[Support] Fix SaturatingMultiply<T>() to be correct (and fast), Re-enable Unit Tests

Summary:
This change fixes the SaturatingMultiply<T>() function template to not cause undefined behavior with T=uint16_t.
Thanks to Richard Smith's contribution, it also no longer requires an integer division.

Patch by Richard Smith.

Reviewers: silvas, davidxl

Subscribers: rsmith, davidxl, llvm-commits

Differential Revision: http://reviews.llvm.org/D14845

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@253870 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Nathan Slingerland 2015-11-23 15:33:43 +00:00
parent e5c2c47f2f
commit f2bc179203
2 changed files with 72 additions and 6 deletions

View File

@ -671,12 +671,30 @@ SaturatingAdd(T X, T Y) {
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
SaturatingMultiply(T X, T Y) {
// Hacker's Delight, p. 30
T Z = X * Y;
if (Y != 0 && Z / Y != X)
return std::numeric_limits<T>::max();
else
return Z;
// Hacker's Delight, p. 30 has a different algorithm, but we don't use that
// because it fails for uint16_t (where multiplication can have undefined
// behavior due to promotion to int), and requires a division in addition
// to the multiplication.
// Log2(Z) would be either Log2Z or Log2Z + 1.
// Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
// will necessarily be less than Log2Max as desired.
int Log2Z = Log2_64(X) + Log2_64(Y);
const T Max = std::numeric_limits<T>::max();
int Log2Max = Log2_64(Max);
if (Log2Z < Log2Max)
return X * Y;
if (Log2Z > Log2Max)
return Max;
// We're going to use the top bit, and maybe overflow one
// bit past it. Multiply all but the bottom bit then add
// that on at the end.
T Z = (X >> 1) * Y;
if (Z & ~(Max >> 1))
return Max;
Z <<= 1;
return (X & 1) ? SaturatingAdd(Z, Y) : Z;
}
extern const float huge_valf;

View File

@ -207,4 +207,52 @@ TEST(MathExtras, SaturatingAdd) {
SaturatingAddTestHelper<uint64_t>();
}
template<typename T>
void SaturatingMultiplyTestHelper()
{
const T Max = std::numeric_limits<T>::max();
// Test basic multiplication.
EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3)));
EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2)));
// Test multiplication by zero.
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0)));
EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0)));
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1)));
EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0)));
EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max));
// Test multiplication by maximum value.
EXPECT_EQ(Max, SaturatingMultiply(Max, T(2)));
EXPECT_EQ(Max, SaturatingMultiply(T(2),Max));
EXPECT_EQ(Max, SaturatingMultiply(Max, Max));
// Test interesting boundary conditions for algorithm -
// ((1 << A) - 1) * ((1 << B) + K) for K in [-1, 0, 1]
// and A + B == std::numeric_limits<T>::digits.
// We expect overflow iff A > B and K = 1.
const int Digits = std::numeric_limits<T>::digits;
for (int A = 1, B = Digits - 1; B >= 1; ++A, --B) {
for (int K = -1; K <= 1; ++K) {
T X = (T(1) << A) - T(1);
T Y = (T(1) << B) + K;
bool OverflowExpected = A > B && K == 1;
if(OverflowExpected) {
EXPECT_EQ(Max, SaturatingMultiply(X, Y));
} else {
EXPECT_EQ(X * Y, SaturatingMultiply(X, Y));
}
}
}
}
TEST(MathExtras, SaturatingMultiply) {
SaturatingMultiplyTestHelper<uint8_t>();
SaturatingMultiplyTestHelper<uint16_t>();
SaturatingMultiplyTestHelper<uint32_t>();
SaturatingMultiplyTestHelper<uint64_t>();
}
}