mirror of
https://github.com/RPCS3/llvm.git
synced 2025-05-28 16:26:18 +00:00
[NVPTX] Adds a new address space inference pass.
Summary: The old address space inference pass (NVPTXFavorNonGenericAddrSpaces) is unable to convert the address space of a pointer induction variable. This patch adds a new pass called NVPTXInferAddressSpaces that overcomes that limitation using a fixed-point data-flow analysis (see the file header comments for details). The new pass is experimental and not enabled by default. Users can turn it on by setting the -nvptx-use-infer-addrspace flag of llc. Reviewers: jholewinski, tra, jlebar Subscribers: jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D17965 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263916 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
443693f33a
commit
eed77df1b6
@ -18,6 +18,7 @@ set(NVPTXCodeGen_sources
|
||||
NVPTXISelDAGToDAG.cpp
|
||||
NVPTXISelLowering.cpp
|
||||
NVPTXImageOptimizer.cpp
|
||||
NVPTXInferAddressSpaces.cpp
|
||||
NVPTXInstrInfo.cpp
|
||||
NVPTXLowerAggrCopies.cpp
|
||||
NVPTXLowerKernelArgs.cpp
|
||||
|
@ -46,6 +46,7 @@ FunctionPass *createNVPTXISelDag(NVPTXTargetMachine &TM,
|
||||
ModulePass *createNVPTXAssignValidGlobalNamesPass();
|
||||
ModulePass *createGenericToNVVMPass();
|
||||
FunctionPass *createNVPTXFavorNonGenericAddrSpacesPass();
|
||||
FunctionPass *createNVPTXInferAddressSpacesPass();
|
||||
ModulePass *createNVVMReflectPass();
|
||||
ModulePass *createNVVMReflectPass(const StringMap<int>& Mapping);
|
||||
MachineFunctionPass *createNVPTXPrologEpilogPass();
|
||||
|
@ -7,6 +7,9 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// FIXME: This pass is deprecated in favor of NVPTXInferAddressSpaces, which
|
||||
// uses a new algorithm that handles pointer induction variables.
|
||||
//
|
||||
// When a load/store accesses the generic address space, checks whether the
|
||||
// address is casted from a non-generic address space. If so, remove this
|
||||
// addrspacecast because accessing non-generic address spaces is typically
|
||||
@ -164,8 +167,8 @@ Value *NVPTXFavorNonGenericAddrSpaces::hoistAddrSpaceCastFromGEP(
|
||||
GEP->getSourceElementType(), Cast->getOperand(0), Indices,
|
||||
"", GEPI);
|
||||
NewGEP->setIsInBounds(GEP->isInBounds());
|
||||
NewGEP->takeName(GEP);
|
||||
NewASC = new AddrSpaceCastInst(NewGEP, GEP->getType(), "", GEPI);
|
||||
NewASC->takeName(GEP);
|
||||
// Without RAUWing GEP, the compiler would visit GEP again and emit
|
||||
// redundant instructions. This is exercised in test @rauw in
|
||||
// access-non-generic.ll.
|
||||
|
584
lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp
Normal file
584
lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp
Normal file
@ -0,0 +1,584 @@
|
||||
//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// CUDA C/C++ includes memory space designation as variable type qualifers (such
|
||||
// as __global__ and __shared__). Knowing the space of a memory access allows
|
||||
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
|
||||
// shared memory can be translated to `ld.shared` which is roughly 10% faster
|
||||
// than a generic `ld` on an NVIDIA Tesla K40c.
|
||||
//
|
||||
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
|
||||
// compilers must infer the memory space of an address expression from
|
||||
// type-qualified variables.
|
||||
//
|
||||
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
|
||||
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
|
||||
// places only type-qualified variables in specific address spaces, and then
|
||||
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
|
||||
// (so-called the generic address space) for other instructions to use.
|
||||
//
|
||||
// For example, the Clang translates the following CUDA code
|
||||
// __shared__ float a[10];
|
||||
// float v = a[i];
|
||||
// to
|
||||
// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
|
||||
// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
|
||||
// %v = load float, float* %1 ; emits ld.f32
|
||||
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
|
||||
// redirected to %0 (the generic version of @a).
|
||||
//
|
||||
// The optimization implemented in this file propagates specific address spaces
|
||||
// from type-qualified variable declarations to its users. For example, it
|
||||
// optimizes the above IR to
|
||||
// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
|
||||
// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
|
||||
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
|
||||
// codegen is able to emit ld.shared.f32 for %v.
|
||||
//
|
||||
// Address space inference works in two steps. First, it uses a data-flow
|
||||
// analysis to infer as many generic pointers as possible to point to only one
|
||||
// specific address space. In the above example, it can prove that %1 only
|
||||
// points to addrspace(3). This algorithm was published in
|
||||
// CUDA: Compiling and optimizing for a GPU platform
|
||||
// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
|
||||
// ICCS 2012
|
||||
//
|
||||
// Then, address space inference replaces all refinable generic pointers with
|
||||
// equivalent specific pointers.
