMap);
// Create memory manager and symbol resolver.
auto MemMgr = llvm::make_unique<SectionMemoryManager>();
auto Resolver = createLambdaResolver(
[this](const std::string &Name) {
if (auto Symbol = LD.findSymbolInternally(LMH, Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
return LD.findSymbolExternally(Name);
},
[this](const std::string &Name) {
if (auto Symbol = LD.findSymbolInternally(LMH, Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
return RuntimeDyld::SymbolInfo(nullptr);
});
std::vector<std::unique_ptr<Module>> PartMSet;
PartMSet.push_back(std::move(PM));
return LD.getBaseLayer().addModuleSet(std::move(PartMSet),
std::move(MemMgr),
std::move(Resolver));
}
LogicalDylib &LD;
typename LogicalDylib::LMHandle LMH;
std::shared_ptr<Module> SrcM;
typename LogicalDylib::UncompiledPartitionID ID;
PartitionEntryList PartitionEntries;
};
typedef std::list<ModuleSetInfo> ModuleSetInfoListT;
typedef std::list<std::unique_ptr<LogicalDylib>> LogicalDylibList;
public:
/// @brief Handle to a set of loaded modules.
typedef typename ModuleSetInfoListT::iterator ModuleSetHandleT;
typedef typename LogicalDylibList::iterator ModuleSetHandleT;
/// @brief Construct a compile-on-demand layer instance.
CompileOnDemandLayer(BaseLayerT &BaseLayer, CompileCallbackMgrT &CallbackMgr)
@ -180,19 +375,23 @@ public:
assert(MemMgr == nullptr &&
"User supplied memory managers not supported with COD yet.");
// Create a lookup context and ModuleSetInfo for this module set.
// For the purposes of symbol resolution the set Ms will be treated as if
// the modules it contained had been linked together as a dylib.
auto DylibLookup = createCODScopedLookup(BaseLayer, std::move(Resolver));
ModuleSetHandleT H =
ModuleSetInfos.insert(ModuleSetInfos.end(), ModuleSetInfo(DylibLookup));
ModuleSetInfo &MSI = ModuleSetInfos.back();
LogicalDylibs.push_back(createLogicalDylib(*this, std::move(Resolver)));
// Process each of the modules in this module set.
for (auto &M : Ms)
partitionAndAdd(*M, MSI);
for (auto &M : Ms) {
std::vector<std::vector<Function*>> Partitioning;
for (auto &F : *M) {
if (F.isDeclaration())
continue;
Partitioning.push_back(std::vector<Function*>());
Partitioning.back().push_back(&F);
}
addLogicalModule(*LogicalDylibs.back(),
std::shared_ptr<Module>(std::move(M)),
std::move(Partitioning));
}
return H;
return std::prev(LogicalDylibs.end());
}
/// @brief Remove the module represented by the given handle.
@ -200,8 +399,7 @@ public:
/// This will remove all modules in the layers below that were derived from
/// the module represented by H.
void removeModuleSet(ModuleSetHandleT H) {
H->releaseResources(BaseLayer);
ModuleSetInfos.erase(H);
LogicalDylibs.erase(H);
}
/// @brief Search for the given named symbol.
@ -216,149 +414,85 @@ public:
/// below this one.
JITSymbol findSymbolIn(ModuleSetHandleT H, const std::string &Name,
bool ExportedSymbolsOnly) {
for (auto &BH : H->BaseLayerModuleSetHandles) {
if (auto Symbol = BaseLayer.findSymbolIn(BH, Name, ExportedSymbolsOnly))
return Symbol;
}
return nullptr;
return (*H)->findSymbol(Name, ExportedSymbolsOnly);
}
private:
void partitionAndAdd(Module &M, ModuleSetInfo &MSI) {
const char *AddrSuffix = "$orc_addr";
const char *BodySuffix = "$orc_body";
void addLogicalModule(LogicalDylib &LD, std::shared_ptr<Module> SrcM,
std::vector<std::vector<Function*>> Partitions) {
// We're going to break M up into a bunch of sub-modules, but we want
// internal linkage symbols to still resolve sensibly. CODScopedLookup
// provides the "logical module" concept to make this work, so create a
// new logical module for M.
auto DylibLookup = MSI.Lookup;
auto LogicalModule = DylibLookup->createLogicalModule();
MSI.LMHandles.push_back(LogicalModule);
// Bump the linkage and rename any anonymous/privote members in SrcM to
// ensure that everything will resolve properly after we partition SrcM.
