Change behavior of calling bitcasted alias functions.

It will now only convert the arguments / return value and call
the underlying function if the types are able to be bitcasted.
This avoids using fp<->int conversions that would occur before.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187444 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Matt Arsenault 2013-07-30 20:45:05 +00:00
parent 80bec28b66
commit f34dc428fa
10 changed files with 430 additions and 83 deletions

View File

@ -531,6 +531,12 @@ public:
Type *DestTy ///< The Type to which the value should be cast.
);
/// @brief Check whether a bitcast between these types is valid
static bool isBitCastable(
Type *SrcTy, ///< The Type from which the value should be cast.
Type *DestTy ///< The Type to which the value should be cast.
);
/// Returns the opcode necessary to cast Val into Ty using usual casting
/// rules.
/// @brief Infer the opcode for cast operand and type
@ -698,7 +704,7 @@ public:
/// @brief Create a CmpInst
static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
/// @brief Get the opcode casted to the right type
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
@ -715,15 +721,15 @@ public:
static bool isFPPredicate(Predicate P) {
return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
}
static bool isIntPredicate(Predicate P) {
return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
}
bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
/// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
/// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
/// @returns the inverse predicate for the instruction's current predicate.
@ -821,7 +827,7 @@ public:
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
/// @brief Create a result type for fcmp/icmp
static Type* makeCmpResultType(Type* opnd_type) {
if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {

View File

@ -2517,8 +2517,48 @@ bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
}
}
// Provide a way to get a "cast" where the cast opcode is inferred from the
// types and size of the operand. This, basically, is a parallel of the
bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
return false;
if (SrcTy == DestTy)
return true;
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
// An element by element cast. Valid if casting the elements is valid.
SrcTy = SrcVecTy->getElementType();
DestTy = DestVecTy->getElementType();
}
}
}
if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
}
}
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
// Could still have vectors of pointers if the number of elements doesn't
// match
if (SrcBits == 0 || DestBits == 0)
return false;
if (SrcBits != DestBits)
return false;
if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
return false;
return true;
}
// Provide a way to get a "cast" where the cast opcode is inferred from the
// types and size of the operand. This, basically, is a parallel of the
// logic in the castIsValid function below. This axiom should hold:
// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
// should not assert in castIsValid. In other words, this produces a "correct"
@ -2535,6 +2575,7 @@ CastInst::getCastOpcode(
if (SrcTy == DestTy)
return BitCast;
// FIXME: Check address space sizes here
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
@ -2601,6 +2642,7 @@ CastInst::getCastOpcode(
return BitCast;
} else if (DestTy->isPointerTy()) {
if (SrcTy->isPointerTy()) {
// TODO: Address space pointer sizes may not match
return BitCast; // ptr -> ptr
} else if (SrcTy->isIntegerTy()) {
return IntToPtr; // int -> ptr

View File

@ -1010,7 +1010,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!Caller->use_empty() &&
// void -> non-void is handled specially
!NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
!NewRetTy->isVoidTy() &&
!CastInst::isBitCastable(NewRetTy, OldRetTy))
return false; // Cannot transform this return value.
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
@ -1044,8 +1045,9 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Type *ParamTy = FT->getParamType(i);
Type *ActTy = (*AI)->getType();
if (!CastInst::isCastable(ActTy, ParamTy))
if (!CastInst::isBitCastable(ActTy, ParamTy)) {
return false; // Cannot transform this parameter value.
}
if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
hasAttributes(AttributeFuncs::
@ -1074,7 +1076,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
ParamTy == TD->getIntPtrType(Caller->getContext())) &&
(ActTy->isPointerTy() ||
ActTy == TD->getIntPtrType(Caller->getContext()))));
if (Callee->isDeclaration() && !isConvertible) return false;
if (Callee->isDeclaration() && !isConvertible)
return false;
}
if (Callee->isDeclaration()) {
@ -1141,12 +1144,11 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
AI = CS.arg_begin();
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
Type *ParamTy = FT->getParamType(i);
if ((*AI)->getType() == ParamTy) {
Args.push_back(*AI);
} else {
Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
false, ParamTy, false);
Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
Args.push_back(Builder->CreateBitCast(*AI, ParamTy));
}
// Add any parameter attributes.
@ -1217,9 +1219,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
Instruction::CastOps opcode =
CastInst::getCastOpcode(NC, false, OldRetTy, false);
NV = NC = CastInst::Create(opcode, NC, OldRetTy);
NV = NC = CastInst::Create(CastInst::BitCast, NC, OldRetTy);
NC->setDebugLoc(Caller->getDebugLoc());
// If this is an invoke instruction, we should insert it after the first