|
||||
//
|
||||
// The major challenge of implementing this optimization is handling PHINodes,
|
||||
// which may create loops in the data flow graph. This brings two complications.
|
||||
//
|
||||
// First, the data flow analysis in Step 1 needs to be circular. For example,
|
||||
// %generic.input = addrspacecast float addrspace(3)* %input to float*
|
||||
// loop:
|
||||
// %y = phi [ %generic.input, %y2 ]
|
||||
// %y2 = getelementptr %y, 1
|
||||
// %v = load %y2
|
||||
// br ..., label %loop, ...
|
||||
// proving %y specific requires proving both %generic.input and %y2 specific,
|
||||
// but proving %y2 specific circles back to %y. To address this complication,
|
||||
// the data flow analysis operates on a lattice:
|
||||
// uninitialized > specific address spaces > generic.
|
||||
// All address expressions (our implementation only considers phi, bitcast,
|
||||
// addrspacecast, and getelementptr) start with the uninitialized address space.
|
||||
// The monotone transfer function moves the address space of a pointer down a
|
||||
// lattice path from uninitialized to specific and then to generic. A join
|
||||
// operation of two different specific address spaces pushes the expression down
|
||||
// to the generic address space. The analysis completes once it reaches a fixed
|
||||
// point.
|
||||
//
|
||||
// Second, IR rewriting in Step 2 also needs to be circular. For example,
|
||||
// converting %y to addrspace(3) requires the compiler to know the converted
|
||||
// %y2, but converting %y2 needs the converted %y. To address this complication,
|
||||
// we break these cycles using "undef" placeholders. When converting an
|
||||
// instruction `I` to a new address space, if its operand `Op` is not converted
|
||||
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
|
||||
// For instance, our algorithm first converts %y to
|
||||
// %y' = phi float addrspace(3)* [ %input, undef ]
|
||||
// Then, it converts %y2 to
|
||||
// %y2' = getelementptr %y', 1
|
||||
// Finally, it fixes the undef in %y' so that
|
||||
// %y' = phi float addrspace(3)* [ %input, %y2' ]
|
||||
//
|
||||
// TODO: This pass is experimental and not enabled by default. Users can turn it
|
||||
// on by setting the -nvptx-use-infer-addrspace flag of llc. We plan to replace
|
||||
// NVPTXNonFavorGenericAddrSpaces with this pass shortly.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "nvptx-infer-addrspace"
|
||||
|
||||
#include "NVPTX.h"
|
||||
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include "llvm/ADT/Optional.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/InstIterator.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Operator.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
#include "llvm/Transforms/Utils/ValueMapper.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
const unsigned ADDRESS_SPACE_UNINITIALIZED = (unsigned)-1;
|
||||
|
||||
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
|
||||
|
||||
/// \brief NVPTXInferAddressSpaces
|
||||
class NVPTXInferAddressSpaces: public FunctionPass {
|
||||
public:
|
||||
static char ID;
|
||||
|
||||
NVPTXInferAddressSpaces() : FunctionPass(ID) {}
|
||||
|
||||
bool runOnFunction(Function &F) override;
|
||||
|
||||
private:
|
||||
// Returns the new address space of V if updated; otherwise, returns None.
|
||||
Optional<unsigned>
|
||||
updateAddressSpace(const Value &V,
|
||||
const ValueToAddrSpaceMapTy &InferredAddrSpace);
|
||||
|
||||
// Tries to infer the specific address space of each address expression in
|
||||
// Postorder.
|
||||
void inferAddressSpaces(const std::vector<Value *> &Postorder,
|
||||
ValueToAddrSpaceMapTy *InferredAddrSpace);
|
||||
|
||||
// Changes the generic address expressions in function F to point to specific
|
||||
// address spaces if InferredAddrSpace says so. Postorder is the postorder of
|
||||
// all generic address expressions in the use-def graph of function F.
|
||||
bool
|
||||
rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
|
||||
const ValueToAddrSpaceMapTy &InferredAddrSpace,
|
||||
Function *F);
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
char NVPTXInferAddressSpaces::ID = 0;
|
||||
|
||||
namespace llvm {
|
||||
void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
|
||||
}
|
||||
INITIALIZE_PASS(NVPTXInferAddressSpaces, "nvptx-infer-addrspace",
|
||||
"Infer address spaces",
|
||||
false, false)
|
||||
|
||||
// Returns true if V is an address expression.
|
||||
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
|
||||
// getelementptr operators.
|
||||
static bool isAddressExpression(const Value &V) {
|
||||
if (!isa<Operator>(V))
|
||||
return false;
|
||||
|
||||
switch (cast<Operator>(V).getOpcode()) {
|
||||
case Instruction::PHI:
|
||||
case Instruction::BitCast:
|
||||
case Instruction::AddrSpaceCast:
|
||||
case Instruction::GetElementPtr:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the pointer operands of V.
|
||||
//
|
||||
// Precondition: V is an address expression.
