RegScavenging: Add scavengeRegisterBackwards()

Re-apply r276044 with off-by-1 instruction fix for the reload placement.

This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.

This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.

Differential Revision: http://reviews.llvm.org/D21885

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279124 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Matthias Braun 2016-08-18 19:47:59 +00:00
parent b1ee91e27d
commit f65766df39
7 changed files with 323 additions and 142 deletions

View File

@ -157,12 +157,24 @@ public:
/// available and do the appropriate bookkeeping. SPAdj is the stack
/// adjustment due to call frame, it's passed along to eliminateFrameIndex().
/// Returns the scavenged register.
/// This function performs worse if kill flags are incomplete, consider using
/// scavengeRegisterBackwards() instead!
unsigned scavengeRegister(const TargetRegisterClass *RegClass,
MachineBasicBlock::iterator I, int SPAdj);
unsigned scavengeRegister(const TargetRegisterClass *RegClass, int SPAdj) {
return scavengeRegister(RegClass, MBBI, SPAdj);
}
/// Make a register of the specific register class available from the current
/// position backwards to the place before \p To. If \p RestoreAfter is true
/// this includes the instruction following the current position.
/// SPAdj is the stack adjustment due to call frame, it's passed along to
/// eliminateFrameIndex().
/// Returns the scavenged register.
unsigned scavengeRegisterBackwards(const TargetRegisterClass &RC,
MachineBasicBlock::iterator To,
bool RestoreAfter, int SPAdj);
/// Tell the scavenger a register is used.
void setRegUsed(unsigned Reg, LaneBitmask LaneMask = ~0u);
private:
@ -202,6 +214,12 @@ private:
/// Mark live-in registers of basic block as used.
void setLiveInsUsed(const MachineBasicBlock &MBB);
/// Spill a register after position \p After and reload it before position
/// \p UseMI.
ScavengedInfo &spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj,
MachineBasicBlock::iterator After,
MachineBasicBlock::iterator &UseMI);
};
} // End llvm namespace