makeAllSymbolsExternallyAccessible(*SrcM);
// Partition M into a "globals and stubs" module, a "common symbols" module,
// and a list of single-function modules.
auto PartitionedModule = fullyPartition(M);
auto StubsModule = std::move(PartitionedModule.GlobalVars);
auto CommonsModule = std::move(PartitionedModule.Commons);
auto FunctionModules = std::move(PartitionedModule.Functions);
// Create a logical module handle for SrcM within the logical dylib.
auto LMH = LD.createLogicalModule();
// Emit the commons stright away.
auto CommonHandle = addModule(std::move(CommonsModule), MSI, LogicalModule);
BaseLayer.emitAndFinalize(CommonHandle);
// Create the GVs-and-stubs module.
auto GVsAndStubsM = llvm::make_unique<Module>(
(SrcM->getName() + ".globals_and_stubs").str(),
SrcM->getContext());
GVsAndStubsM->setDataLayout(SrcM->getDataLayout());
ValueToValueMapTy VMap;
// Map of definition names to callback-info data structures. We'll use
// this to build the compile actions for the stubs below.
typedef std::map<std::string,
typename CompileCallbackMgrT::CompileCallbackInfo>
StubInfoMap;
StubInfoMap StubInfos;
// Now we need to take each of the extracted Modules and add them to
// base layer. Each Module will be added individually to make sure they
// can be compiled separately, and each will get its own lookaside
// memory manager that will resolve within this logical module first.
for (auto &SubM : FunctionModules) {
// Keep track of the stubs we create for this module so that we can set
// their compile actions.
std::vector<typename StubInfoMap::iterator> NewStubInfos;
// Search for function definitions and insert stubs into the stubs
// module.
for (auto &F : *SubM) {
if (F.isDeclaration())
continue;
std::string Name = F.getName();
Function *Proto = StubsModule->getFunction(Name);
assert(Proto && "Failed to clone function decl into stubs module.");
auto CallbackInfo =
CompileCallbackMgr.getCompileCallback(Proto->getContext());
GlobalVariable *FunctionBodyPointer =
createImplPointer(*Proto->getType(), *Proto->getParent(),
Name + AddrSuffix,
createIRTypedAddress(*Proto->getFunctionType(),
CallbackInfo.getAddress()));
makeStub(*Proto, *FunctionBodyPointer);
F.setName(Name + BodySuffix);
F.setVisibility(GlobalValue::HiddenVisibility);
auto KV = std::make_pair(std::move(Name), std::move(CallbackInfo));
NewStubInfos.push_back(StubInfos.insert(StubInfos.begin(), KV));
}
auto H = addModule(std::move(SubM), MSI, LogicalModule);
// Set the compile actions for this module:
for (auto &KVPair : NewStubInfos) {
std::string BodyName = Mangle(KVPair->first + BodySuffix,
M.getDataLayout());
auto &CCInfo = KVPair->second;
CCInfo.setCompileAction(
[=](){
return BaseLayer.findSymbolIn(H, BodyName, false).getAddress();
});
// Process partitions and create stubs.
// We create the stubs before copying the global variables as we know the
// stubs won't refer to any globals (they only refer to their implementation
// pointer) so there's no ordering/value-mapping issues.
for (auto& Partition : Partitions) {
auto &UP = LD.createUncompiledPartition(LMH, SrcM);
typename UncompiledPartition::PartitionEntryList PartitionEntries;
for (auto &F : Partition) {
assert(!F->isDeclaration() &&
"Partition should only contain definitions");
unsigned FnIdx = PartitionEntries.size();
auto CCI = CompileCallbackMgr.getCompileCallback(SrcM->getContext());
PartitionEntries.push_back(
typename UncompiledPartition::PartitionEntry(F, CCI.getAddress()));
Function *StubF = cloneFunctionDecl(*GVsAndStubsM, *F, &VMap);
GlobalVariable *FnBodyPtr =
createImplPointer(*StubF->getType(), *StubF->getParent(),
StubF->getName() + "$orc_addr",
createIRTypedAddress(*StubF->getFunctionType(),
CCI.getAddress()));
makeStub(*StubF, *FnBodyPtr);
CCI.setCompileAction([&UP, FnIdx]() { return UP.compile(FnIdx); });
}
UP.setPartitionEntries(std::move(PartitionEntries));
}
// Ok - we've processed all the partitioned modules. Now add the
// stubs/globals module and set the update actions.
auto StubsH =
addModule(std::move(StubsModule), MSI, LogicalModule);
// Now clone the global variable declarations.
