mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-17 00:50:58 +00:00
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a 'select'. LLVM can handle such cases but only when the 'select' operands are symmetric in structure (both select operands are a constant power of two or a left shift, etc.). This falls apart if we are dealt a 'udiv' where the code is not symetric or if the select operands lead us to more select instructions. Instead, we should treat the LHS and each select operand as a distinct divide operation and try to optimize them independently. If we can to simplify each operation, then we can replace the 'udiv' with, say, a 'lshr' that has a new select with a bunch of new operands for the select. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185257 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
d4a9ebc734
commit
f723e5d1c2
@ -705,6 +705,80 @@ static Value *dyn_castZExtVal(Value *V, Type *Ty) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
const unsigned MaxDepth = 6;
|
||||
|
||||
// \brief Recursively visits the possible right hand operands of a udiv
|
||||
// instruction, seeing through select instructions, to determine if we can
|
||||
// replace the udiv with something simpler. If we find that an operand is not
|
||||
// able to simplify the udiv, we abort the entire transformation.
|
||||
//
|
||||
// Inserts any intermediate instructions used for the simplification into
|
||||
// NewInstrs and returns a new instruction that depends upon them.
|
||||
static Instruction *visitUDivOperand(Value *Op0, Value *Op1,
|
||||
const BinaryOperator &I,
|
||||
SmallVectorImpl<Instruction *> &NewInstrs,
|
||||
unsigned Depth = 0) {
|
||||
{
|
||||
// X udiv 2^C -> X >> C
|
||||
// Check to see if this is an unsigned division with an exact power of 2,
|
||||
// if so, convert to a right shift.
|
||||
const APInt *C;
|
||||
if (match(Op1, m_Power2(C))) {
|
||||
BinaryOperator *LShr = BinaryOperator::CreateLShr(
|
||||
Op0, ConstantInt::get(Op0->getType(), C->logBase2()));
|
||||
if (I.isExact()) LShr->setIsExact();
|
||||
return LShr;
|
||||
}
|
||||
}
|
||||
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
|
||||
// X udiv C, where C >= signbit
|
||||
if (C->getValue().isNegative()) {
|
||||
ICmpInst *IC = new ICmpInst(ICmpInst::ICMP_ULT, Op0, C);
|
||||
NewInstrs.push_back(IC);
|
||||
|
||||
return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
|
||||
ConstantInt::get(I.getType(), 1));
|
||||
}
|
||||
}
|
||||
|
||||
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
|
||||
{ const APInt *CI; Value *N;
|
||||
if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
|
||||
match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
|
||||
if (*CI != 1) {
|
||||
N = BinaryOperator::CreateAdd(
|
||||
N, ConstantInt::get(N->getType(), CI->logBase2()));
|
||||
NewInstrs.push_back(cast<Instruction>(N));
|
||||
}
|
||||
if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1)) {
|
||||
N = new ZExtInst(N, Z->getDestTy());
|
||||
NewInstrs.push_back(cast<Instruction>(N));
|
||||
}
|
||||
BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
|
||||
if (I.isExact()) LShr->setIsExact();
|
||||
return LShr;
|
||||
}
|
||||
}
|
||||
|
||||
// The remaining tests are all recursive, so bail out if we hit the limit.
|
||||
if (Depth++ == MaxDepth)
|
||||
return 0;
|
||||
|
||||
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
|
||||
if (Instruction *LHS =
|
||||
visitUDivOperand(Op0, SI->getOperand(1), I, NewInstrs)) {
|
||||
NewInstrs.push_back(LHS);
|
||||
if (Instruction *RHS =
|
||||
visitUDivOperand(Op0, SI->getOperand(2), I, NewInstrs)) {
|
||||
NewInstrs.push_back(RHS);
|
||||
return SelectInst::Create(SI->getCondition(), LHS, RHS);
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
||||
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
||||
|
||||
@ -715,30 +789,6 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
||||
if (Instruction *Common = commonIDivTransforms(I))
|
||||
return Common;
|
||||
|
||||
{
|
||||
// X udiv 2^C -> X >> C
|
||||
// Check to see if this is an unsigned division with an exact power of 2,
|
||||
// if so, convert to a right shift.