|
||||
static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
|
||||
assert(isAddressExpression(V));
|
||||
const Operator& Op = cast<Operator>(V);
|
||||
switch (Op.getOpcode()) {
|
||||
case Instruction::PHI: {
|
||||
auto IncomingValues = cast<PHINode>(Op).incoming_values();
|
||||
return SmallVector<Value *, 2>(IncomingValues.begin(),
|
||||
IncomingValues.end());
|
||||
}
|
||||
case Instruction::BitCast:
|
||||
case Instruction::AddrSpaceCast:
|
||||
case Instruction::GetElementPtr:
|
||||
return {Op.getOperand(0)};
|
||||
default:
|
||||
llvm_unreachable("Unexpected instruction type.");
|
||||
}
|
||||
}
|
||||
|
||||
// If V is an unvisited generic address expression, appends V to PostorderStack
|
||||
// and marks it as visited.
|
||||
static void appendsGenericAddressExpressionToPostorderStack(
|
||||
Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
|
||||
DenseSet<Value *> *Visited) {
|
||||
assert(V->getType()->isPointerTy());
|
||||
if (isAddressExpression(*V) &&
|
||||
V->getType()->getPointerAddressSpace() ==
|
||||
AddressSpace::ADDRESS_SPACE_GENERIC) {
|
||||
if (Visited->insert(V).second)
|
||||
PostorderStack->push_back(std::make_pair(V, false));
|
||||
}
|
||||
}
|
||||
|
||||
// Returns all generic address expressions in function F. The elements are
|
||||
// ordered in postorder.
|
||||
static std::vector<Value *> collectGenericAddressExpressions(Function &F) {
|
||||
// This function implements a non-recursive postorder traversal of a partial
|
||||
// use-def graph of function F.
|
||||
std::vector<std::pair<Value*, bool>> PostorderStack;
|
||||
// The set of visited expressions.
|
||||
DenseSet<Value*> Visited;
|
||||
// We only explore address expressions that are reachable from loads and
|
||||
// stores for now because we aim at generating faster loads and stores.
|
||||
for (Instruction &I : instructions(F)) {
|
||||
if (isa<LoadInst>(I)) {
|
||||
appendsGenericAddressExpressionToPostorderStack(
|
||||
I.getOperand(0), &PostorderStack, &Visited);
|
||||
} else if (isa<StoreInst>(I)) {
|
||||
appendsGenericAddressExpressionToPostorderStack(
|
||||
I.getOperand(1), &PostorderStack, &Visited);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Value *> Postorder; // The resultant postorder.
|
||||
while (!PostorderStack.empty()) {
|
||||
// If the operands of the expression on the top are already explored,
|
||||
// adds that expression to the resultant postorder.
|
||||
if (PostorderStack.back().second) {
|
||||
Postorder.push_back(PostorderStack.back().first);
|
||||
PostorderStack.pop_back();
|
||||
continue;
|
||||
}
|
||||
// Otherwise, adds its operands to the stack and explores them.
|
||||
PostorderStack.back().second = true;
|
||||
for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
|
||||
appendsGenericAddressExpressionToPostorderStack(
|
||||
PtrOperand, &PostorderStack, &Visited);
|
||||
}
|
||||
}
|
||||
return Postorder;
|
||||
}
|
||||
|
||||
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
|
||||
// of OperandUse.get() in the new address space. If the clone is not ready yet,
|
||||
// returns an undef in the new address space as a placeholder.
|
||||
static Value *operandWithNewAddressSpaceOrCreateUndef(
|
||||
const Use &OperandUse, unsigned NewAddrSpace,
|
||||
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
||||
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
||||
Value *Operand = OperandUse.get();
|
||||
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
|
||||
return NewOperand;
|
||||
|
||||
UndefUsesToFix->push_back(&OperandUse);
|
||||
return UndefValue::get(
|
||||
Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
|
||||
}
|
||||
|
||||
// Returns a clone of `I` with its operands converted to those specified in
|
||||
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
|
||||
// operand whose address space needs to be modified might not exist in
|
||||
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
|
||||
// adds that operand use to UndefUsesToFix so that caller can fix them later.
|
||||
//
|
||||
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
|
||||
// from a pointer whose type already matches. Therefore, this function returns a
|
||||
// Value* instead of an Instruction*.
|
||||
static Value *cloneInstructionWithNewAddressSpace(
|
||||
Instruction *I, unsigned NewAddrSpace,
|
||||
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
||||
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
||||
Type *NewPtrType =
|
||||
I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
||||
|
||||
if (I->getOpcode() == Instruction::AddrSpaceCast) {
|
||||
Value *Src = I->getOperand(0);
|
||||
// Because `I` is generic, the source address space must be specific.
|
||||
// Therefore, the inferred address space must be the source space, according
|
||||
// to our algorithm.
|
||||
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
|
||||
if (Src->getType() != NewPtrType)
|
||||
return new BitCastInst(Src, NewPtrType);
|
||||
return Src;
|
||||
}
|
||||
|
||||
// Computes the converted pointer operands.