GlobalDeclMaterializer GDMat(*GVsAndStubsM);
for (auto &GV : SrcM->globals())
if (!GV.isDeclaration())
cloneGlobalVariableDecl(*GVsAndStubsM, GV, &VMap);
for (auto &KVPair : StubInfos) {
std::string AddrName = Mangle(KVPair.first + AddrSuffix,
M.getDataLayout());
auto &CCInfo = KVPair.second;
CCInfo.setUpdateAction(
getLocalFPUpdater(BaseLayer, StubsH, AddrName));
}
}
// Then clone the initializers.
for (auto &GV : SrcM->globals())
if (!GV.isDeclaration())
moveGlobalVariableInitializer(GV, VMap, &GDMat);
// Add the given Module to the base layer using a memory manager that will
// perform the appropriate scoped lookup (i.e. will look first with in the
// module from which it was extracted, then into the set to which that module
// belonged, and finally externally).
BaseLayerModuleSetHandleT addModule(
std::unique_ptr<Module> M,
ModuleSetInfo &MSI,
typename CODScopedLookup::LMHandle LogicalModule) {
// Add this module to the JIT with a memory manager that uses the
// DylibLookup to resolve symbols.
std::vector<std::unique_ptr<Module>> MSet;
MSet.push_back(std::move(M));
auto DylibLookup = MSI.Lookup;
auto Resolver =
createLambdaResolver(
[=](const std::string &Name) {
if (auto Symbol = DylibLookup->findSymbol(LogicalModule, Name))
// Build a resolver for the stubs module and add it to the base layer.
auto GVsAndStubsResolver = createLambdaResolver(
[&LD](const std::string &Name) {
if (auto Symbol = LD.findSymbol(Name, false))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
return DylibLookup->externalLookup(Name);
return LD.findSymbolExternally(Name);
},
[=](const std::string &Name) -> RuntimeDyld::SymbolInfo {
if (auto Symbol = DylibLookup->findSymbol(LogicalModule, Name))
return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
Symbol.getFlags());
return nullptr;
[&LD](const std::string &Name) {
return RuntimeDyld::SymbolInfo(nullptr);
});
BaseLayerModuleSetHandleT H =
BaseLayer.addModuleSet(std::move(MSet),
make_unique<SectionMemoryManager>(),
std::move(Resolver));
// Add this module to the logical module lookup.
DylibLookup->addToLogicalModule(LogicalModule, H);
MSI.BaseLayerModuleSetHandles.push_back(H);
return H;
std::vector<std::unique_ptr<Module>> GVsAndStubsMSet;
GVsAndStubsMSet.push_back(std::move(GVsAndStubsM));
auto GVsAndStubsH =
BaseLayer.addModuleSet(std::move(GVsAndStubsMSet),
llvm::make_unique<SectionMemoryManager>(),
std::move(GVsAndStubsResolver));
LD.setGVsAndStubsHandle(LMH, GVsAndStubsH);
}
static std::string Mangle(StringRef Name, const DataLayout &DL) {
@ -373,9 +507,33 @@ private:
BaseLayerT &BaseLayer;
CompileCallbackMgrT &CompileCallbackMgr;
ModuleSetInfoListT ModuleSetInfos;
LogicalDylibList LogicalDylibs;
};
template <typename BaseLayerT, typename CompileCallbackMgrT>
typename CompileOnDemandLayer<BaseLayerT, CompileCallbackMgrT>::
UncompiledPartition&
CompileOnDemandLayer<BaseLayerT, CompileCallbackMgrT>::LogicalDylib::
createUncompiledPartition(LMHandle LMH, std::shared_ptr<Module> SrcM) {
UncompiledPartitions.push_back(
llvm::make_unique<UncompiledPartition>(*this, LMH, std::move(SrcM)));
UncompiledPartitions.back()->setID(UncompiledPartitions.size() - 1);
return *UncompiledPartitions.back();
}
template <typename BaseLayerT, typename CompileCallbackMgrT>
std::unique_ptr<typename CompileOnDemandLayer<BaseLayerT, CompileCallbackMgrT>::
UncompiledPartition>
CompileOnDemandLayer<BaseLayerT, CompileCallbackMgrT>::LogicalDylib::
takeUPOwnership(UncompiledPartitionID ID) {
std::swap(UncompiledPartitions[ID], UncompiledPartitions.back());
UncompiledPartitions[ID]->setID(ID);
auto UP = std::move(UncompiledPartitions.back());
UncompiledPartitions.pop_back();
return UP;
}
} // End namespace orc.