|
||||
const APInt *C;
|
||||
if (match(Op1, m_Power2(C))) {
|
||||
BinaryOperator *LShr =
|
||||
BinaryOperator::CreateLShr(Op0,
|
||||
ConstantInt::get(Op0->getType(),
|
||||
C->logBase2()));
|
||||
if (I.isExact()) LShr->setIsExact();
|
||||
return LShr;
|
||||
}
|
||||
}
|
||||
|
||||
if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
|
||||
// X udiv C, where C >= signbit
|
||||
if (C->getValue().isNegative()) {
|
||||
Value *IC = Builder->CreateICmpULT(Op0, C);
|
||||
return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
|
||||
ConstantInt::get(I.getType(), 1));
|
||||
}
|
||||
}
|
||||
|
||||
// (x lshr C1) udiv C2 --> x udiv (C2 << C1)
|
||||
if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
|
||||
Value *X;
|
||||
@ -749,38 +799,6 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
||||
}
|
||||
}
|
||||
|
||||
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
|
||||
{ const APInt *CI; Value *N;
|
||||
if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
|
||||
match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
|
||||
if (*CI != 1)
|
||||
N = Builder->CreateAdd(N,
|
||||
ConstantInt::get(N->getType(), CI->logBase2()));
|
||||
if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
|
||||
N = Builder->CreateZExt(N, Z->getDestTy());
|
||||
if (I.isExact())
|
||||
return BinaryOperator::CreateExactLShr(Op0, N);
|
||||
return BinaryOperator::CreateLShr(Op0, N);
|
||||
}
|
||||
}
|
||||
|
||||
// udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
|
||||
// where C1&C2 are powers of two.
|
||||
{ Value *Cond; const APInt *C1, *C2;
|
||||
if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
|
||||
// Construct the "on true" case of the select
|
||||
Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
|
||||
I.isExact());
|
||||
|
||||
// Construct the "on false" case of the select
|
||||
Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
|
||||
I.isExact());
|
||||
|
||||
// construct the select instruction and return it.
|
||||
return SelectInst::Create(Cond, TSI, FSI);
|
||||
}
|
||||
}
|
||||
|
||||
// (zext A) udiv (zext B) --> zext (A udiv B)
|
||||
if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
|
||||
if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
|
||||
@ -788,6 +806,21 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
|
||||
I.isExact()),
|
||||
I.getType());
|
||||
|
||||
// (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
|
||||
SmallVector<Instruction *, 4> NewInstrs;
|
||||
Instruction *RetI = visitUDivOperand(Op0, Op1, I, NewInstrs);
|
||||
for (unsigned i = 0, e = NewInstrs.size(); i != e; i++)
|
||||
// If we managed to replace the UDiv completely, insert the new intermediate
|
||||
// instructions before where the UDiv was.
|
||||
// If we couldn't, we must clean up after ourselves by deleting the new
|
||||
// instructions.
|
||||
if (RetI)
|
||||
NewInstrs[i]->insertBefore(&I);
|
||||
else
|
||||
delete NewInstrs[i];
|
||||
if (RetI)
|
||||
return RetI;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -35,3 +35,41 @@ define i64 @t3(i64 %x, i32 %y) nounwind {
|
||||
%3 = udiv i64 %x, %2
|
||||
ret i64 %3
|
||||
}
|
||||
|
||||
define i32 @t4(i32 %x, i32 %y) nounwind {
|
||||
; CHECK: t4
|
||||
; CHECK-NOT: udiv
|
||||
; CHECK-NEXT: [[CMP:%.*]] = icmp ult i32 %y, 5
|
||||
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP]], i32 5, i32 %y
|
||||
; CHECK-NEXT: [[SHR:%.*]] = lshr i32 %x, [[SEL]]
|
||||
; CHECK-NEXT: ret i32 [[SHR]]
|
||||
%1 = shl i32 1, %y
|
||||
%2 = icmp ult i32 %1, 32
|
||||
%3 = select i1 %2, i32 32, i32 %1
|
||||
%4 = udiv i32 %x, %3
|
||||
ret i32 %4
|
||||
}
|
||||
|
||||
define i32 @t5(i1 %x, i1 %y, i32 %V) nounwind {
|
||||
; CHECK: t5
|
||||
; CHECK-NOT: udiv
|
||||
; CHECK-NEXT: [[SEL1:%.*]] = select i1 %x, i32 5, i32 6
|
||||
; CHECK-NEXT: [[SEL2:%.*]] = select i1 %y, i32 [[SEL1]], i32 %V
|
||||
; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 %V, [[SEL2]]
|
||||
; CHECK-NEXT: ret i32 [[LSHR]]
|
||||
%1 = shl i32 1, %V
|
||||
%2 = select i1 %x, i32 32, i32 64
|
||||
%3 = select i1 %y, i32 %2, i32 %1
|
||||
%4 = udiv i32 %V, %3
|
||||
ret i32 %4
|
||||
}
|
||||
|
||||
define i32 @t6(i32 %x, i32 %z) nounwind{
|
||||
; CHECK: t6
|
||||
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i32 %x, 0
|
||||
; CHECK-NOT: udiv i32 %z, %x
|
||||
%x_is_zero = icmp eq i32 %x, 0
|
||||
%divisor = select i1 %x_is_zero, i32 1, i32 %x
|
||||
%y = udiv i32 %z, %divisor
|
||||
ret i32 %y
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user