View File

@ -41,6 +41,7 @@
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <climits>
using namespace llvm;
@ -1145,6 +1146,55 @@ void PEI::replaceFrameIndices(MachineBasicBlock *BB, MachineFunction &Fn,
}
}
/// Allocate a register for the virtual register \p VReg. The last use of
/// \p VReg is around the current position of the register scavenger \p RS.
/// \p ReserveAfter controls whether the scavenged register needs to be reserved
/// after the current instruction, otherwise it will only be reserved before the
/// current instruction.
static unsigned scavengeVReg(MachineRegisterInfo &MRI, RegScavenger &RS,
unsigned VReg, bool ReserveAfter) {
#ifndef NDEBUG
// Verify that all definitions and uses are in the same basic block.
const MachineBasicBlock *CommonMBB = nullptr;
bool HadDef = false;
for (MachineOperand &MO : MRI.reg_nodbg_operands(VReg)) {
MachineBasicBlock *MBB = MO.getParent()->getParent();
if (CommonMBB == nullptr)
CommonMBB = MBB;
assert(MBB == CommonMBB && "All defs+uses must be in the same basic block");
if (MO.isDef())
HadDef = true;
}
assert(HadDef && "Must have at least 1 Def");
#endif
// We should only have one definition of the register. However to accomodate
// the requirements of two address code we also allow definitions in
// subsequent instructions provided they also read the register. That way
// we get a single contiguous lifetime.
//
// Definitions in MRI.def_begin() are unordered, search for the first.
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
MachineRegisterInfo::def_iterator FirstDef =
std::find_if(MRI.def_begin(VReg), MRI.def_end(),
[VReg, &TRI](const MachineOperand &MO) {
return !MO.getParent()->readsRegister(VReg, &TRI);
});
assert(FirstDef != MRI.def_end() &&
"Must have one definition that does not redefine vreg");
MachineInstr &DefMI = *FirstDef->getParent();
// The register scavenger will report a free register inserting an emergency
// spill/reload if necessary.
int SPAdj = 0;
const TargetRegisterClass &RC = *MRI.getRegClass(VReg);
unsigned SReg = RS.scavengeRegisterBackwards(RC, DefMI.getIterator(),
ReserveAfter, SPAdj);
MRI.replaceRegWith(VReg, SReg);
++NumScavengedRegs;
return SReg;
}
/// doScavengeFrameVirtualRegs - Replace all frame index virtual registers
/// with physical registers. Use the register scavenger to find an
/// appropriate register to use.
@ -1156,78 +1206,51 @@ static void
doScavengeFrameVirtualRegs(MachineFunction &MF, RegScavenger *RS) {
// Run through the instructions and find any virtual registers.
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
for (MachineBasicBlock &MBB : MF) {
RS->enterBasicBlock(MBB);
RS->enterBasicBlockEnd(MBB);
int SPAdj = 0;
bool LastIterationHadVRegUses = false;
for (MachineBasicBlock::iterator I = MBB.end(); I != MBB.begin(); ) {
--I;
// Move RegScavenger to the position between *I and *std::next(I).
RS->backward(I);
// The instruction stream may change in the loop, so check MBB.end()
// directly.
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ) {
// We might end up here again with a NULL iterator if we scavenged a
// register for which we inserted spill code for definition by what was
// originally the first instruction in MBB.
if (I == MachineBasicBlock::iterator(nullptr))
I = MBB.begin();
// Look for unassigned vregs in the uses of *std::next(I).
if (LastIterationHadVRegUses) {
MachineBasicBlock::iterator N = std::next(I);
const MachineInstr &NMI = *N;
for (const MachineOperand &MO : NMI.operands()) {
if (!MO.isReg() || !MO.readsReg())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
unsigned SReg = scavengeVReg(MRI, *RS, Reg, true);
N->addRegisterKilled(SReg, &TRI, false);
RS->setRegUsed(SReg);
}
}
}
// Look for unassigned vregs in the defs of *I.
LastIterationHadVRegUses = false;
const MachineInstr &MI = *I;
MachineBasicBlock::iterator J = std::next(I);
MachineBasicBlock::iterator P =
I == MBB.begin() ? MachineBasicBlock::iterator(nullptr)
: std::prev(I);
// RS should process this instruction before we might scavenge at this
// location. This is because we might be replacing a virtual register
// defined by this instruction, and if so, registers killed by this
// instruction are available, and defined registers are not.
RS->forward(I);
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
// When we first encounter a new virtual register, it
// must be a definition.
assert(MO.isDef() && "frame index virtual missing def!");
// Scavenge a new scratch register
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
unsigned ScratchReg = RS->scavengeRegister(RC, J, SPAdj);
++NumScavengedRegs;
// Replace this reference to the virtual register with the
// scratch register.
assert(ScratchReg && "Missing scratch register!");
MRI.replaceRegWith(Reg, ScratchReg);
// Because this instruction was processed by the RS before this
// register was allocated, make sure that the RS now records the
// register as being used.
RS->setRegUsed(ScratchReg);
// We have to look at all operands anyway so we can precalculate here
// whether there is a reading operand. This allows use to skip the use
// step in the next iteration if there was none.
if (MO.readsReg())
LastIterationHadVRegUses = true;
if (MO.isDef()) {
unsigned SReg = scavengeVReg(MRI, *RS, Reg, false);
I->addRegisterDead(SReg, &TRI, false);
}
}
// If the scavenger needed to use one of its spill slots, the
// spill code will have been inserted in between I and J. This is a
// problem because we need the spill code before I: Move I to just
// prior to J.
if (I != std::prev(J)) {
MBB.splice(J, &MBB, I);
// Before we move I, we need to prepare the RS to visit I again.
// Specifically, RS will assert if it sees uses of registers that
// it believes are undefined. Because we have already processed
// register kills in I, when it visits I again, it will believe that
// those registers are undefined. To avoid this situation, unprocess
// the instruction I.
assert(RS->getCurrentPosition() == I &&
"The register scavenger has an unexpected position");
I = P;
RS->unprocess(P);
} else
++I;
}
}
}