|
||||
SmallVector<Value *, 4> NewPointerOperands;
|
||||
for (const Use &OperandUse : I->operands()) {
|
||||
if (!OperandUse.get()->getType()->isPointerTy())
|
||||
NewPointerOperands.push_back(nullptr);
|
||||
else
|
||||
NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
|
||||
OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
|
||||
}
|
||||
|
||||
switch (I->getOpcode()) {
|
||||
case Instruction::BitCast:
|
||||
return new BitCastInst(NewPointerOperands[0], NewPtrType);
|
||||
case Instruction::PHI: {
|
||||
assert(I->getType()->isPointerTy());
|
||||
PHINode *PHI = cast<PHINode>(I);
|
||||
PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
|
||||
for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
|
||||
unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
|
||||
NewPHI->addIncoming(NewPointerOperands[OperandNo],
|
||||
PHI->getIncomingBlock(Index));
|
||||
}
|
||||
return NewPHI;
|
||||
}
|
||||
case Instruction::GetElementPtr: {
|
||||
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
|
||||
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
|
||||
GEP->getSourceElementType(), NewPointerOperands[0],
|
||||
SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
|
||||
NewGEP->setIsInBounds(GEP->isInBounds());
|
||||
return NewGEP;
|
||||
}
|
||||
default:
|
||||
llvm_unreachable("Unexpected opcode");
|
||||
}
|
||||
}
|
||||
|
||||
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
|
||||
// constant expression `CE` with its operands replaced as specified in
|
||||
// ValueWithNewAddrSpace.
|
||||
static Value *cloneConstantExprWithNewAddressSpace(
|
||||
ConstantExpr *CE, unsigned NewAddrSpace,
|
||||
const ValueToValueMapTy &ValueWithNewAddrSpace) {
|
||||
Type *TargetType =
|
||||
CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
|
||||
|
||||
if (CE->getOpcode() == Instruction::AddrSpaceCast) {
|
||||
// Because CE is generic, the source address space must be specific.
|
||||
// Therefore, the inferred address space must be the source space according
|
||||
// to our algorithm.
|
||||
assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
|
||||
NewAddrSpace);
|
||||
return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
|
||||
}
|
||||
|
||||
// Computes the operands of the new constant expression.
|
||||
SmallVector<Constant *, 4> NewOperands;
|
||||
for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
|
||||
Constant *Operand = CE->getOperand(Index);
|
||||
// If the address space of `Operand` needs to be modified, the new operand
|
||||
// with the new address space should already be in ValueWithNewAddrSpace
|
||||
// because (1) the constant expressions we consider (i.e. addrspacecast,
|
||||
// bitcast, and getelementptr) do not incur cycles in the data flow graph
|
||||
// and (2) this function is called on constant expressions in postorder.
|
||||
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
|
||||
NewOperands.push_back(cast<Constant>(NewOperand));
|
||||
} else {
|
||||
// Otherwise, reuses the old operand.
|
||||
NewOperands.push_back(Operand);
|
||||
}
|
||||
}
|
||||
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
||||
// Needs to specify the source type while constructing a getelementptr
|
||||
// constant expression.
|
||||
return CE->getWithOperands(
|
||||
NewOperands, TargetType, /*OnlyIfReduced=*/false,
|
||||
NewOperands[0]->getType()->getPointerElementType());
|
||||
}
|
||||
|
||||
return CE->getWithOperands(NewOperands, TargetType);
|
||||
}
|
||||
|
||||
// Returns a clone of the value `V`, with its operands replaced as specified in
|
||||
// ValueWithNewAddrSpace. This function is called on every generic address
|
||||
// expression whose address space needs to be modified, in postorder.
|
||||
//
|
||||
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
|
||||
static Value *
|
||||
cloneValueWithNewAddressSpace(Value *V, unsigned NewAddrSpace,
|
||||
const ValueToValueMapTy &ValueWithNewAddrSpace,
|
||||
SmallVectorImpl<const Use *> *UndefUsesToFix) {
|
||||
// All values in Postorder are generic address expressions.
|
||||
assert(isAddressExpression(*V) &&
|
||||
V->getType()->getPointerAddressSpace() ==
|
||||
AddressSpace::ADDRESS_SPACE_GENERIC);
|
||||
|
||||
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
Value *NewV = cloneInstructionWithNewAddressSpace(
|
||||
I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
|
||||
if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
|
||||
if (NewI->getParent() == nullptr) {
|
||||
NewI->insertBefore(I);
|
||||
NewI->takeName(I);
|
||||
}
|
||||
}
|
||||
return NewV;
|
||||
}
|
||||
|
||||
return cloneConstantExprWithNewAddressSpace(
|
||||
cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
|
||||
}
|
||||
|
||||
// Defines the join operation on the address space lattice (see the file header
|
||||
// comments).
|
||||
static unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) {
|
||||
if (AS1 == AddressSpace::ADDRESS_SPACE_GENERIC ||
|
||||
AS2 == AddressSpace::ADDRESS_SPACE_GENERIC)
|
||||
return AddressSpace::ADDRESS_SPACE_GENERIC;
|
||||
|
||||
if (AS1 == ADDRESS_SPACE_UNINITIALIZED)
|
||||
return AS2;
|
||||
if (AS2 == ADDRESS_SPACE_UNINITIALIZED)
|
||||
return AS1;
|
||||
|
||||
// The join of two different specific address spaces is generic.