View File

@ -4,22 +4,27 @@
; CHECK-NOT: bitcast
define void @a() {
ret void
ret void
}
define signext i32 @b(i32* inreg %x) {
ret i32 0
ret i32 0
}
define void @c(...) {
ret void
ret void
}
define void @g(i32* %y) {
call void bitcast (void ()* @a to void (i32*)*)( i32* noalias %y )
call <2 x i32> bitcast (i32 (i32*)* @b to <2 x i32> (i32*)*)( i32* inreg null ) ; <<2 x i32>>:1 [#uses=0]
; CHECK-LABEL: @g(
; CHECK: call i64 bitcast (i32 (i32*)* @b to i64 (i32)*)(i32 0)
%x = call i64 bitcast (i32 (i32*)* @b to i64 (i32)*)( i32 0 ) ; <i64> [#uses=0]
call void bitcast (void (...)* @c to void (i32)*)( i32 0 )
call void bitcast (void (...)* @c to void (i32)*)( i32 zeroext 0 )
ret void
; The rest should not have bitcasts remaining
; CHECK-NOT: bitcast
call void bitcast (void ()* @a to void (i32*)*)( i32* noalias %y )
call <2 x i32> bitcast (i32 (i32*)* @b to <2 x i32> (i32*)*)( i32* inreg null ) ; <<2 x i32>>:1 [#uses=0]
call void bitcast (void (...)* @c to void (i32)*)( i32 0 )
call void bitcast (void (...)* @c to void (i32)*)( i32 zeroext 0 )
ret void
}

View File

@ -1,10 +1,12 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
define void @f(i16 %y) {
ret void
ret void
}
; CHECK-NOT: bitcast
define i32 @g(i32 %y) {
%x = call i32 bitcast (void (i16)* @f to i32 (i32)*)( i32 %y ) ; <i32> [#uses=1]
ret i32 %x
; CHECK-LABEL: @g(
; CHECK: call i32 bitcast
%x = call i32 bitcast (void (i16)* @f to i32 (i32)*)( i32 %y ) ; <i32> [#uses=1]
ret i32 %x
}

View File

@ -3,16 +3,17 @@
target datalayout = "e-p:32:32"
target triple = "i686-pc-linux-gnu"
; CHECK-NOT: bitcast
; CHECK: call
; CHECK-NOT: bitcast
define i32 @main() {
; CHECK-LABEL: @main(
; CHECK: call i32 bitcast
entry:
%tmp = call i32 bitcast (i7* (i999*)* @ctime to i32 (i99*)*)( i99* null )
ret i32 %tmp
}
define i7* @ctime(i999*) {
; CHECK-LABEL: @ctime(
; CHECK: call i7* bitcast
entry:
%tmp = call i7* bitcast (i32 ()* @main to i7* ()*)( )
ret i7* %tmp