} // End namespace llvm.

View File

@ -21,6 +21,7 @@
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <sstream>
namespace llvm {
@ -32,28 +33,22 @@ class JITCompileCallbackManagerBase {
public:
typedef std::function<TargetAddress()> CompileFtor;
typedef std::function<void(TargetAddress)> UpdateFtor;
/// @brief Handle to a newly created compile callback. Can be used to get an
/// IR constant representing the address of the trampoline, and to set
/// the compile and update actions for the callback.
/// the compile action for the callback.
class CompileCallbackInfo {
public:
CompileCallbackInfo(TargetAddress Addr, CompileFtor &Compile,
UpdateFtor &Update)
: Addr(Addr), Compile(Compile), Update(Update) {}
CompileCallbackInfo(TargetAddress Addr, CompileFtor &Compile)
: Addr(Addr), Compile(Compile) {}
TargetAddress getAddress() const { return Addr; }
void setCompileAction(CompileFtor Compile) {
this->Compile = std::move(Compile);
}
void setUpdateAction(UpdateFtor Update) {
this->Update = std::move(Update);
}
private:
TargetAddress Addr;
CompileFtor &Compile;
UpdateFtor &Update;
};
/// @brief Construct a JITCompileCallbackManagerBase.
@ -71,8 +66,8 @@ public:
/// @brief Execute the callback for the given trampoline id. Called by the JIT
/// to compile functions on demand.
TargetAddress executeCompileCallback(TargetAddress TrampolineID) {
TrampolineMapT::iterator I = ActiveTrampolines.find(TrampolineID);
TargetAddress executeCompileCallback(TargetAddress TrampolineAddr) {
auto I = ActiveTrampolines.find(TrampolineAddr);
// FIXME: Also raise an error in the Orc error-handler when we finally have
// one.
if (I == ActiveTrampolines.end())
@ -84,31 +79,43 @@ public:
// Moving the trampoline ID back to the available list first means there's at
// least one available trampoline if the compile action triggers a request for
// a new one.
AvailableTrampolines.push_back(I->first);
auto CallbackHandler = std::move(I->second);
auto Compile = std::move(I->second);
ActiveTrampolines.erase(I);
AvailableTrampolines.push_back(TrampolineAddr);
if (auto Addr = CallbackHandler.Compile()) {
CallbackHandler.Update(Addr);
if (auto Addr = Compile())
return Addr;
}
return ErrorHandlerAddress;
}
/// @brief Get/create a compile callback with the given signature.
/// @brief Reserve a compile callback.
virtual CompileCallbackInfo getCompileCallback(LLVMContext &Context) = 0;
/// @brief Get a CompileCallbackInfo for an existing callback.
CompileCallbackInfo getCompileCallbackInfo(TargetAddress TrampolineAddr) {
auto I = ActiveTrampolines.find(TrampolineAddr);
assert(I != ActiveTrampolines.end() && "Not an active trampoline.");
return CompileCallbackInfo(I->first, I->second);
}
/// @brief Release a compile callback.
///
/// Note: Callbacks are auto-released after they execute. This method should
/// only be called to manually release a callback that is not going to
/// execute.
void releaseCompileCallback(TargetAddress TrampolineAddr) {
auto I = ActiveTrampolines.find(TrampolineAddr);
assert(I != ActiveTrampolines.end() && "Not an active trampoline.");
ActiveTrampolines.erase(I);
AvailableTrampolines.push_back(TrampolineAddr);
}
protected:
struct CallbackHandler {
CompileFtor Compile;
UpdateFtor Update;
};
TargetAddress ErrorHandlerAddress;
unsigned NumTrampolinesPerBlock;
typedef std::map<TargetAddress, CallbackHandler> TrampolineMapT;
typedef std::map<TargetAddress, CompileFtor> TrampolineMapT;
TrampolineMapT ActiveTrampolines;
std::vector<TargetAddress> AvailableTrampolines;
};
@ -140,11 +147,8 @@ public:
/// @brief Get/create a compile callback with the given signature.