|
||||
return AS1 == AS2 ? AS1 : (unsigned)AddressSpace::ADDRESS_SPACE_GENERIC;
|
||||
}
|
||||
|
||||
bool NVPTXInferAddressSpaces::runOnFunction(Function &F) {
|
||||
// Collects all generic address expressions in postorder.
|
||||
std::vector<Value *> Postorder = collectGenericAddressExpressions(F);
|
||||
|
||||
// Runs a data-flow analysis to refine the address spaces of every expression
|
||||
// in Postorder.
|
||||
ValueToAddrSpaceMapTy InferredAddrSpace;
|
||||
inferAddressSpaces(Postorder, &InferredAddrSpace);
|
||||
|
||||
// Changes the address spaces of the generic address expressions who are
|
||||
// inferred to point to a specific address space.
|
||||
return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
|
||||
}
|
||||
|
||||
void NVPTXInferAddressSpaces::inferAddressSpaces(
|
||||
const std::vector<Value *> &Postorder,
|
||||
ValueToAddrSpaceMapTy *InferredAddrSpace) {
|
||||
SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
|
||||
// Initially, all expressions are in the uninitialized address space.
|
||||
for (Value *V : Postorder)
|
||||
(*InferredAddrSpace)[V] = ADDRESS_SPACE_UNINITIALIZED;
|
||||
|
||||
while (!Worklist.empty()) {
|
||||
Value* V = Worklist.pop_back_val();
|
||||
|
||||
// Tries to update the address space of the stack top according to the
|
||||
// address spaces of its operands.
|
||||
DEBUG(dbgs() << "Updating the address space of\n"
|
||||
<< " " << *V << "\n");
|
||||
Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
|
||||
if (!NewAS.hasValue())
|
||||
continue;
|
||||
// If any updates are made, grabs its users to the worklist because
|
||||
// their address spaces can also be possibly updated.
|
||||
DEBUG(dbgs() << " to " << NewAS.getValue() << "\n");
|
||||
(*InferredAddrSpace)[V] = NewAS.getValue();
|
||||
|
||||
for (Value *User : V->users()) {
|
||||
// Skip if User is already in the worklist.
|
||||
if (Worklist.count(User))
|
||||
continue;
|
||||
|
||||
auto Pos = InferredAddrSpace->find(User);
|
||||
// Our algorithm only updates the address spaces of generic address
|
||||
// expressions, which are those in InferredAddrSpace.
|
||||
if (Pos == InferredAddrSpace->end())
|
||||
continue;
|
||||
|
||||
// Function updateAddressSpace moves the address space down a lattice
|
||||
// path. Therefore, nothing to do if User is already inferred as
|
||||
// generic (the bottom element in the lattice).
|
||||
if (Pos->second == AddressSpace::ADDRESS_SPACE_GENERIC)
|
||||
continue;
|
||||
|
||||
Worklist.insert(User);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Optional<unsigned> NVPTXInferAddressSpaces::updateAddressSpace(
|
||||
const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) {
|
||||
assert(InferredAddrSpace.count(&V));
|
||||
|
||||
// The new inferred address space equals the join of the address spaces
|
||||
// of all its pointer operands.
|
||||
unsigned NewAS = ADDRESS_SPACE_UNINITIALIZED;
|
||||
for (Value *PtrOperand : getPointerOperands(V)) {
|
||||
unsigned OperandAS;
|
||||
if (InferredAddrSpace.count(PtrOperand))
|
||||
OperandAS = InferredAddrSpace.lookup(PtrOperand);
|
||||
else
|
||||
OperandAS = PtrOperand->getType()->getPointerAddressSpace();
|
||||
NewAS = joinAddressSpaces(NewAS, OperandAS);
|
||||
// join(generic, *) = generic. So we can break if NewAS is already generic.
|
||||
if (NewAS == AddressSpace::ADDRESS_SPACE_GENERIC)
|
||||
break;
|
||||
}
|
||||
|
||||
unsigned OldAS = InferredAddrSpace.lookup(&V);
|
||||
assert(OldAS != AddressSpace::ADDRESS_SPACE_GENERIC);
|
||||
if (OldAS == NewAS)
|
||||
return None;
|
||||
return NewAS;
|
||||
}
|
||||
|
||||
bool NVPTXInferAddressSpaces::rewriteWithNewAddressSpaces(
|
||||
const std::vector<Value *> &Postorder,
|
||||
const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) {
|
||||
// For each address expression to be modified, creates a clone of it with its
|
||||
// pointer operands converted to the new address space. Since the pointer
|
||||
// operands are converted, the clone is naturally in the new address space by
|
||||
// construction.