View File

@ -0,0 +1,229 @@
; RUN: opt -S -instcombine -o - %s | FileCheck %s
target datalayout = "e-p:32:32:32-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:32-v64:64:64-v128:128:128-a0:0:64"
; Cases that should be bitcast
; Test cast between scalars with same bit sizes
@alias_i32_to_f32 = alias bitcast (i32 (i32)* @func_i32 to float (float)*)
; Test cast between vectors with same number of elements and bit sizes
@alias_v2i32_to_v2f32 = alias bitcast (<2 x i32> (<2 x i32>)* @func_v2i32 to <2 x float> (<2 x float>)*)
; Test cast from vector to scalar with same number of bits
@alias_v2f32_to_i64 = alias bitcast (i64 (i64)* @func_i64 to <2 x float> (<2 x float>)*)
; Test cast from scalar to vector with same number of bits
@alias_i64_to_v2f32 = alias bitcast (<2 x float> (<2 x float>)* @func_v2f32 to i64 (i64)*)
; Test cast between vectors of pointers
@alias_v2i32p_to_v2i64p = alias bitcast (<2 x i32*> (<2 x i32*>)* @func_v2i32p to <2 x i64*> (<2 x i64*>)*)
; Cases that should be invalid and unchanged
; Test cast between scalars with different bit sizes
@alias_i64_to_f32 = alias bitcast (i64 (i64)* @func_i64 to float (float)*)
; Test cast between vectors with different bit sizes but the
; same number of elements
@alias_v2i64_to_v2f32 = alias bitcast (<2 x i64> (<2 x i64>)* @func_v2i64 to <2 x float> (<2 x float>)*)
; Test cast between vectors with same number of bits and different
; numbers of elements
@alias_v2i32_to_v4f32 = alias bitcast (<2 x i32> (<2 x i32>)* @func_v2i32 to <4 x float> (<4 x float>)*)
; Test cast between scalar and vector with different number of bits
@alias_i64_to_v4f32 = alias bitcast (<4 x float> (<4 x float>)* @func_v4f32 to i64 (i64)*)
; Test cast between vector and scalar with different number of bits
@alias_v4f32_to_i64 = alias bitcast (i64 (i64)* @func_i64 to <4 x float> (<4 x float>)*)
; Test cast from scalar to vector of pointers with same number of bits
; We don't know the pointer size at this point, so this can't be done
@alias_i64_to_v2i32p = alias bitcast (<2 x i32*> (<2 x i32*>)* @func_v2i32p to i64 (i64)*)
; Test cast between vector of pointers and scalar with different number of bits
@alias_v4i32p_to_i64 = alias bitcast (i64 (i64)* @func_i64 to <4 x i32*> (<4 x i32*>)*)
define internal <2 x i32> @func_v2i32(<2 x i32> %v) noinline nounwind {
entry:
ret <2 x i32> %v
}
define internal <2 x float> @func_v2f32(<2 x float> %v) noinline nounwind {
entry:
ret <2 x float> %v
}
define internal <4 x float> @func_v4f32(<4 x float> %v) noinline nounwind {
entry:
ret <4 x float> %v
}
define internal i32 @func_i32(i32 %v) noinline nounwind {
entry:
ret i32 %v
}
define internal i64 @func_i64(i64 %v) noinline nounwind {
entry:
ret i64 %v
}
define internal <2 x i64> @func_v2i64(<2 x i64> %v) noinline nounwind {
entry:
ret <2 x i64> %v
}
define internal <2 x i32*> @func_v2i32p(<2 x i32*> %v) noinline nounwind {
entry:
ret <2 x i32*> %v
}
; Valid cases, only bitcast for argument / return type and call underlying function
; Sizes match, should only bitcast
define void @bitcast_alias_scalar(float* noalias %source, float* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_scalar
; CHECK: bitcast float %tmp to i32
; CHECK-NOT: fptoui
; CHECK-NOT: uitofp
; CHECK: bitcast i32 %call to float
%tmp = load float* %source, align 8
%call = call float @alias_i32_to_f32(float %tmp) nounwind
store float %call, float* %dest, align 8
ret void
}
; Sizes match, should only bitcast
define void @bitcast_alias_vector(<2 x float>* noalias %source, <2 x float>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_vector
; CHECK: bitcast <2 x float> %tmp to <2 x i32>
; CHECK-NOT: fptoui
; CHECK-NOT: uitofp
; CHECK: bitcast <2 x i32> %call to <2 x float>
%tmp = load <2 x float>* %source, align 8
%call = call <2 x float> @alias_v2i32_to_v2f32(<2 x float> %tmp) nounwind
store <2 x float> %call, <2 x float>* %dest, align 8
ret void
}
; Sizes match, should only bitcast
define void @bitcast_alias_vector_scalar_same_size(<2 x float>* noalias %source, <2 x float>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_vector_scalar_same_size