CompileCallbackInfo getCompileCallback(LLVMContext &Context) final {
TargetAddress TrampolineAddr = getAvailableTrampolineAddr(Context);
auto &CallbackHandler =
this->ActiveTrampolines[TrampolineAddr];
return CompileCallbackInfo(TrampolineAddr, CallbackHandler.Compile,
CallbackHandler.Update);
auto &Compile = this->ActiveTrampolines[TrampolineAddr];
return CompileCallbackInfo(TrampolineAddr, Compile);
}
private:
@ -218,22 +222,6 @@ private:
TargetAddress ResolverBlockAddr;
};
/// @brief Get an update functor that updates the value of a named function
/// pointer.
template <typename JITLayerT>
JITCompileCallbackManagerBase::UpdateFtor
getLocalFPUpdater(JITLayerT &JIT, typename JITLayerT::ModuleSetHandleT H,
std::string Name) {
// FIXME: Move-capture Name once we can use C++14.
return [=,&JIT](TargetAddress Addr) {
auto FPSym = JIT.findSymbolIn(H, Name, true);
assert(FPSym && "Cannot find function pointer to update.");
void *FPAddr = reinterpret_cast<void*>(
static_cast<uintptr_t>(FPSym.getAddress()));
memcpy(FPAddr, &Addr, sizeof(uintptr_t));
};
}
/// @brief Build a function pointer of FunctionType with the given constant
/// address.
///
@ -250,27 +238,56 @@ GlobalVariable* createImplPointer(PointerType &PT, Module &M,
/// indirect call using the given function pointer.
void makeStub(Function &F, GlobalVariable &ImplPointer);
typedef std::map<Module*, DenseSet<const GlobalValue*>> ModulePartitionMap;
/// @brief Raise linkage types and rename as necessary to ensure that all
/// symbols are accessible for other modules.
///
/// This should be called before partitioning a module to ensure that the
/// partitions retain access to each other's symbols.
void makeAllSymbolsExternallyAccessible(Module &M);
/// @brief Extract subsections of a Module into the given Module according to
/// the given ModulePartitionMap.
void partition(Module &M, const ModulePartitionMap &PMap);
/// @brief Clone a function declaration into a new module.
///
/// This function can be used as the first step towards creating a callback
/// stub (see makeStub), or moving a function body (see moveFunctionBody).
///
/// If the VMap argument is non-null, a mapping will be added between F and
/// the new declaration, and between each of F's arguments and the new
/// declaration's arguments. This map can then be passed in to moveFunction to
/// move the function body if required. Note: When moving functions between
/// modules with these utilities, all decls should be cloned (and added to a
/// single VMap) before any bodies are moved. This will ensure that references
/// between functions all refer to the versions in the new module.
Function* cloneFunctionDecl(Module &Dst, const Function &F,
ValueToValueMapTy *VMap = nullptr);
/// @brief Struct for trivial "complete" partitioning of a module.
class FullyPartitionedModule {
public:
std::unique_ptr<Module> GlobalVars;
std::unique_ptr<Module> Commons;
std::vector<std::unique_ptr<Module>> Functions;
/// @brief Move the body of function 'F' to a cloned function declaration in a
/// different module (See related cloneFunctionDecl).
///
/// If the target function declaration is not supplied via the NewF parameter
/// then it will be looked up via the VMap.
///
/// This will delete the body of function 'F' from its original parent module,
/// but leave its declaration.
void moveFunctionBody(Function &OrigF, ValueToValueMapTy &VMap,
ValueMaterializer *Materializer = nullptr,
Function *NewF = nullptr);
FullyPartitionedModule() = default;
FullyPartitionedModule(FullyPartitionedModule &&S)
: GlobalVars(std::move(S.GlobalVars)), Commons(std::move(S.Commons)),
Functions(std::move(S.Functions)) {}
};
/// @brief Clone a global variable declaration into a new module.
GlobalVariable* cloneGlobalVariableDecl(Module &Dst, const GlobalVariable &GV,
ValueToValueMapTy *VMap = nullptr);
/// @brief Extract every function in M into a separate module.
FullyPartitionedModule fullyPartition(Module &M);
/// @brief Move global variable GV from its parent module to cloned global
/// declaration in a different module.
///
/// If the target global declaration is not supplied via the NewGV parameter
/// then it will be looked up via the VMap.
///
/// This will delete the initializer of GV from its original parent module,
/// but leave its declaration.
void moveGlobalVariableInitializer(GlobalVariable &OrigGV,
ValueToValueMapTy &VMap,
ValueMaterializer *Materializer = nullptr,
GlobalVariable *NewGV = nullptr);
} // End namespace orc.
} // End namespace llvm.

