mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-24 19:44:49 +00:00
[NaryReassociate] run NaryReassociate iteratively
Summary: An alternative is to use a worklist approach. However, that approach would break the traversing order so that we couldn't lookup SeenExprs efficiently. I don't see a clear winner here, so I picked the easier approach. Along with two minor improvements: 1. preserves ScalarEvolution by forgetting instructions replaced 2. removes dead code locally avoiding the need of running DCE afterwards Test Plan: add to slsr-add.ll a test that requires multiple iterations Reviewers: broune, dberlin, atrick, meheff Reviewed By: atrick Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D9058 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235151 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f5c3abad67
commit
f182c81444
@ -36,9 +36,9 @@
|
||||
// NaryReassociate works as follows. For every instruction in the form of (a +
|
||||
// b) + c, it checks whether a + c or b + c is already computed by a dominating
|
||||
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
|
||||
// c) + a respectively. To efficiently look up whether an expression is
|
||||
// computed before, we store each instruction seen and its SCEV into an
|
||||
// SCEV-to-instruction map.
|
||||
// c) + a and removes the redundancy accordingly. To efficiently look up whether
|
||||
// an expression is computed before, we store each instruction seen and its SCEV
|
||||
// into an SCEV-to-instruction map.
|
||||
//
|
||||
// Although the algorithm pattern-matches only ternary additions, it
|
||||
// automatically handles many >3-ary expressions by walking through the function
|
||||
@ -50,6 +50,25 @@
|
||||
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
|
||||
// ((a + c) + b) + d into ((a + c) + d) + b.
|
||||
//
|
||||
// Finally, the above dominator-based algorithm may need to be run multiple
|
||||
// iterations before emitting optimal code. One source of this need is that we
|
||||
// only split an operand when it is used only once. The above algorithm can
|
||||
// eliminate an instruction and decrease the usage count of its operands. As a
|
||||
// result, an instruction that previously had multiple uses may become a
|
||||
// single-use instruction and thus eligible for split consideration. For
|
||||
// example,
|
||||
//
|
||||
// ac = a + c
|
||||
// ab = a + b
|
||||
// abc = ab + c
|
||||
// ab2 = ab + b
|
||||
// ab2c = ab2 + c
|
||||
//
|
||||
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
|
||||
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
|
||||
// result, ab2 becomes dead and ab will be used only once in the second
|
||||
// iteration.
|
||||
//
|
||||
// Limitations and TODO items:
|
||||
//
|
||||
// 1) We only considers n-ary adds for now. This should be extended and
|
||||
@ -65,10 +84,12 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/PatternMatch.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
using namespace llvm;
|
||||
using namespace PatternMatch;
|
||||
|
||||
@ -87,13 +108,18 @@ public:
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.addPreserved<DominatorTreeWrapperPass>();
|
||||
AU.addPreserved<ScalarEvolution>();
|
||||
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
// TODO: can we preserve ScalarEvolution?
|
||||
AU.addRequired<ScalarEvolution>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
AU.setPreservesCFG();
|
||||
}
|
||||
|
||||
private:
|
||||
// Runs only one iteration of the dominator-based algorithm. See the header
|
||||
// comments for why we need multiple iterations.
|
||||
bool doOneIteration(Function &F);
|
||||
// Reasssociates I to a better form.
|
||||
Instruction *tryReassociateAdd(Instruction *I);
|
||||
// A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
|
||||
@ -103,6 +129,7 @@ private:
|
||||
|
||||
DominatorTree *DT;
|
||||
ScalarEvolution *SE;
|
||||
TargetLibraryInfo *TLI;
|
||||
// A lookup table quickly telling which instructions compute the given SCEV.
|
||||
// Note that there can be multiple instructions at different locations
|
||||
// computing to the same SCEV, so we map a SCEV to an instruction list. For
|
||||
@ -121,6 +148,7 @@ INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
|
||||
false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
|
||||
false, false)
|
||||
|
||||
@ -134,19 +162,31 @@ bool NaryReassociate::runOnFunction(Function &F) {
|
||||
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
SE = &getAnalysis<ScalarEvolution>();
|
||||
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
||||
|
||||
// Traverse the dominator tree in the depth-first order. This order makes sure
|
||||
// all bases of a candidate are in Candidates when we process it.
|
||||
bool Changed = false, ChangedInThisIteration;
|
||||
do {
|
||||
ChangedInThisIteration = doOneIteration(F);
|
||||
Changed |= ChangedInThisIteration;
|
||||
} while (ChangedInThisIteration);
|
||||
return Changed;
|
||||
}
|
||||
|
||||
bool NaryReassociate::doOneIteration(Function &F) {
|
||||
bool Changed = false;
|
||||
SeenExprs.clear();
|
||||
// Traverse the dominator tree in the depth-first order. This order makes sure
|
||||
// all bases of a candidate are in Candidates when we process it.
|
||||
for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
|
||||
Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
|
||||
BasicBlock *BB = Node->getBlock();
|
||||
for (auto I = BB->begin(); I != BB->end(); ++I) {
|
||||
if (I->getOpcode() == Instruction::Add) {
|
||||
if (Instruction *NewI = tryReassociateAdd(I)) {
|
||||
Changed = true;
|
||||
SE->forgetValue(I);
|
||||
I->replaceAllUsesWith(NewI);
|
||||
I->eraseFromParent();
|
||||
RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
|
||||
I = NewI;
|
||||
}
|
||||
// We should add the rewritten instruction because tryReassociateAdd may
|
||||
|
@ -1,8 +1,8 @@
|
||||
; RUN: opt < %s -nary-reassociate -dce -S | FileCheck %s
|
||||
; RUN: opt < %s -nary-reassociate -S | FileCheck %s
|
||||
|
||||
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
|
||||
|
||||
declare void @foo(i32 %a)
|
||||
declare void @foo(i32)
|
||||
|
||||
; foo(a + c);
|
||||
; foo((a + (b + c));
|
||||
@ -176,3 +176,23 @@ define void @quaternary(i32 %a, i32 %b, i32 %c, i32 %d) {
|
||||
; CHECK: call void @foo(i32 [[TMP2]]
|
||||
ret void
|
||||
}
|
||||
|
||||
define void @iterative(i32 %a, i32 %b, i32 %c) {
|
||||
%ab = add i32 %a, %b
|
||||
%abc = add i32 %ab, %c
|
||||
call void @foo(i32 %abc)
|
||||
|
||||
%ab2 = add i32 %ab, %b
|
||||
%ab2c = add i32 %ab2, %c
|
||||
; CHECK: %ab2c = add i32 %abc, %b
|
||||
call void @foo(i32 %ab2c)
|
||||
; CHECK-NEXT: call void @foo(i32 %ab2c)
|
||||
|
||||
%ab3 = add i32 %ab2, %b
|
||||
%ab3c = add i32 %ab3, %c
|
||||
; CHECK-NEXT: %ab3c = add i32 %ab2c, %b
|
||||
call void @foo(i32 %ab3c)
|
||||
; CHECK-NEXT: call void @foo(i32 %ab3c)
|
||||
|
||||
ret void
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user