|
||||
ValueToValueMapTy ValueWithNewAddrSpace;
|
||||
SmallVector<const Use *, 32> UndefUsesToFix;
|
||||
for (Value* V : Postorder) {
|
||||
unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
|
||||
if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
|
||||
ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
|
||||
V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
|
||||
}
|
||||
}
|
||||
|
||||
if (ValueWithNewAddrSpace.empty())
|
||||
return false;
|
||||
|
||||
// Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
|
||||
for (const Use* UndefUse : UndefUsesToFix) {
|
||||
User *V = UndefUse->getUser();
|
||||
User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
|
||||
unsigned OperandNo = UndefUse->getOperandNo();
|
||||
assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
|
||||
NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
|
||||
}
|
||||
|
||||
// Replaces the uses of the old address expressions with the new ones.
|
||||
for (Value *V : Postorder) {
|
||||
Value *NewV = ValueWithNewAddrSpace.lookup(V);
|
||||
if (NewV == nullptr)
|
||||
continue;
|
||||
|
||||
SmallVector<Use *, 4> Uses;
|
||||
for (Use &U : V->uses())
|
||||
Uses.push_back(&U);
|
||||
DEBUG(dbgs() << "Replacing the uses of " << *V << "\n to\n " << *NewV
|
||||
<< "\n");
|
||||
for (Use *U : Uses) {
|
||||
if (isa<LoadInst>(U->getUser()) ||
|
||||
(isa<StoreInst>(U->getUser()) && U->getOperandNo() == 1)) {
|
||||
// If V is used as the pointer operand of a load/store, sets the pointer
|
||||
// operand to NewV. This replacement does not change the element type,
|
||||
// so the resultant load/store is still valid.
|
||||
U->set(NewV);
|
||||
} else if (isa<Instruction>(U->getUser())) {
|
||||
// Otherwise, replaces the use with generic(NewV).
|
||||
// TODO: Some optimization opportunities are missed. For example, in
|
||||
// %0 = icmp eq float* %p, %q
|
||||
// if both p and q are inferred to be shared, we can rewrite %0 as
|
||||
// %0 = icmp eq float addrspace(3)* %new_p, %new_q
|
||||
// instead of currently
|
||||
// %generic_p = addrspacecast float addrspace(3)* %new_p to float*
|
||||
// %generic_q = addrspacecast float addrspace(3)* %new_q to float*
|
||||
// %0 = icmp eq float* %generic_p, %generic_q
|
||||
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
BasicBlock::iterator InsertPos = std::next(I->getIterator());
|
||||
while (isa<PHINode>(InsertPos))
|
||||
++InsertPos;
|
||||
U->set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
|
||||
} else {
|
||||
U->set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
|
||||
V->getType()));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (V->use_empty())
|
||||
RecursivelyDeleteTriviallyDeadInstructions(V);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createNVPTXInferAddressSpacesPass() {
|
||||
return new NVPTXInferAddressSpaces();
|
||||
}
|
@ -48,12 +48,18 @@
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
static cl::opt<bool> UseInferAddressSpaces(
|
||||
"nvptx-use-infer-addrspace", cl::init(false), cl::Hidden,
|
||||
cl::desc("Optimize address spaces using NVPTXInferAddressSpaces instead of "
|
||||
"NVPTXFavorNonGenericAddrSpaces"));
|
||||
|
||||
namespace llvm {
|
||||
void initializeNVVMReflectPass(PassRegistry&);
|
||||
void initializeGenericToNVVMPass(PassRegistry&);
|
||||
void initializeNVPTXAllocaHoistingPass(PassRegistry &);
|
||||
void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
|
||||
void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
|
||||
void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
|
||||
void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
|
||||
void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
|
||||
void initializeNVPTXLowerAllocaPass(PassRegistry &);
|
||||
@ -72,6 +78,7 @@ extern "C" void LLVMInitializeNVPTXTarget() {
|
||||
initializeNVPTXAllocaHoistingPass(PR);
|
||||
initializeNVPTXAssignValidGlobalNamesPass(PR);
|
||||
initializeNVPTXFavorNonGenericAddrSpacesPass(PR);
|
||||
initializeNVPTXInferAddressSpacesPass(PR);
|
||||
initializeNVPTXLowerKernelArgsPass(PR);
|
||||
initializeNVPTXLowerAllocaPass(PR);
|
||||
initializeNVPTXLowerAggrCopiesPass(PR);
|
||||
@ -149,7 +156,7 @@ private:
|
||||
void addEarlyCSEOrGVNPass();
|
||||
|
||||
// Add passes that propagate special memory spaces.
|
||||
void addMemorySpaceInferencePasses();
|
||||
void addAddressSpaceInferencePasses();
|
||||
|
||||
// Add passes that perform straight-line scalar optimizations.
|
||||
void addStraightLineScalarOptimizationPasses();
|
||||
@ -173,17 +180,21 @@ void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
|
||||
addPass(createEarlyCSEPass());
|
||||
}
|
||||
|
||||
void NVPTXPassConfig::addMemorySpaceInferencePasses() {
|
||||
void NVPTXPassConfig::addAddressSpaceInferencePasses() {
|
||||
addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine()));
|
||||
// NVPTXLowerKernelArgs emits alloca for byval parameters which can often
|
||||
// be eliminated by SROA.