; CHECK: bitcast <2 x float> %tmp to i64
; CHECK: %call = call i64 @func_i64
; CHECK: bitcast i64 %call to <2 x float>
%tmp = load <2 x float>* %source, align 8
%call = call <2 x float> @alias_v2f32_to_i64(<2 x float> %tmp) nounwind
store <2 x float> %call, <2 x float>* %dest, align 8
ret void
}
define void @bitcast_alias_scalar_vector_same_size(i64* noalias %source, i64* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_scalar_vector_same_size
; CHECK: bitcast i64 %tmp to <2 x float>
; CHECK: call <2 x float> @func_v2f32
; CHECK: bitcast <2 x float> %call to i64
%tmp = load i64* %source, align 8
%call = call i64 @alias_i64_to_v2f32(i64 %tmp) nounwind
store i64 %call, i64* %dest, align 8
ret void
}
define void @bitcast_alias_vector_ptrs_same_size(<2 x i64*>* noalias %source, <2 x i64*>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_vector_ptrs_same_size
; CHECK: bitcast <2 x i64*> %tmp to <2 x i32*>
; CHECK: call <2 x i32*> @func_v2i32p
; CHECK: bitcast <2 x i32*> %call to <2 x i64*>
%tmp = load <2 x i64*>* %source, align 8
%call = call <2 x i64*> @alias_v2i32p_to_v2i64p(<2 x i64*> %tmp) nounwind
store <2 x i64*> %call, <2 x i64*>* %dest, align 8
ret void
}
; Invalid cases:
define void @bitcast_alias_mismatch_scalar_size(float* noalias %source, float* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_mismatch_scalar_size
; CHECK-NOT: fptoui
; CHECK: @alias_i64_to_f32
; CHECK-NOT: uitofp
%tmp = load float* %source, align 8
%call = call float @alias_i64_to_f32(float %tmp) nounwind
store float %call, float* %dest, align 8
ret void
}
define void @bitcast_alias_mismatch_vector_element_and_bit_size(<2 x float>* noalias %source, <2 x float>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_mismatch_vector_element_and_bit_size
; CHECK-NOT: fptoui <2 x float> %tmp to <2 x i64>
; CHECK: @alias_v2i64_to_v2f32
; CHECK-NOT: uitofp <2 x i64> %call to <2 x float>
%tmp = load <2 x float>* %source, align 8
%call = call <2 x float> @alias_v2i64_to_v2f32(<2 x float> %tmp) nounwind
store <2 x float> %call, <2 x float>* %dest, align 8
ret void
}
define void @bitcast_alias_vector_mismatched_number_elements(<4 x float>* noalias %source, <4 x float>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_vector_mismatched_number_elements
; CHECK: %call = call <4 x float> @alias_v2i32_to_v4f32
%tmp = load <4 x float>* %source, align 8
%call = call <4 x float> @alias_v2i32_to_v4f32(<4 x float> %tmp) nounwind
store <4 x float> %call, <4 x float>* %dest, align 8
ret void
}
define void @bitcast_alias_vector_scalar_mismatched_bit_size(<4 x float>* noalias %source, <4 x float>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_vector_scalar_mismatched_bit_size
; CHECK: %call = call <4 x float> @alias_v4f32_to_i64
%tmp = load <4 x float>* %source, align 8
%call = call <4 x float> @alias_v4f32_to_i64(<4 x float> %tmp) nounwind
store <4 x float> %call, <4 x float>* %dest, align 8
ret void
}
define void @bitcast_alias_vector_ptrs_scalar_mismatched_bit_size(<4 x i32*>* noalias %source, <4 x i32*>* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_vector_ptrs_scalar_mismatched_bit_size
; CHECK: @alias_v4i32p_to_i64
%tmp = load <4 x i32*>* %source, align 8
%call = call <4 x i32*> @alias_v4i32p_to_i64(<4 x i32*> %tmp) nounwind
store <4 x i32*> %call, <4 x i32*>* %dest, align 8
ret void
}
define void @bitcast_alias_scalar_vector_ptrs_same_size(i64* noalias %source, i64* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_scalar_vector_ptrs_same_size
; CHECK: @alias_i64_to_v2i32p
%tmp = load i64* %source, align 8
%call = call i64 @alias_i64_to_v2i32p(i64 %tmp) nounwind
store i64 %call, i64* %dest, align 8
ret void
}
define void @bitcast_alias_scalar_vector_mismatched_bit_size(i64* noalias %source, i64* noalias %dest) nounwind {
entry:
; CHECK-LABEL: @bitcast_alias_scalar_vector_mismatched_bit_size
; CHECK: call i64 @alias_i64_to_v4f32
%tmp = load i64* %source, align 8
%call = call i64 @alias_i64_to_v4f32(i64 %tmp) nounwind
store i64 %call, i64* %dest, align 8
ret void
}