View File

@ -299,6 +299,14 @@ void RegScavenger::backward() {
}
}
// Expire scavenge spill frameindex uses.
for (ScavengedInfo &I : Scavenged) {
if (I.Restore == &MI) {
I.Reg = 0;
I.Restore = nullptr;
}
}
if (MBBI == MBB->begin()) {
MBBI = MachineBasicBlock::iterator(nullptr);
Tracking = false;
@ -398,6 +406,69 @@ unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
return Survivor;
}
static std::pair<unsigned, MachineBasicBlock::iterator>
findSurvivorBackwards(const TargetRegisterInfo &TRI,
MachineBasicBlock::iterator From, MachineBasicBlock::iterator To,
BitVector &Available, BitVector &Candidates) {
bool FoundTo = false;
unsigned Survivor = 0;
MachineBasicBlock::iterator Pos;
MachineBasicBlock &MBB = *From->getParent();
unsigned InstrLimit = 25;
unsigned InstrCountDown = InstrLimit;
for (MachineBasicBlock::iterator I = From;; --I) {
const MachineInstr &MI = *I;
// Remove any candidates touched by instruction.
bool FoundVReg = false;
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
Candidates.clearBitsNotInMask(MO.getRegMask());
continue;
}
if (!MO.isReg() || MO.isUndef() || MO.isDebug())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
FoundVReg = true;
} else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
Candidates.reset(*AI);
}
}
if (I == To) {
// If one of the available registers survived this long take it.
Available &= Candidates;
int Reg = Available.find_first();
if (Reg != -1)
return std::make_pair(Reg, MBB.end());
// Otherwise we will continue up to InstrLimit instructions to find
// the register which is not defined/used for the longest time.
FoundTo = true;
Pos = To;
}
if (FoundTo) {
if (Survivor == 0 || !Candidates.test(Survivor)) {
int Reg = Candidates.find_first();
if (Reg == -1)
break;
Survivor = Reg;
}
if (--InstrCountDown == 0 || I == MBB.begin())
break;
if (FoundVReg) {
// Keep searching when we find a vreg since the spilled register will
// be usefull for this other vreg as well later.
InstrCountDown = InstrLimit;
Pos = I;
}
}
}
return std::make_pair(Survivor, Pos);
}
static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
unsigned i = 0;
while (!MI.getOperand(i).isFI()) {
@ -407,43 +478,16 @@ static unsigned getFrameIndexOperandNum(MachineInstr &MI) {
return i;
}
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
MachineBasicBlock::iterator I,
int SPAdj) {
MachineInstr &MI = *I;
const MachineFunction &MF = *MI.getParent()->getParent();
// Consider all allocatable registers in the register class initially
BitVector Candidates = TRI->getAllocatableSet(MF, RC);
// Exclude all the registers being used by the instruction.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Candidates.reset(MO.getReg());
}
// Try to find a register that's unused if there is one, as then we won't
// have to spill.
BitVector Available = getRegsAvailable(RC);
Available &= Candidates;
if (Available.any())
Candidates = Available;
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
// If we found an unused register there is no reason to spill it.
if (!isRegUsed(SReg)) {
DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n");
return SReg;
}
RegScavenger::ScavengedInfo &
RegScavenger::spill(unsigned Reg, const TargetRegisterClass &RC, int SPAdj,
MachineBasicBlock::iterator Before,
MachineBasicBlock::iterator &UseMI) {
// Find an available scavenging slot with size and alignment matching
// the requirements of the class RC.
const MachineFunction &MF = *Before->getParent()->getParent();
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned NeedSize = RC->getSize();
unsigned NeedAlign = RC->getAlignment();
unsigned NeedSize = RC.getSize();
unsigned NeedAlign = RC.getAlignment();
unsigned SI = Scavenged.size(), Diff = UINT_MAX;
int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd();
@ -478,42 +522,110 @@ unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
}
// Avoid infinite regress
Scavenged[SI].Reg = SReg;
Scavenged[SI].Reg = Reg;
// If the target knows how to save/restore the register, let it do so;
// otherwise, use the emergency stack spill slot.