|
||||
addPass(createSROAPass());
|
||||
addPass(createNVPTXLowerAllocaPass());
|
||||
addPass(createNVPTXFavorNonGenericAddrSpacesPass());
|
||||
// FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
|
||||
// them unused. We could remove dead code in an ad-hoc manner, but that
|
||||
// requires manual work and might be error-prone.
|
||||
addPass(createDeadCodeEliminationPass());
|
||||
if (UseInferAddressSpaces) {
|
||||
addPass(createNVPTXInferAddressSpacesPass());
|
||||
} else {
|
||||
addPass(createNVPTXFavorNonGenericAddrSpacesPass());
|
||||
// FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
|
||||
// them unused. We could remove dead code in an ad-hoc manner, but that
|
||||
// requires manual work and might be error-prone.
|
||||
addPass(createDeadCodeEliminationPass());
|
||||
}
|
||||
}
|
||||
|
||||
void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
|
||||
@ -220,7 +231,7 @@ void NVPTXPassConfig::addIRPasses() {
|
||||
addPass(createGenericToNVVMPass());
|
||||
|
||||
if (getOptLevel() != CodeGenOpt::None) {
|
||||
addMemorySpaceInferencePasses();
|
||||
addAddressSpaceInferencePasses();
|
||||
addStraightLineScalarOptimizationPasses();
|
||||
}
|
||||
|
||||
|
@ -1,9 +1,18 @@
|
||||
; RUN: llc < %s -march=nvptx -mcpu=sm_20 | FileCheck %s --check-prefix PTX
|
||||
; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s --check-prefix PTX
|
||||
; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 -nvptx-use-infer-addrspace | FileCheck %s --check-prefix PTX
|
||||
; RUN: opt < %s -S -nvptx-favor-non-generic -dce | FileCheck %s --check-prefix IR
|
||||
; RUN: opt < %s -S -nvptx-infer-addrspace | FileCheck %s --check-prefix IR --check-prefix IR-WITH-LOOP
|
||||
|
||||
@array = internal addrspace(3) global [10 x float] zeroinitializer, align 4
|
||||
@scalar = internal addrspace(3) global float 0.000000e+00, align 4
|
||||
@generic_scalar = internal global float 0.000000e+00, align 4
|
||||
|
||||
define float @ld_from_shared() {
|
||||
%1 = addrspacecast float* @generic_scalar to float addrspace(3)*
|
||||
%2 = load float, float addrspace(3)* %1
|
||||
ret float %2
|
||||
}
|
||||
|
||||
; Verifies nvptx-favor-non-generic correctly optimizes generic address space
|
||||
; usage to non-generic address space usage for the patterns we claim to handle:
|
||||
@ -13,12 +22,13 @@
|
||||
; 4. store gep cast
|
||||
; gep and cast can be an instruction or a constant expression. This function
|
||||
; tries all possible combinations.
|
||||
define float @ld_st_shared_f32(i32 %i, float %v) {
|
||||
define void @ld_st_shared_f32(i32 %i, float %v) {
|
||||
; IR-LABEL: @ld_st_shared_f32
|
||||
; IR-NOT: addrspacecast
|
||||
; PTX-LABEL: ld_st_shared_f32(
|
||||
; load cast
|
||||
%1 = load float, float* addrspacecast (float addrspace(3)* @scalar to float*), align 4
|
||||
call void @use(float %1)
|
||||
; PTX: ld.shared.f32 %f{{[0-9]+}}, [scalar];
|
||||
; store cast
|
||||
store float %v, float* addrspacecast (float addrspace(3)* @scalar to float*), align 4
|
||||
@ -30,6 +40,7 @@ define float @ld_st_shared_f32(i32 %i, float %v) {
|
||||
; cast; load
|
||||
%2 = addrspacecast float addrspace(3)* @scalar to float*
|
||||
%3 = load float, float* %2, align 4
|
||||
call void @use(float %3)
|
||||
; PTX: ld.shared.f32 %f{{[0-9]+}}, [scalar];
|
||||
; cast; store
|
||||
store float %v, float* %2, align 4
|
||||
@ -39,6 +50,7 @@ define float @ld_st_shared_f32(i32 %i, float %v) {
|
||||
|
||||
; load gep cast
|
||||
%4 = load float, float* getelementptr inbounds ([10 x float], [10 x float]* addrspacecast ([10 x float] addrspace(3)* @array to [10 x float]*), i32 0, i32 5), align 4
|
||||
call void @use(float %4)
|
||||
; PTX: ld.shared.f32 %f{{[0-9]+}}, [array+20];
|
||||
; store gep cast
|
||||
store float %v, float* getelementptr inbounds ([10 x float], [10 x float]* addrspacecast ([10 x float] addrspace(3)* @array to [10 x float]*), i32 0, i32 5), align 4