View File

@ -3,14 +3,12 @@
target datalayout = "e-p:32:32"
target triple = "i686-pc-linux-gnu"
; CHECK-NOT: bitcast
; CHECK: call
; CHECK-NOT: bitcast
define i32 @main() {
; CHECK-LABEL: @main
; CHECK: call i32 bitcast
entry:
%tmp = call i32 bitcast (i8* (i32*)* @ctime to i32 (i32*)*)( i32* null ) ; <i32> [#uses=1]
ret i32 %tmp
%tmp = call i32 bitcast (i8* (i32*)* @ctime to i32 (i32*)*)( i32* null ) ; <i32> [#uses=1]
ret i32 %tmp
}
declare i8* @ctime(i32*)

View File

@ -7,92 +7,94 @@ target datalayout = "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:1
declare void @test1a(i8*)
define void @test1(i32* %A) {
call void bitcast (void (i8*)* @test1a to void (i32*)*)( i32* %A )
ret void
; CHECK-LABEL: @test1(
; CHECK: %1 = bitcast i32* %A to i8*
; CHECK: call void @test1a(i8* %1)
; CHECK: ret void
call void bitcast (void (i8*)* @test1a to void (i32*)*)( i32* %A )
ret void
}
; More complex case, translate argument because of resolution. This is safe
; More complex case, translate argument because of resolution. This is safe
; because we have the body of the function
define void @test2a(i8 %A) {
ret void
; CHECK-LABEL: @test2a(
; CHECK: ret void
ret void
}
define i32 @test2(i32 %A) {
call void bitcast (void (i8)* @test2a to void (i32)*)( i32 %A )
ret i32 %A
; CHECK: %1 = trunc i32 %A to i8
; CHECK: call void @test2a(i8 %1)
; CHECK-LABEL: @test2(
; CHECK: call void bitcast
; CHECK: ret i32 %A
call void bitcast (void (i8)* @test2a to void (i32)*)( i32 %A )
ret i32 %A
}
; Resolving this should insert a cast from sbyte to int, following the C
; Resolving this should insert a cast from sbyte to int, following the C
; promotion rules.
define void @test3a(i8, ...) {unreachable }
define void @test3(i8 %A, i8 %B) {
call void bitcast (void (i8, ...)* @test3a to void (i8, i8)*)( i8 %A, i8 %B
)
ret void
; CHECK-LABEL: @test3(
; CHECK: %1 = zext i8 %B to i32
; CHECK: call void (i8, ...)* @test3a(i8 %A, i32 %1)
; CHECK: ret void
call void bitcast (void (i8, ...)* @test3a to void (i8, i8)*)( i8 %A, i8 %B)
ret void
}
; test conversion of return value...
define i8 @test4a() {
ret i8 0
; CHECK-LABEL: @test4a(
; CHECK: ret i8 0
ret i8 0
}
define i32 @test4() {
%X = call i32 bitcast (i8 ()* @test4a to i32 ()*)( ) ; <i32> [#uses=1]
ret i32 %X
; CHECK: %X = call i8 @test4a()
; CHECK: %1 = zext i8 %X to i32
; CHECK: ret i32 %1
; CHECK-LABEL: @test4(
; CHECK: call i32 bitcast
%X = call i32 bitcast (i8 ()* @test4a to i32 ()*)( ) ; <i32> [#uses=1]
ret i32 %X
}
; test conversion of return value... no value conversion occurs so we can do
; test conversion of return value... no value conversion occurs so we can do
; this with just a prototype...
declare i32 @test5a()
define i32 @test5() {
%X = call i32 @test5a( ) ; <i32> [#uses=1]
ret i32 %X
; CHECK-LABEL: @test5(
; CHECK: %X = call i32 @test5a()
; CHECK: ret i32 %X
%X = call i32 @test5a( ) ; <i32> [#uses=1]
ret i32 %X
}
; test addition of new arguments...
declare i32 @test6a(i32)
define i32 @test6() {
%X = call i32 bitcast (i32 (i32)* @test6a to i32 ()*)( )
ret i32 %X
; CHECK-LABEL: @test6(
; CHECK: %X = call i32 @test6a(i32 0)
; CHECK: ret i32 %X
%X = call i32 bitcast (i32 (i32)* @test6a to i32 ()*)( )
ret i32 %X
}
; test removal of arguments, only can happen with a function body
define void @test7a() {
ret void
; CHECK-LABEL: @test7a(
; CHECK: ret void
ret void
}
define void @test7() {
call void bitcast (void ()* @test7a to void (i32)*)( i32 5 )
ret void
; CHECK-LABEL: @test7(
; CHECK: call void @test7a()
; CHECK: ret void
call void bitcast (void ()* @test7a to void (i32)*)( i32 5 )
ret void
}
@ -100,6 +102,11 @@ define void @test7() {
declare void @test8a()
define i8* @test8() {
; CHECK-LABEL: @test8(
; CHECK-NEXT: invoke void @test8a()
; Don't turn this into "unreachable": the callee and caller don't agree in
; calling conv, but the implementation of test8a may actually end up using the
; right calling conv.
invoke void @test8a()
to label %invoke.cont unwind label %try.handler
@ -114,19 +121,13 @@ try.handler: ; preds = %entry
declare i32 @__gxx_personality_v0(...)
; Don't turn this into "unreachable": the callee and caller don't agree in
; calling conv, but the implementation of test8a may actually end up using the
; right calling conv.
; CHECK: @test8() {
; CHECK-NEXT: invoke void @test8a()
; Don't turn this into a direct call, because test9x is just a prototype and
; Don't turn this into a direct call, because test9x is just a prototype and
; doing so will make it varargs.
; rdar://9038601
declare i8* @test9x(i8*, i8*, ...) noredzone
define i8* @test9(i8* %arg, i8* %tmp3) nounwind ssp noredzone {
; CHECK-LABEL: @test9
entry:
%call = call i8* bitcast (i8* (i8*, i8*, ...)* @test9x to i8* (i8*, i8*)*)(i8* %arg, i8* %tmp3) noredzone
ret i8* %call