View File

@ -1,5 +1,4 @@
add_llvm_library(LLVMOrcJIT
CloneSubModule.cpp
ExecutionUtils.cpp
IndirectionUtils.cpp
OrcMCJITReplacement.cpp

View File

@ -1,106 +0,0 @@
#include "llvm/ExecutionEngine/Orc/CloneSubModule.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Cloning.h"
namespace llvm {
namespace orc {
void copyGVInitializer(GlobalVariable &New, const GlobalVariable &Orig,
ValueToValueMapTy &VMap) {
if (Orig.hasInitializer())
New.setInitializer(MapValue(Orig.getInitializer(), VMap));
}
void copyFunctionBody(Function &New, const Function &Orig,
ValueToValueMapTy &VMap) {
if (!Orig.isDeclaration()) {
Function::arg_iterator DestI = New.arg_begin();
for (Function::const_arg_iterator J = Orig.arg_begin(); J != Orig.arg_end();
++J) {
DestI->setName(J->getName());
VMap[J] = DestI++;
}
SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(&New, &Orig, VMap, /*ModuleLevelChanges=*/true, Returns);
}
}
void CloneSubModule(llvm::Module &Dst, const Module &Src,
HandleGlobalVariableFtor HandleGlobalVariable,
HandleFunctionFtor HandleFunction, bool CloneInlineAsm) {
ValueToValueMapTy VMap;
if (CloneInlineAsm)
Dst.appendModuleInlineAsm(Src.getModuleInlineAsm());
// Copy global variables (but not initializers, yet).
for (Module::const_global_iterator I = Src.global_begin(), E = Src.global_end();
I != E; ++I) {
GlobalVariable *GV = new GlobalVariable(
Dst, I->getType()->getElementType(), I->isConstant(), I->getLinkage(),
(Constant *)nullptr, I->getName(), (GlobalVariable *)nullptr,
I->getThreadLocalMode(), I->getType()->getAddressSpace());
GV->copyAttributesFrom(I);
VMap[I] = GV;
}
// Loop over the functions in the module, making external functions as before
for (Module::const_iterator I = Src.begin(), E = Src.end(); I != E; ++I) {
Function *NF =
Function::Create(cast<FunctionType>(I->getType()->getElementType()),
I->getLinkage(), I->getName(), &Dst);
NF->copyAttributesFrom(I);
VMap[I] = NF;
}
// Loop over the aliases in the module
for (Module::const_alias_iterator I = Src.alias_begin(), E = Src.alias_end();
I != E; ++I) {
auto *PTy = cast<PointerType>(I->getType());
auto *GA = GlobalAlias::create(PTy, I->getLinkage(), I->getName(), &Dst);
GA->copyAttributesFrom(I);
VMap[I] = GA;
}
// Now that all of the things that global variable initializer can refer to
// have been created, loop through and copy the global variable referrers
// over... We also set the attributes on the global now.
for (Module::const_global_iterator I = Src.global_begin(), E = Src.global_end();
I != E; ++I) {
GlobalVariable &GV = *cast<GlobalVariable>(VMap[I]);
HandleGlobalVariable(GV, *I, VMap);
}
// Similarly, copy over function bodies now...
//
for (Module::const_iterator I = Src.begin(), E = Src.end(); I != E; ++I) {
Function &F = *cast<Function>(VMap[I]);
HandleFunction(F, *I, VMap);
}
// And aliases
for (Module::const_alias_iterator I = Src.alias_begin(), E = Src.alias_end();
I != E; ++I) {
GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
if (const Constant *C = I->getAliasee())
GA->setAliasee(MapValue(C, VMap));
}
// And named metadata....
for (Module::const_named_metadata_iterator I = Src.named_metadata_begin(),
E = Src.named_metadata_end();
I != E; ++I) {
const NamedMDNode &NMD = *I;
NamedMDNode *NewNMD = Dst.getOrInsertNamedMetadata(NMD.getName());
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap));
}
}
} // End namespace orc.
} // End namespace llvm.

View File

@ -9,10 +9,10 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ExecutionEngine/Orc/CloneSubModule.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <set>
#include <sstream>
@ -32,9 +32,11 @@ GlobalVariable* createImplPointer(PointerType &PT, Module &M,
const Twine &Name, Constant *Initializer) {
if (!Initializer)
Initializer = Constant::getNullValue(&PT);
return new GlobalVariable(M, &PT, false, GlobalValue::ExternalLinkage,
Initializer, Name, nullptr,
GlobalValue::NotThreadLocal, 0, true);
auto IP = new GlobalVariable(M, &PT, false, GlobalValue::ExternalLinkage,
Initializer, Name, nullptr,
GlobalValue::NotThreadLocal, 0, true);
IP->setVisibility(GlobalValue::HiddenVisibility);
return IP;
}
void makeStub(Function &F, GlobalVariable &ImplPointer) {
@ -50,7 +52,10 @@ void makeStub(Function &F, GlobalVariable &ImplPointer) {
CallInst *Call = Builder.CreateCall(ImplAddr, CallArgs);
Call->setTailCall();
Call->setAttributes(F.getAttributes());
Builder.CreateRet(Call);
if (F.getReturnType()->isVoidTy())
Builder.CreateRetVoid();
else
Builder.CreateRet(Call);
}
// Utility class for renaming global values and functions during partitioning.