|
||||
@ -49,6 +61,7 @@ define float @ld_st_shared_f32(i32 %i, float %v) {
|
||||
; gep cast; load
|
||||
%5 = getelementptr inbounds [10 x float], [10 x float]* addrspacecast ([10 x float] addrspace(3)* @array to [10 x float]*), i32 0, i32 5
|
||||
%6 = load float, float* %5, align 4
|
||||
call void @use(float %6)
|
||||
; PTX: ld.shared.f32 %f{{[0-9]+}}, [array+20];
|
||||
; gep cast; store
|
||||
store float %v, float* %5, align 4
|
||||
@ -60,6 +73,7 @@ define float @ld_st_shared_f32(i32 %i, float %v) {
|
||||
%7 = addrspacecast [10 x float] addrspace(3)* @array to [10 x float]*
|
||||
%8 = getelementptr inbounds [10 x float], [10 x float]* %7, i32 0, i32 %i
|
||||
%9 = load float, float* %8, align 4
|
||||
call void @use(float %9)
|
||||
; PTX: ld.shared.f32 %f{{[0-9]+}}, [%{{(r|rl|rd)[0-9]+}}];
|
||||
; cast; gep; store
|
||||
store float %v, float* %8, align 4
|
||||
@ -67,11 +81,7 @@ define float @ld_st_shared_f32(i32 %i, float %v) {
|
||||
call void @llvm.cuda.syncthreads()
|
||||
; PTX: bar.sync 0;
|
||||
|
||||
%sum2 = fadd float %1, %3
|
||||
%sum3 = fadd float %sum2, %4
|
||||
%sum4 = fadd float %sum3, %6
|
||||
%sum5 = fadd float %sum4, %9
|
||||
ret float %sum5
|
||||
ret void
|
||||
}
|
||||
|
||||
; When hoisting an addrspacecast between different pointer types, replace the
|
||||
@ -117,13 +127,62 @@ define void @rauw(float addrspace(1)* %input) {
|
||||
store float %v, float* %addr
|
||||
ret void
|
||||
; IR-LABEL: @rauw(
|
||||
; IR-NEXT: %1 = getelementptr float, float addrspace(1)* %input, i64 10
|
||||
; IR-NEXT: %v = load float, float addrspace(1)* %1
|
||||
; IR-NEXT: store float %v, float addrspace(1)* %1
|
||||
; IR-NEXT: %addr = getelementptr float, float addrspace(1)* %input, i64 10
|
||||
; IR-NEXT: %v = load float, float addrspace(1)* %addr
|
||||
; IR-NEXT: store float %v, float addrspace(1)* %addr
|
||||
; IR-NEXT: ret void
|
||||
}
|
||||
|
||||
define void @loop() {
|
||||
; IR-WITH-LOOP-LABEL: @loop(
|
||||
entry:
|
||||
%p = addrspacecast [10 x float] addrspace(3)* @array to float*
|
||||
%end = getelementptr float, float* %p, i64 10
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%i = phi float* [ %p, %entry ], [ %i2, %loop ]
|
||||
; IR-WITH-LOOP: phi float addrspace(3)* [ %p, %entry ], [ %i2, %loop ]
|
||||
%v = load float, float* %i
|
||||
; IR-WITH-LOOP: %v = load float, float addrspace(3)* %i
|
||||
call void @use(float %v)
|
||||
%i2 = getelementptr float, float* %i, i64 1
|
||||
; IR-WITH-LOOP: %i2 = getelementptr float, float addrspace(3)* %i, i64 1
|
||||
%exit_cond = icmp eq float* %i2, %end
|
||||
br i1 %exit_cond, label %exit, label %loop
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
@generic_end = external global float*
|
||||
|
||||
define void @loop_with_generic_bound() {
|
||||
; IR-WITH-LOOP-LABEL: @loop_with_generic_bound(
|
||||
entry:
|
||||
%p = addrspacecast [10 x float] addrspace(3)* @array to float*
|
||||
%end = load float*, float** @generic_end
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%i = phi float* [ %p, %entry ], [ %i2, %loop ]
|
||||
; IR-WITH-LOOP: phi float addrspace(3)* [ %p, %entry ], [ %i2, %loop ]
|
||||
%v = load float, float* %i
|
||||
; IR-WITH-LOOP: %v = load float, float addrspace(3)* %i
|
||||
call void @use(float %v)
|
||||
%i2 = getelementptr float, float* %i, i64 1
|
||||
; IR-WITH-LOOP: %i2 = getelementptr float, float addrspace(3)* %i, i64 1
|
||||
%exit_cond = icmp eq float* %i2, %end
|
||||
; IR-WITH-LOOP: addrspacecast float addrspace(3)* %i2 to float*
|
||||
; IR-WITH-LOOP: icmp eq float* %{{[0-9]+}}, %end
|
||||
br i1 %exit_cond, label %exit, label %loop
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
declare void @llvm.cuda.syncthreads() #3
|
||||
|
||||
attributes #3 = { noduplicate nounwind }
|
||||
declare void @use(float)
|
||||
|
||||
attributes #3 = { noduplicate nounwind }
|
||||
|
Loading…
x
Reference in New Issue
Block a user