View File

@ -116,11 +116,35 @@ TEST(InstructionsTest, BranchInst) {
TEST(InstructionsTest, CastInst) {
LLVMContext &C(getGlobalContext());
Type* Int8Ty = Type::getInt8Ty(C);
Type* Int64Ty = Type::getInt64Ty(C);
Type* V8x8Ty = VectorType::get(Int8Ty, 8);
Type* V8x64Ty = VectorType::get(Int64Ty, 8);
Type* X86MMXTy = Type::getX86_MMXTy(C);
Type *Int8Ty = Type::getInt8Ty(C);
Type *Int16Ty = Type::getInt16Ty(C);
Type *Int32Ty = Type::getInt32Ty(C);
Type *Int64Ty = Type::getInt64Ty(C);
Type *V8x8Ty = VectorType::get(Int8Ty, 8);
Type *V8x64Ty = VectorType::get(Int64Ty, 8);
Type *X86MMXTy = Type::getX86_MMXTy(C);
Type *HalfTy = Type::getHalfTy(C);
Type *FloatTy = Type::getFloatTy(C);
Type *DoubleTy = Type::getDoubleTy(C);
Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
const Constant* c8 = Constant::getNullValue(V8x8Ty);
const Constant* c64 = Constant::getNullValue(V8x64Ty);
@ -132,10 +156,49 @@ TEST(InstructionsTest, CastInst) {
EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
// Check address space casts are rejected since we don't know the sizes here
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
// Test mismatched number of elements for pointers
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
}
TEST(InstructionsTest, VectorGep) {
LLVMContext &C(getGlobalContext());