@ -84,83 +89,94 @@ private:
DenseMap<const Value*, std::string> Names;
};
void partition(Module &M, const ModulePartitionMap &PMap) {
GlobalRenamer Renamer;
for (auto &KVPair : PMap) {
auto ExtractGlobalVars =
[&](GlobalVariable &New, const GlobalVariable &Orig,
ValueToValueMapTy &VMap) {
if (KVPair.second.count(&Orig)) {
copyGVInitializer(New, Orig, VMap);
}
if (New.hasLocalLinkage()) {
if (Renamer.needsRenaming(New))
New.setName(Renamer.getRename(Orig));
New.setLinkage(GlobalValue::ExternalLinkage);
New.setVisibility(GlobalValue::HiddenVisibility);
}
assert(!Renamer.needsRenaming(New) && "Invalid global name.");
};
auto ExtractFunctions =
[&](Function &New, const Function &Orig, ValueToValueMapTy &VMap) {
if (KVPair.second.count(&Orig))
copyFunctionBody(New, Orig, VMap);
if (New.hasLocalLinkage()) {
if (Renamer.needsRenaming(New))
New.setName(Renamer.getRename(Orig));
New.setLinkage(GlobalValue::ExternalLinkage);
New.setVisibility(GlobalValue::HiddenVisibility);
}
assert(!Renamer.needsRenaming(New) && "Invalid function name.");
};
CloneSubModule(*KVPair.first, M, ExtractGlobalVars, ExtractFunctions,
false);
static void raiseVisibilityOnValue(GlobalValue &V, GlobalRenamer &R) {
if (V.hasLocalLinkage()) {
if (R.needsRenaming(V))
V.setName(R.getRename(V));
V.setLinkage(GlobalValue::ExternalLinkage);
V.setVisibility(GlobalValue::HiddenVisibility);
}
V.setUnnamedAddr(false);
assert(!R.needsRenaming(V) && "Invalid global name.");
}
FullyPartitionedModule fullyPartition(Module &M) {
FullyPartitionedModule MP;
void makeAllSymbolsExternallyAccessible(Module &M) {
GlobalRenamer Renamer;
ModulePartitionMap PMap;
for (auto &F : M)
raiseVisibilityOnValue(F, Renamer);
for (auto &F : M) {
for (auto &GV : M.globals())
raiseVisibilityOnValue(GV, Renamer);
}
if (F.isDeclaration())
continue;
Function* cloneFunctionDecl(Module &Dst, const Function &F,
ValueToValueMapTy *VMap) {
assert(F.getParent() != &Dst && "Can't copy decl over existing function.");
Function *NewF =
Function::Create(cast<FunctionType>(F.getType()->getElementType()),
F.getLinkage(), F.getName(), &Dst);
NewF->copyAttributesFrom(&F);
std::string NewModuleName = (M.getName() + "." + F.getName()).str();
MP.Functions.push_back(
llvm::make_unique<Module>(NewModuleName, M.getContext()));
MP.Functions.back()->setDataLayout(M.getDataLayout());
PMap[MP.Functions.back().get()].insert(&F);
if (VMap) {
(*VMap)[&F] = NewF;
auto NewArgI = NewF->arg_begin();
for (auto ArgI = F.arg_begin(), ArgE = F.arg_end(); ArgI != ArgE;
++ArgI, ++NewArgI)
(*VMap)[ArgI] = NewArgI;
}
MP.GlobalVars =
llvm::make_unique<Module>((M.getName() + ".globals_and_stubs").str(),
M.getContext());
MP.GlobalVars->setDataLayout(M.getDataLayout());
return NewF;
}
MP.Commons =
llvm::make_unique<Module>((M.getName() + ".commons").str(), M.getContext());
MP.Commons->setDataLayout(M.getDataLayout());
void moveFunctionBody(Function &OrigF, ValueToValueMapTy &VMap,
ValueMaterializer *Materializer,
Function *NewF) {
assert(!OrigF.isDeclaration() && "Nothing to move");
if (!NewF)
NewF = cast<Function>(VMap[&OrigF]);
else
assert(VMap[&OrigF] == NewF && "Incorrect function mapping in VMap.");
assert(NewF && "Function mapping missing from VMap.");
assert(NewF->getParent() != OrigF.getParent() &&
"moveFunctionBody should only be used to move bodies between "
"modules.");
// Make sure there's at least an empty set for the stubs map or we'll fail
// to clone anything for it (including the decls).