if (!TRI->saveScavengerRegister(*MBB, I, UseMI, RC, SReg)) {
// Spill the scavenged register before I.
if (!TRI->saveScavengerRegister(*MBB, Before, UseMI, &RC, Reg)) {
// Spill the scavenged register before \p Before.
int FI = Scavenged[SI].FrameIndex;
if (FI < FIB || FI >= FIE) {
std::string Msg = std::string("Error while trying to spill ") +
TRI->getName(SReg) + " from class " + TRI->getRegClassName(RC) +
TRI->getName(Reg) + " from class " + TRI->getRegClassName(&RC) +
": Cannot scavenge register without an emergency spill slot!";
report_fatal_error(Msg.c_str());
}
TII->storeRegToStackSlot(*MBB, I, SReg, true, Scavenged[SI].FrameIndex,
RC, TRI);
MachineBasicBlock::iterator II = std::prev(I);
TII->storeRegToStackSlot(*MBB, Before, Reg, true, Scavenged[SI].FrameIndex,
&RC, TRI);
MachineBasicBlock::iterator II = std::prev(Before);
unsigned FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
// Restore the scavenged register before its use (or first terminator).
TII->loadRegFromStackSlot(*MBB, UseMI, SReg, Scavenged[SI].FrameIndex,
RC, TRI);
TII->loadRegFromStackSlot(*MBB, UseMI, Reg, Scavenged[SI].FrameIndex,
&RC, TRI);
II = std::prev(UseMI);
FIOperandNum = getFrameIndexOperandNum(*II);
TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this);
}
return Scavenged[SI];
}
Scavenged[SI].Restore = &*std::prev(UseMI);
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
MachineBasicBlock::iterator I,
int SPAdj) {
MachineInstr &MI = *I;
const MachineFunction &MF = *MI.getParent()->getParent();
// Consider all allocatable registers in the register class initially
BitVector Candidates = TRI->getAllocatableSet(MF, RC);
// Doing this here leads to infinite regress.
// Scavenged[SI].Reg = SReg;
// Exclude all the registers being used by the instruction.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) &&
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
Candidates.reset(MO.getReg());
}
// Try to find a register that's unused if there is one, as then we won't
// have to spill.
BitVector Available = getRegsAvailable(RC);
Available &= Candidates;
if (Available.any())
Candidates = Available;
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
// If we found an unused register there is no reason to spill it.
if (!isRegUsed(SReg)) {
DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n");
return SReg;
}
ScavengedInfo &Scavenged = spill(SReg, *RC, SPAdj, I, UseMI);
Scavenged.Restore = &*std::prev(UseMI);
DEBUG(dbgs() << "Scavenged register (with spill): " << TRI->getName(SReg) <<
"\n");
return SReg;
}
unsigned RegScavenger::scavengeRegisterBackwards(const TargetRegisterClass &RC,
MachineBasicBlock::iterator To,
bool RestoreAfter, int SPAdj) {
const MachineBasicBlock &MBB = *To->getParent();
const MachineFunction &MF = *MBB.getParent();
// Consider all allocatable registers in the register class initially
BitVector Candidates = TRI->getAllocatableSet(MF, &RC);
// Try to find a register that's unused if there is one, as then we won't
// have to spill.
BitVector Available = getRegsAvailable(&RC);
// Find the register whose use is furthest away.
MachineBasicBlock::iterator UseMI;
std::pair<unsigned, MachineBasicBlock::iterator> P =
findSurvivorBackwards(*TRI, MBBI, To, Available, Candidates);
unsigned Reg = P.first;
assert(Reg != 0 && "No register left to scavenge!");
// Found an available register?
if (!Available.test(Reg)) {
MachineBasicBlock::iterator ReloadAfter =
RestoreAfter ? std::next(MBBI) : MBBI;
MachineBasicBlock::iterator ReloadBefore = std::next(ReloadAfter);
DEBUG(dbgs() << "Reload before: " << *ReloadBefore << '\n');
MachineBasicBlock::iterator SpillBefore = P.second;
ScavengedInfo &Scavenged = spill(Reg, RC, SPAdj, SpillBefore, ReloadBefore);
Scavenged.Restore = &*std::prev(SpillBefore);
addRegUnits(RegUnitsAvailable, Reg);
DEBUG(dbgs() << "Scavenged register with spill: " << PrintReg(Reg, TRI)
<< " until " << *SpillBefore);
} else {
DEBUG(dbgs() << "Scavenged free register: " << PrintReg(Reg, TRI) << '\n');
}
return Reg;
}