PMap[MP.GlobalVars.get()] = ModulePartitionMap::mapped_type();
for (auto &GV : M.globals())
if (GV.getLinkage() == GlobalValue::CommonLinkage)
PMap[MP.Commons.get()].insert(&GV);
else
PMap[MP.GlobalVars.get()].insert(&GV);
SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(NewF, &OrigF, VMap, /*ModuleLevelChanges=*/true, Returns,
"", nullptr, nullptr, Materializer);
OrigF.deleteBody();
}
partition(M, PMap);
GlobalVariable* cloneGlobalVariableDecl(Module &Dst, const GlobalVariable &GV,
ValueToValueMapTy *VMap) {
assert(GV.getParent() != &Dst && "Can't copy decl over existing global var.");
GlobalVariable *NewGV = new GlobalVariable(
Dst, GV.getType()->getElementType(), GV.isConstant(),
GV.getLinkage(), nullptr, GV.getName(), nullptr,
GV.getThreadLocalMode(), GV.getType()->getAddressSpace());
NewGV->copyAttributesFrom(&GV);
if (VMap)
(*VMap)[&GV] = NewGV;
return NewGV;
}
return MP;
void moveGlobalVariableInitializer(GlobalVariable &OrigGV,
ValueToValueMapTy &VMap,
ValueMaterializer *Materializer,
GlobalVariable *NewGV) {
assert(OrigGV.hasInitializer() && "Nothing to move");
if (!NewGV)
NewGV = cast<GlobalVariable>(VMap[&OrigGV]);
else
assert(VMap[&OrigGV] == NewGV &&
"Incorrect global variable mapping in VMap.");
assert(NewGV->getParent() != OrigGV.getParent() &&
"moveGlobalVariable should only be used to move initializers between "
"modules");
NewGV->setInitializer(MapValue(OrigGV.getInitializer(), VMap, RF_None,
nullptr, Materializer));
}
} // End namespace orc.

View File

@ -1,7 +1,7 @@
; RUN: lli -jit-kind=orc-lazy -orc-lazy-debug=funcs-to-stdout %s | FileCheck %s
;
; CHECK: Hello
; CHECK: [ {{.*}}main$orc_body ]
; CHECK: [ {{.*}}main ]
; CHECK: Goodbye
%class.Foo = type { i8 }

View File

@ -21,7 +21,6 @@
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/IR/LLVMContext.h"
@ -37,9 +36,7 @@ public:
typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
TransformFtor;
typedef orc::IRTransformLayer<CompileLayerT, TransformFtor> IRDumpLayerT;
typedef orc::LazyEmittingLayer<IRDumpLayerT> LazyEmitLayerT;
typedef orc::CompileOnDemandLayer<LazyEmitLayerT,
CompileCallbackMgr> CODLayerT;
typedef orc::CompileOnDemandLayer<IRDumpLayerT, CompileCallbackMgr> CODLayerT;
typedef CODLayerT::ModuleSetHandleT ModuleHandleT;
typedef std::function<
@ -57,9 +54,8 @@ public:
ObjectLayer(),
CompileLayer(ObjectLayer, orc::SimpleCompiler(*this->TM)),
IRDumpLayer(CompileLayer, createDebugDumper()),
LazyEmitLayer(IRDumpLayer),
CCMgr(BuildCallbackMgr(IRDumpLayer, CCMgrMemMgr, Context)),
CODLayer(LazyEmitLayer, *CCMgr),
CODLayer(IRDumpLayer, *CCMgr),
CXXRuntimeOverrides([this](const std::string &S) { return mangle(S); }) {}
~OrcLazyJIT() {
@ -154,7 +150,6 @@ private:
ObjLayerT ObjectLayer;
CompileLayerT CompileLayer;
IRDumpLayerT IRDumpLayer;
LazyEmitLayerT LazyEmitLayer;
std::unique_ptr<CompileCallbackMgr> CCMgr;
CODLayerT CODLayer;