View File

@ -140,8 +140,8 @@ define void @stored_fi_to_global_2_small_objects(float* addrspace(1)* %ptr) #0 {
}
; GCN-LABEL: {{^}}stored_fi_to_global_huge_frame_offset:
; GCN: s_add_i32 [[BASE_1_OFF_0:s[0-9]+]], 0, 0x3ffc
; GCN: v_mov_b32_e32 [[BASE_0:v[0-9]+]], 0{{$}}
; GCN-DAG: s_add_i32 [[BASE_1_OFF_0:s[0-9]+]], 0, 0x3ffc
; GCN-DAG: v_mov_b32_e32 [[BASE_0:v[0-9]+]], 0{{$}}
; GCN: buffer_store_dword [[BASE_0]], v{{[0-9]+}}, s{{\[[0-9]+:[0-9]+\]}}, s{{[0-9]+}} offen
; GCN: v_mov_b32_e32 [[V_BASE_1_OFF_0:v[0-9]+]], [[BASE_1_OFF_0]]

View File

@ -1,34 +1,62 @@
; Check that register scavenging spill slot is close to $fp.
; RUN: llc -march=mipsel -O0 -relocation-model=pic < %s | FileCheck %s
; Check that register scavenging spill slot is close to $fp.
target triple="mipsel--"
; CHECK: sw ${{.*}}, 8($sp)
; CHECK: lw ${{.*}}, 8($sp)
@var = external global i32
@ptrvar = external global i8*
define i32 @main(i32 signext %argc, i8** %argv) #0 {
entry:
%retval = alloca i32, align 4
%argc.addr = alloca i32, align 4
%argv.addr = alloca i8**, align 4
%v0 = alloca <16 x i8>, align 16
%.compoundliteral = alloca <16 x i8>, align 16
%v1 = alloca <16 x i8>, align 16
%.compoundliteral1 = alloca <16 x i8>, align 16
%unused_variable = alloca [16384 x i32], align 4
%result = alloca <16 x i8>, align 16
store i32 0, i32* %retval
store i32 %argc, i32* %argc.addr, align 4
store i8** %argv, i8*** %argv.addr, align 4
store <16 x i8> <i8 1, i8 2, i8 3, i8 4, i8 5, i8 6, i8 7, i8 8, i8 9, i8 10, i8 11, i8 12, i8 13, i8 14, i8 15, i8 16>, <16 x i8>* %.compoundliteral
%0 = load <16 x i8>, <16 x i8>* %.compoundliteral
store <16 x i8> %0, <16 x i8>* %v0, align 16
store <16 x i8> zeroinitializer, <16 x i8>* %.compoundliteral1
%1 = load <16 x i8>, <16 x i8>* %.compoundliteral1
store <16 x i8> %1, <16 x i8>* %v1, align 16
%2 = load <16 x i8>, <16 x i8>* %v0, align 16
%3 = load <16 x i8>, <16 x i8>* %v1, align 16
%mul = mul <16 x i8> %2, %3
store <16 x i8> %mul, <16 x i8>* %result, align 16
ret i32 0
; CHECK-LABEL: func:
define void @func() {
%space = alloca i32, align 4
%stackspace = alloca[16384 x i32], align 4
; ensure stackspace is not optimized out
%stackspace_casted = bitcast [16384 x i32]* %stackspace to i8*
store volatile i8* %stackspace_casted, i8** @ptrvar
; Load values to increase register pressure.
%v0 = load volatile i32, i32* @var
%v1 = load volatile i32, i32* @var
%v2 = load volatile i32, i32* @var
%v3 = load volatile i32, i32* @var
%v4 = load volatile i32, i32* @var
%v5 = load volatile i32, i32* @var
%v6 = load volatile i32, i32* @var
%v7 = load volatile i32, i32* @var
%v8 = load volatile i32, i32* @var
%v9 = load volatile i32, i32* @var
%v10 = load volatile i32, i32* @var
%v11 = load volatile i32, i32* @var
%v12 = load volatile i32, i32* @var
%v13 = load volatile i32, i32* @var
%v14 = load volatile i32, i32* @var
%v15 = load volatile i32, i32* @var
%v16 = load volatile i32, i32* @var
; Computing a stack-relative values needs an additional register.
; We should get an emergency spill/reload for this.
; CHECK: sw ${{.*}}, 0($sp)
; CHECK: lw ${{.*}}, 0($sp)
store volatile i32 %v0, i32* %space
; store values so they are used.
store volatile i32 %v0, i32* @var
store volatile i32 %v1, i32* @var
store volatile i32 %v2, i32* @var
store volatile i32 %v3, i32* @var
store volatile i32 %v4, i32* @var
store volatile i32 %v5, i32* @var
store volatile i32 %v6, i32* @var
store volatile i32 %v7, i32* @var
store volatile i32 %v8, i32* @var
store volatile i32 %v9, i32* @var
store volatile i32 %v10, i32* @var
store volatile i32 %v11, i32* @var
store volatile i32 %v12, i32* @var
store volatile i32 %v13, i32* @var
store volatile i32 %v14, i32* @var
store volatile i32 %v15, i32* @var
store volatile i32 %v16, i32* @var
ret void
}
attributes #0 = { noinline "no-frame-pointer-elim"="true" }

View File

@ -25,8 +25,8 @@ entry:
; CHECK-DAG: li [[REG1:[0-9]+]], -128
; CHECK-DAG: neg [[REG2:[0-9]+]],
; CHECK: and [[REG1]], [[REG2]], [[REG1]]
; CHECK: stdux {{[0-9]+}}, 1, [[REG1]]
; CHECK: and [[REG3:[0-9]+]], [[REG2]], [[REG1]]
; CHECK: stdux {{[0-9]+}}, 1, [[REG3]]
; CHECK: blr

View File

@ -46,8 +46,8 @@ define i32 @test3() {
; CHECK-LABEL: test3:
; CHECK: ldr [[TEMP:r[0-7]]],
; CHECK: add sp, [[TEMP]]
; CHECK: ldr [[TEMP]],
; CHECK: add [[TEMP]], sp
; CHECK: ldr [[TEMP2:r[0-7]]],
; CHECK: add [[TEMP2]], sp
; EABI: ldr [[TEMP:r[0-7]]],
; EABI: add sp, [[TEMP]]
; IOS: subs r4, r7, #4